
Design and Verification of Cellphone-based
Cyber-Physical Systems: A Position Paper

Rodion Podorozhny
Computer Science Department

Texas State University
San Marcos, Texas 78666
Email: rp31@txstate.edu

Abstract—This paper outlines an approach to explore methods
for design and verification of cellphone-based cyber physical
systems. The use of cellphones for development of such control
systems has a number of benefits. Cellphones are relatively cheap,
they already combine a number of sensors and communication
capabilities that make them suitable candidates for relatively
inexpensive embedded systems. At the same time there are
certain peculiarities and restrictions in the existing operating
systems and programming environments for cellphones that do
not allow transferring existing methods for design and verification
of control systems directly. We suggest an approach to explore
such methods adapted for cellphones as embedded devices.

I. INTRODUCTION

As cellphones computational power, sensor array and ca-
pabilities of cell networks increase there is a growing trend
for using the cellphones as embedded devices for controlling
technical objects. The vast majority of existing projects focus
on low level stabilization control. They do not venture into
application of higher level problem solving methods (real time
distributed planning as in [5], statistical machine learning,
goal oriented action planning). Nor do they provide gener-
alized model driven methods for design of such systems.
To the authors knowledge there is no reported experience in
verification or systematic testing applied to control systems
implemented on the basis of cellphones. It is very likely
that in the near future there will be a growing demand for
methods of design and verification of such systems. Thus
this problem is important. This paper suggests an approach
to explore suitability of existing architectures, algorithms,
and generalized methods for design and verification of real
time distributed control systems for teams of mobile vehicles
(cyber-physical systems) controlled by cellphones.

II. MOTIVATION

Imagine being able to download an application to a reg-
ular cellphone, plug it into an on-board control system of
some technical device or vehicle and turn it into an easily
reconfigurable inexpensive robot. At this time there is already
a growing community of enthusiasts who write customized
cellphone applications of this kind (e.g. cellbots.com). The AI
and aerospace communities have also produced a number of
inexpensive control systems for ground and aerial vehicles that
are based on boards such as Arduino and Beagle (ArduPilot,
Paparazzi [2]). Some of these control systems have been put
to very good use on mini UAVs for the purposes of meteoro-
logical or ecological studies. There are also examples of the

use of cellphones as controllers for industrial assembly lines.
Definitely there is a large area of applications for inexpensive
robotic systems. We propose to explore adaptation of software
engineering methods for design and verification of control
systems designed to run on regular cellphones with as little
customization as possible. In addition, we want to augment
such control systems with reasoning capabilities. Most of
available control systems of this kind focus only on the low
level stabilization control. A direct transfer of existing software
engineering methods is complicated by the peculiarities of
programming environments and operating systems for cell-
phones. By engineering methods we understand methods for
synthesis and analysis of software. In particular, model-driven
approach to development similar to the use of SIMULINK for
C-based control systems, verification methods of the model,
verification and testcase generation methods for the source
code and executables. Without the loss of generalization we
will focus on Android based cellphones as it is less hassle
to install new applications on them and it is easier to modify
the Android operating system itself because its source code is
publicly available.

Currently we see the following difficulties with direct
application of existing software engineering methods:

• The cellphone programming environments are event-
based. A cellphone application must subclass classes
from an existing framework and override methods in-
voked in response to predefined events. This puts a sort
of a straight jacket on the architecture of a concurrent
control system, though still, some variety is possible.
Besides, modern verification tools are not suited for
verification of event-based system of this kind. For
instance, NASA’s Java Pathfinder model checker [1]
cannot be used for verification of Java code written
for an Android platform to check for deadlocks, race
conditions or domain specific properties

• The cellphone operating systems are not real-time. Our
goal is to avoid deep modifications to the operating
system (such as Robot Operating System (ROS)) and
the virtual machine (VM). For instance, for Java,
real time VMs do exist (JamaicaVM, SimpleRTJ).
They are either very expensive or do not support
the full range of libraries. We do need to use some
architectural solutions to ensure the required frequency
and timeliness of sensor measurements and control
outputs.

