
Privacy Aware Service Selection of Composite Web
Services Invited Paper

Anna Cinzia Squicciarini∗, Barbara Carminati#, Sushama Karumanchi∗
∗College of Information Sciences and Technology

The Pennsylvania State University, University Park, PA 16802.
E-mail: {asquicciarini,sik5273}@ist.psu.edu

#Department of Theoretical and Applied Science
University of Insubria, Varese, Italy.

E-mail: barbara.carminati@uninsubria.it
Invited Paper

Abstract—Web service selection involves finding services from
a possibly huge database of similar services. Hence, the chal-
lenges involved in finding a suitable service include large time
consumption, and difficulty of finding a perfect match according
to the user specified search keywords. In addition, significant
privacy and security concerns arise, as the information involved
with service selection and provisioning may be sensitive for both
providers and users.

In this paper, we propose a comprehensive framework to
uniformly protect users and service providers at the time of
service selection. We define a solution that (a) supports private
service selection, such that both criteria and service attributes are
kept private during the matching and (b) includes an approach to
protect service provisioning rules from unwanted disclosure, both
from the user and the service provider’s perspective. We imple-
mented our solution and integrated with the current Web service
standard technologies. We conducted an extensive experimental
evaluation, using datasets of actual WSDL documents. Our
experimental evaluation and complexity analysis demonstrate
that our algorithms are both effective and efficient.

Index Terms—Web services, Privacy, Selection and Composi-
tion

I. INTRODUCTION

The growing success of Web services as the preferred
standards-based approach to implement distributed and hetero-
geneous systems has resulted in a large number of providers
offering services of varying degree of sophistication and com-
plexity, ranging from weather forecast to travel management.
On one hand, the availability of a wide array of services has
created a competitive and flexible market that meets the needs
of different type of users (e.g. individuals, organizations, law
enforcement etc.). On the other hand, this large availability
of heterogenous services makes the service selection process
a non-trivial task, making Web service selection and provi-
sioning play a crucial role in Web service life-cycle. Here,
several application-dependent requirements might constrain
the selection of the best service.

Existing literature offers some approaches toward an effi-
cient and effective selection of Web services, where interesting
solutions are proposed in the context of Web service recom-
mendation [1], [2], [8], [12], [18]. However, several important

problems have not been addressed yet. First, while all existing
efforts confirm the relevance and need of a constrained service
selection approach, wherein users can specify their preferences
and needs, none of them takes into account the privacy
of both users and service providers. In particular, existing
works fail to recognize that even optimized strategies for
service selection involve the exchange of large amount of
potentially sensitive data, causing potentially serious privacy
leaks. Further exacerbating the risk of privacy leaks is the need
of creating composite Web services to meet complex users’
needs.

In addition to considering the privacy requirements asso-
ciated with the disclosure of user’s personal data needed
to locate Web services according to his/her search criteria,
we also take into account the fact that service providers
might have to verify a user’s profile information against some
provisioning rules, prior to service invocation. These rules
could be imposed by law, or by internal business rules. For
example, in the context of e-commerce transactions, laws
protecting against selling alcohol to minors might have to be
applied. Or in the case of a rental car service, the provider
might prefer to lend luxury cars only to clients with a given
income, or it might choose not to lend them to young drivers.
All these conditions have to be retrieved and matched against
the user’s profile prior to service provisioning. Similar to the
case of search criteria, these rules might have to be verified
against private/sensitive user’s attributes (i.e., age and income),
therefore giving rise to privacy problems.

Henceforth, not only end users may have privacy and
confidentiality needs, but also Web service providers may
need to maintain provisioning rules, possibly confidential.
As such, privacy and information leakage associated with
service provisioning are also important. This problem is again
compounded by the fact that multiple Web service providers
may be involved, and a dynamic composition process is to be
carried out on the fly. In the presence of multiple providers
that coordinate together to provide a composite Web service,
privacy issues are amplified, due to the larger number of
service providers involved (each of which may have individual

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254264



provisioning rules).
Motivated by the above considerations, in this work we

present a comprehensive framework for secure selection and
provisioning of Web services. Our goal to help users and
services obtain and deliver composite and single services in
a private fashion. Our framework uniformly protects users’
and service providers’ privacy needs, at the time of service
selection. We define a solution that performs matching of the
user search criteria against the Web services attributes in a
private fashion such that both criteria and service attributes
are kept private during the matching.