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254262

Verification tools

Problem solving
component

Low level control

Model driven approach

JPF, Kodkod, other
bytecode verification
tools

Goal based reasoning, GPGP,
DCOP planners

Little-JIL

Technical object interface IOIO + sensors + actuators

Testbed

Fig. 1: Approach

• Modern model-driven environments for control sys-
tems such as SIMULINK generate C source code and
are not directly applicable to cellphone applications

• Modern model-driven environments do not enable
one to define reasoning software components (e.g.
goal oriented behaviors, hierarchical task networks for
distributed planning).

In the next section we will outline proposed solutions to
these difficulties.

III. APPROACH

A roadmap of proposed solutions is depicted in Figure 1.

A. Low-level control

So that to add to the body of knowledge about applicable
architectures for cellphone-based control systems we would
like to do comparative analysis of the following architectures
based on performance, ability to satisfy real time constraints,
reliability, ease of verification :

• completely reactive, the control code will be invoked
in response to the change of readings of sensors that
are either embedded in the cellphone or attached to it

• control system without internal concurrency driven by
a single active control loop

• control system with internal concurrency, organized
to match the structure of the technical vehicle (i.e. a
thread per a group of sensors and actuators responsible
for control along a certain axis or grouped according
to some other logical criterion). Thus it will be a set
of concurrent communicating control loops.

B. Problem solving component

At first we would like to evaluate the Generalized Partial
Global Planning [5] applied to definition of coordination

among the technical objects or vehicles. Individually, vehicles
will use goal oriented action planning whose action choices can
be overridden as a result of negotiation between the vehicle
control systems according to the GPGP protocols. In future we
would like to explore algorithms for solution of Distributed
Constraint Optimization Problem (e.g. as in [4]) instead of
GPGP and evolutionary neural networks [7] to augment the
goal oriented action planning.

C. Model-driven development

As a language for model-driven development we would
like to adopt the Little-JIL [8]. It will be used to define
the bodies of control loops. In this application each leaf step
will correspond to a certain fragment of code responsible
for reading a sensor, processing sensor data, calculation of
actuator response, outputting response to actuator. Besides we
will use this process language for definition of hierarchical
task networks for the GPGP. Thus it will be possible to re-
configure both the low level stabilization and problem solving
component.

D. Verification techniques

We will also be exploring various methods for verification
of the resultant control system. For instance, we will explore
a method for creation of a software mock-up of the control
system that can be verified with Java Pathfinder. We will also
extend the method for verification of multi-agent protocols
[6] to verification of cooperative behaviors of cyber-physical
systems, taking into account the physical states of the con-
trolled systems they end up with after following the negotiation
protocols.

IV. ARCHITECTURE

This section will describe the main components of the
proposed concurrent architecture. Figure 2 depicts these
components and interactions between them. To highlight the
possible relationships between the components we use a
custom architecture description language. The meaning of
the relationships is defined in Figure 2. Let us start the
architecture description. The control system reacts to reception
of assigned tasks. Tasks are identified by their names. A task
decomposition storage contains the decompositions of tasks
that a control system can perform. For instance a process
language such as Little-JIL can be used to define these task
decompositions.

An instance of a task planner is created in response to a task
assignment. Task requests can come in before the previously
assigned tasks are completed or aborted. Thus several instances
of task planners can run concurrently. The decomposition of
the task planning itself is depicted in Figure 3. This figure uses
a simplified function decomposition process language along
the lines of Little-JIL. The edges correspond to functional de-
composition, the nodes to steps. Various execution constraints
are defined via sequencing notation: seq (sequential), cond
(conditional), and sum (no order defined, though completion
of all substeps is needed). This is a subset of a richer range
of sequencing notation possible in Little-JIL and hierarchical
task network languages such as TAEMS. Thus, Figure 3
prescribes that a task planning instance first retrieves the