To provide the advanced functionalities offered by our ar-
chitecture, we implement a prototype of our solution integrated
with the current Web service standard technologies. More-
over, we conduct experimental evaluation using real WSDL
documents. As demonstrated by our empirical and theoretical
evaluation, our algorithms are efficient with respect to both
time and computation. A preliminary version of this frame-
work has been proposed in [15], where we only focused on
the private matching of service provider provisioning rules and
user profile, and private user search. In this work, we develop
a private service selection framework with new methods, to
ensure that only services that have capabilities that highly suit
the requirements of the user are selected, in a private fashion.
Our extended solution also includes algorithms to deal with
complex private rules of Web Service providers, as well as a
description of a standard-compliant architecture of the system.
Our experimental evaluation is comprehensive, and includes a
large set of experiments on all the proposed algorithms.

The paper is organized as follows. In Section II, we provide
an overview of the relevant literature in the area. In Section
III, we describe our proposed framework, and elaborate on
its most important protocols. We present the language used
for representation of rules in Section IV. In Section V, we
present the private service selection and provisioning model.
In Section VI, we discuss our prototype and report some
experimental evaluation. We conclude in Section VII.

II. RELATED WORKS

Work related to the proposed system is associated with
the following main topics: access control, privacy for Web
services, and Web service composition. We review relevant
efforts in these areas in what follows.

Access control in Web services focuses on authentication
and authorization of the users or the service providers re-
questing a Web service, or processing a Web service in case
of Web service composition. To date, a number of works
providing solutions for access control in Web services have
been proposed [7], [16], [11], [20], [14]. In what follows, we
discuss few of the most representative approaches. Few works
focus on attribute based access control in Web services [7],
[14], [20] where the access control to resources is achieved
based on the attributes of the subjects, resources and the
environment under which the access takes place, and it is
therefore well suited for Web services. For example, in [20],
the authors posit that ABAC is a natural convergence of the

following existing access control models: (1) discretionary
access control (DAC) whose implementations include identity
based access control, role based access control, (2) mandatory
access control (MAC). They claim that ABAC is more fine-
grained and the policy representation is richer and more ex-
pressive than the other access control models. Also, authors in
[16] propose to extend WS-BPEL, so as to allow specification
of user tasks and their enforcement of access control of those
tasks.

Parallel to work on access control, researchers have in-
vestigated how to address the client’s privacy concerns [11],
[10], [17]. In [11], a framework focusing on clients’ privacy
is proposed. The key component of their framework is the
mobile agent which ensures accurate data privacy policy of
the service provider to be implemented at the client. Similarly,
authors in [10] describe an approach to prioritize the Web
services for a client during selection depending on the privacy
preferences specified by the client. Work to date has taken into
consideration the privacy of the client’s information during
the service provisioning phase and later, but do not consider
the client’s information privacy during the service selection
phase. Users’ search criteria information is as vulnerable to
secondary usage as other data of the client stored at the
service provider’s side. During the selection of Web services,
the client needs to provide its search criteria to the UDDI
registry entity or a search engine. To business critical clients
this search information is very confidential. In our work, we
provide a solution to protect the search criteria of the client
from disclosure to the service provider.

Web service composition is a related important and evolving
paradigm, as it provides better services to the clients. Web
service composition involves composition of different Web
services on the fly, upon request from a client. Composition
brings with it a new set of privacy problems to the service
providers. During service composition, business related and
sensitive information of the service providers needs to be
exchanged among themselves in order to provide the com-
posite service. On a first step towards this problem direction,
authors in [13], consider the privacy problem that arises among
the service providers during Web service composition. They
analyze the problem of information flow during Web service
composition, whereby service providers might derive some
sensitive information during the composition process. Ustun
and colleagues [19] provide an approach to manage the in-
formation flow between composed services in a decentralized
manner using peer-to-peer processes. As in [13], they make
use of the information flow policies and build algorithms to
achieve the goal. Both these solutions fail to consider the
privacy of these information flow policies from the other
services participating in the Web service composition. In [21],
the authors focus on controlling access to data resources from
a client by making the composite Web service combine the
access control policies of different Web services and construct
its own set of access control policies for the client requesting
the composite service. However, the access control policies of
each Web service are disclosed to the other services. While



similar to the extent that we also deal with composing policies
from multiple providers, we focus on privacy of access control
policies of each service provider during Web service compo-
sition. In [4], the authors present a framework for Web service
composition that is decentralized supporting and enforcing
some security requirements like availability, confidentiality,
authenticity and integrity of the execution order of the Web
services. Carminati and colleagues [5] mainly provide an idea
about how to compose Web services taking into consideration
their security constraints and capabilities, and posit that the
service composition should be made only after checking the
compatibility of different Web service provider’s security
constraints and capabilities. In our work, we propose not
only to consider the compatibility of security constraints and
capabilities among the service providers, but we also consider
various business policies and their confidentiality needs.

III. OVERALL ARCHITECTURE

We recall that the goal of the proposed framework is to
assist users to privately search for services able to carry on
the required business, as well as to privately enforce possible
provisioning rules of the selected service providers. For this
purpose, the proposed architecture has a main component
called the Private Negotiator (PN, in short). The Private
Negotiator enables private search over services, and also
provides a private profile compatibility verification method
that takes place among service providers, and between the
service provider and the user. As such, the user search for
the services is carried out in two distinct steps. The first step
involves the user providing the planner (discussed later) non-
private information on the service he is looking for (i.e., public
search), whereas the second step involves the user providing
the Private Negotiator, the private information, such as location
or implementation requirements, for the private search and
provisioning rule enforcement. We discuss these two steps in
more detail in what follows.

Step 1: As the first step, the user enters information
regarding the required service, that is, the description, the
business type, its input and output (Figure 1, step 1). For
example, the user provides “Travel Service” as description
of the service, “airline, hotel, and payment services” as the
types of services, “input:date” and “output:cost” as the input
and output of the service. A planner module [6] performs a
search on the UDDI registry for the service requested by the
user (step 2). After the search, the planner module prepares a
list of composite Web service combinations that suit the user
request and sends this list to the PN (step 3).

Step 2: The Private Negotiator (PN) enables the user
to privately search for services from the received list, and
the service provider and the user to privately evaluate their
provisioning rules and profiles against each other. It also
enables the same among the service providers in case of a
composite service. In order to support private search as well as
private enforcement of provisioning rules, in [15] we proposed
the use of the Private Matching Protocol (PM). The Private

Matching Protocol has been introduced by Malkhi in [9],
to allow two parties to learn in a private fashion the set of
common attributes. Each of the two parties holds a database,
and wishes to jointly calculate the intersection of their inputs,
without leaking any additional information. The exchange is
asymmetric, so that only the party initiating the PM algorithm
learns the result of the matching.

The PM protocol is activated when the user submits to PN
a private search request to be evaluated on the list of services
returned by the planner. The user typically provides private
information to PN as the search criteria. For example, the user
could search for “services processing Visa credit cards” and
“services that take input only from US citizens”.