Servo Control Task

Sensor Read Task

Shared position, orientation,
Velocity vector

Shared mode Active schedule items

Local Partial Schedule

Task Planner

Storage of task
decompositions Task assignment

Negotiation
component

1..n
0..n

1..n

Write

Read
Aggregation

Asynchronous call

Fig. 2: Architecture

Task Planning

Negotiate with other
Agents for a combined

Optimal schedule

seq

Retrieve Task
Decomposition from

Storage

Amend the shared
Data structure with the

current schedule

Create a locally
Optimal schedule

Fig. 3: Task Planning

decomposition for the assigned task, creates a locally optimal
schedule (”local” to the individual vehicles that received the
assignment), makes the vehicles negotiate to create a combined
distributed schedule that reduces the likelihood of redundancies
and encourages cooperative behavior. No single vehicle has a
global representation of the combined schedule, this is a decen-
tralized solution that trades off how close a combined schedule
is to the optimal against the time needed to create such a
schedule so that the vehicles could accomplish their tasks by
real time deadlines. Once an instance of a planner is finished
the local schedule of a vehicle is updated (amended) with
schedule items needed to accomplish the task. A local schedule
is concurrent itself, it intertwines schedule items needed to
accomplish several non-contradicting tasks that a vehicle is
assigned. Several instances of planners can concurrently update
the local schedule as it is done in blackboard architectures.

Execute Schedule Item

Check the termination
Condition for the

schedule item

seq

Initiate Schedule
Item,

Update the mode
Shared data structure

Process an iteration
Of schedule item

Execution,
Update the mode

Shared data structure

Terminate the schedule
item,

Update the mode
shared data structure

Exactly one

Execute Schedule Item

Fig. 4: Schedule Item Execution

Because the local schedule is concurrent, several schedule
items can be active at the same time (e.g. flying level to a
waypoint and tracking an object with a sensor). An instance
of a schedule item can be thought of as a state in a UML
statechart. It has an initiation method, a process method that
is repeatedly invoked while the state is active (a check for
a schedule item completion or abnormal termination can be
done in this method), and a termination method. One possible
decomposition of a task for a schedule item execution is shown
in Figure 4. This definition uses recursion to perform the
process method. The currently active schedule items dictate
the modes of low level behaviors. For instance, a low level
behavior can be a level flight or a turn or a vertical loop or
maintaining sensor orientation etc. These are implemented as
numerical optimal solutions to the sets of differential equations
defining a problem (i.e. a solution is a function in this case).
For example, the behavior of maintaining sensor orientation is
minimization of the angle between the line of sight to target
vector and the sensor orientation vector. The modern state
space control theory deals with methods for creation of such
numerical solutions (e.g. [9] describes these methods applied
to UAV control). Other approaches have been experimented
with for this purpose. For instance function approximators such
as (evolving) neural networks.

The code that implements these behaviors has to execute at
a certain frequency. Actually, it has two big parts: prediction of
sensor readings using Kalman filters and response calculations
with corresponding servo pulses. The response calculations
are the numerical optimal solutions. They are specific to
the currently active modes (e.g. level flight to a waypoint
optimizing time, or level flight to a waypoint minimizing
energy consumption). It is preferable to read sensors at a higher
frequency than pulsing servos for the Kalman filters to improve
their predictions (say, 100Hz for sensor reads and 50Hz for
servo pulses). Thus we are suggesting to run the sensor read
code and servo response code in separate threads or in handlers
to different hardware timer interrupts (Figures 5 and 6).
These two threads can communicate via a shared data structure

Sensor Read Task

Read and Filter Sensors

IMU
KF

Reading

Barometric
Altitude
Reading

seq

seq

Speed
KF

Reading

3D GPS
Reading

Data Fusion for position,
Orientation, velocity

vector

Write to shared data
structure

Fig. 5: Sensor Reading Task

Servo Control Task

Calculate Response

seq

Read position
Orientation, velocity

vector shared data
structure

Pulse Servos
Read mode shared

Data structure

Pulse Throttle Pulse Ailerons Pulse Elevator Pulse Rudder

sum

Fig. 6: Servo Control Task

that stores the physical state vector of the vehicle (position,
orientation, velocity vector, angular momenta, angle of attack,
G-loading). To avoid the possibility of a deadlock or time
wasted while blocked we propose to ensure the thread safety
of this data structure via the compare and swap operations
(accessible in Java via methods on ”Atomic” classes). This is
where the lack of real time constraints in the Android OS and
non-determinism of garbage collection in JVM in our platform
of choice introduce certain difficulties. We would like to use
light modifications to the Android OS to satisfy the need in real
time OS features, for instance as in [3]. For the time being, a
simpler solution is to reduce the number of processes running
on the embedded Android platform to a bare minimum of the
essential ones and minimize the number of instantiations of
classes and de-referencing instances to reduce the frequency
of the garbage collector invocations.

Now that we have provided a brief description of the
software architecture, we would like to note that mapping
of this architecture to cores of the hardware platforms is
also important. We need to use techniques to reduce context
switching and pay attention to the way threads are assigned
to processes in a particular OS. Besides we want to exper-
iment with other concurrent frameworks such as the Actor
framework in Scala (another language compiled into JVM
bytecode). The Actor framework allows for lightweight threads
that drastically reduce context switching. Its effectiveness was
shown in the implementation of the MapReduce architecture
for the Google’s cloud computation servers. We also would
like to emphasize that our main goals are to provide a model-
driven approach for development of control systems with
problem solving components, evaluate concurrent architectures
and verifications techniques. We do not intend to compete with
advanced algorithmic solutions in the area of distributed AI.
The next section will itemize the expected research outcomes
along these directions.

V. EXPECTED RESEARCH OUTCOMES

The testbed described above should provide for a wide
array of experimentation with quantitative results: performance
evaluations of architectures and algorithmic solutions, evalu-
ation of how close their solutions are to the optimal while
remaining feasible and practical.

Besides, the testbed can serve as an analyzed system for
evaluation of verification methods for thread safety of complex
shared data structures - task decompositions and concurrent
schedules.

Finally, we plan to suggest verification methods for cyber-
physical systems with problem solving components based on
distributed planning and negotiation (e.g. as an extension of
the method described in [6]).

VI. PRELIMINARY RESULTS

By now we have developed a simulated AI framework
based on goal oriented behavior and Generalized Partial Global
Planning. We have also implemented a low level control system
for a four wheeled rover that runs on an Android device. It
uses a IOIO board to communicate with motors and servos.
We are in the process of building a low cost UAV on the basis
of Bixler 2 electrically powered model plane with an Android
phone as an embedded control platform. Our next steps are:
transfer the simulated AI framework onto an Android device,
validate it and generalize its architecture in a process language
of choice (Little-JIL) to allow for model-driven reconfiguration
and verification of the bodies of the low level behaviors and
task decompositions.

VII. CONCLUSION

This paper highlighted the importance of creation of gener-
alized software engineering methods for design and verification
of cellphone-based control systems. It also itemized difficulties
in direct transfer of existing methods for this task. Finally,
the paper suggested an approach to evaluate solutions to these
difficulties.

REFERENCES

[1] http://babelfish.arc.nasa.gov/trac/jpf.
[2] B. Gati. Open source autopilot for academic research the paparazzi

system. In the American Control Conference, 2013.
[3] I. Kalkov, D. Franke, J. F. Schommer, and S. Kowalewski. A real-time

extension to the android platform. In 10th International Workshop on
Java Technologies for Real-time and Embedded Systems (JTRES),
pages 105 – 114. ACM, 2012.

[4] Y. Kim and V. R. Lesser. Improved max-sum algorithm for dcop with
n-ary constraints. In AAMAS, pages 191–198, 2013.

[5] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling,
D. Neiman, R. Podorozhny, M. N. Prasad, A. Raja, R. Vincent,
P. Xuan, and X. Zhang. Evolution of the GPGP/TAEMS
Domain-Independent Coordination Framework. Autonomous Agents
and Multi-Agent Systems, 9(1):87–143, July 2004.

[6] R. Podorozhny, S. Khurshid, D. Perry, and X. Zhang. Verification of
multi-agent negotiations using the alloy analyzer. In Integrated Formal
Methods, 2007.

[7] S. Risi and K. O. Stanley. An enhanced hypercube-based encoding for
evolving the placement, density, and connectivity of neurons. Artificial
Life, 18(4):331–363, 2012.

[8] A. Wise. Little-JIL 1.0 Language Report. Technical report 98-24,
Department of Computer Science, The University of Massachusetts at
Amherst, 1998.

[9] R. Yanushevsky. Guidance of Unmanned Aerial Vehicles. CRC Press,
2011.