Upon receiving such type of request, the PN coordinates
a PM protocol between the user and the service provider on
the list of services returned by the planner, so as to evaluate
private search criteria conditions against the profiles of the
services in a private fashion. As further elaborated in Section
V-A, executing the two-party protocol allows users to identify
a suitable service combination without having to reveal in clear
any information related to their private search criteria. After
evaluating the private search criteria, a second list of service
compositions is provided to the user, and the user selects one
composition among these.
The service combination selected by the user is then further
processed by the PN so as to evaluate whether the associated
provisioning rules of the services of the composition can be
satisfied, according to the user profile. In the case of a service
selection offered by a single provider, the provisioning rules
are enforced using a similar approach as the one used for
private search criteria. That is, a two-party private intersection
protocol between the service provider provisioning rules and
user profile data is carried out (rather than service descriptions,
as in the case of user search criteria). However, in case the user
requires a composite Web service, the private enforcement of
provisioning rules could be a complex task since the number of
rules to be satisfied could be high, and so would be the number
of required interactions of the two-party private intersection
protocol for the end user. To address this problem, as described
in [15], our approach minimizes the number of provisioning
rules to be evaluated by the user by executing a multi-party
private intersection protocol on the service providers’ rules.
To handle both the private matching protocols (step 6 of
Figure 1), PN is equipped with two modules: the two-party
coordinator (PM-2P) that evaluates private search criteria and
provisioning rules for simple service selection (see Section
V-A) and the multi-party coordinator (PM-MP) that evaluates
provisioning rules in case of multi-party service (see Section
V-B). To facilitate and coordinate the usage of PN, clients
and servers should communicate with each other through the
Private Negotiator at the client side, and the Private Negotiator
at the server side, as discussed in Section V.

Example 1: As an example, consider a user requesting a
travel service which includes airline reservation (SP1), hotel
reservation (SP2) and payment services (SP3). As such, the
travel service is a composite service with three types of



Fig. 1: Overall architecture of the selection and provisioning framework

services. The user provides the description of the type of
service he or she desires, that is, a travel service, along with
the dates of travel, that should be between May 20th of
2013 and June 15th of 2013. Additionally, he indicates that
he is looking for a flight which cost is below 500$ and he
wants the transaction to occur over a secure and encrypted
channel. Ideally, the user would like to be informed about
the possible Web services options available to him. Once a
suitable service or combination of services is provided, the
user is likely to have to disclose service-specific information
to properly customize the service selection. In this case, this
information includes the user’s citizenship, form of payment,
travel needs etc. Given the sensitive nature of this information,
the user is concerned about his privacy and wishes his/her
data to be handled in a confidential fashion. Hence, he allows
disclosing contact information, demographic data and financial
information, but he wants it to be retained from the travel
company for at most 30 days. He is not willing to release his
record to third party companies.

The providers offering this complex service need to gather
the users’ profile, while on the one hand maximizing the
chance of successful provisioning and on the other hand,
minimizing the amount of information disclosed with the other
service providers offering the Web service.

IV. USER SEARCH CRITERIA AND SERVICE PROVISIONING
RULES

Both the user private/public search criteria and service
provisioning rules can be represented as boolean expression
of atomic conditions, which are matched against Web service
descriptions and user’s profiles’ attributes, respectively. In the
following we first formally introduce the atomic condition,
criteria and provisioning rules.

A. Criteria and Rule Conditions

We assume each Web service has a set of capabilities. These
capabilities describe the functional/ non-functional properties

of a Web service, such as pricing, estimated time of execu-
tion, adopted algorithm for data encryption, retention time
of personal data, etc. Furthermore, we assume the presence
of taxonomies according to which these capabilities can be
grouped based on the common domain. We also assume that
user profile consists of a set of attributes containing user’s
personal information such as age, city of birth, and so forth.
Under these assumptions, user search criteria and provisioning
rules can be defined as boolean expressions combining atomic
conditions on profile attributes and Web service capabilities,
respectively. Atomic conditions are defined by users for their
private/public search criteria, and by service providers to verify
their provisioning rules against user profiles. We define atomic
conditions as follows.

Definition 1 (Atomic condition): Let C be the set of capa-
bilities, T be the set of taxonomies defined on C, and A be
the set of user profile attributes. An atomic condition cond
can be in four forms: (1) Att OP valuea, Att ∈ A; (2)
CAP OP valuec; where OP ∈ {=,∈, >,≥, <,≤,⊂,⊆,⊃,⊇}.
valuea, and valuec are the service provider and user preferred
values for Att and CAP respectively.

Moreover, according to the requirements introduced in Sec-
tion I, a user can specify a prioritization on search criteria. As
such, a user search criteria can be defined as follows.

Definition 2 (User Search Criteria): A user private/public
search criteria uc is represented as a pair (exp, priority)
where exp is a boolean expression of atomic conditions (cfr.
Definition 1), whereas priority ∈ [0, 1] represents the user-
specified priority level, denoted as pr(uc), associated with the
user criteria.

Example 2: In the travel reservation scenario, two
possible user criteria are: ‘uc=FlightPrice<p500 AND

CryptoAlgo=sup{TDES,AES}’, where, for clarity, the priority
levels are omitted.

Definition 3 (Service Provisioning Rule): A service pro-
viding rule ru is a boolean expression of atomic conditions
only in the form (1) (cfr. Definition 1).



To simplify the computation of private matching proto-
cols, hereafter we represent the service provisioning rule as
a Disjunctive Normal Form (DNF) consisting of multiple
clauses, where each clause consists of a conjunction of atomic
conditions.

Example 3: Let us assume three providers are available
to provide the travel service of Example 1, dealing with
airline reservation, hotel reservation and payment services,
respectively. One of the potential airline providers sells
flights at a competitive price only to US citizens and allows
up to three baggages for free. The offer is valid also for
French citizens, in which case 4 bags are included in the
price. The hotel provider offers rooms for customers with a
minimum stay of one day who can pay through VISA credit
card and have a credit score higher than 1000. Alternatively,
other forms of payment are accepted, but the minimum
credit score threshold is higher. These provisioning policies
described are translated as follows: The airline reservation
provider will have: ((Citizenship = UnitedStates) AND
(Baggage = 3)) OR ((Citizenship = France) AND
(Baggage = 4)).
The hotel reservation provider maintains the following rule:
((Citizenship = Any) AND (MinimumStay =1day)),
whereas, the payment service requirements are abstracted by
the rule: ((Method = V ISA) AND (CreditScore > 1000))
OR ((Method = Any) AND (CreditScore > 3000)).

V. PRIVATE SERVICE SELECTION

We now discuss the role of the private negotiator and its
main tasks. The private negotiator enables the process of pri-
vate service selection by providing private search and private
provision rule compatibility verification among the service
providers, and between the service providers and the user. PN
consists of two main components: two-party coordinator and
multi-party coordinator, which coordinate the private search,
private provision rule compatibility verification and final rule
formation. The private negotiator is also installed at the
client side called the PN CLIENT plug-in, and at the service
provider side called the PN SP plug-in. The PN CLIENT
is a browser plug-in which enables the user to specify the
search terms and the priority, and helps in coordinating the
two party protocol. The PN SP plug-in helps the service
providers in enforcing the two-party and multi-party protocols,
and hence acts as a proxy between the service and PN.
Both PN CLIENT and PN SP are equipped with encryption
functionalities. In our discussion of the two-party and of the
multi-party coordinator, for the sake of clarity, we present the
algorithms for the matching of individual conditions included
in provisioning rules or in search conditions. Next, in section
V-C, we discuss how the individual conditions are extracted
to facilitate matching and reduce the computation overhead.

A. Two-party coordinator

In this section, we show how the two-party coordinator
can aid the enforcement of the private search criteria, and,

in case of single services, of service provisioning rules. Let
us start by introducing the process for a single generic
constraint evaluation, irrespective of what entity is applying
the conditions to evaluate (i.e., user for search criteria or
service provider for provisioning rule), and over which/whose
profiles the conditions have to be matched (i.e. user/provider).
In general, users or providers’ conditions are defined by
constraints evaluated against assertions by means of a two-
party private intersection protocol. We recall that according
to this protocol, given a condition Cond and its range of
satisfiability RSCond, the constraint owner has to (1) generate
a polynomial of degree n, where n is the cardinality of
RSCond; and (2) compute the homomorphic encryption of
its coefficients obtaining the private range of satisfiability
(i.e., PRSCond). The private range of satisfiability together
with the attribute name over which the condition is posed
(i.e., Cond.nameA) are passed to the Two-party coordinator.
The Two-party coordinator asks the profile owner for the
private encryption of Cond.nameA value. More precisely, the
profile owner retrieves the value, say valueAi

, and sends back
the encryption Enc(rP (va) + va). The two-party coordinator
sends this encrypted value to the rule owner, that is able to
decrypt and obtain valueAi

, if valueAi
∈ RSCond, a random

number otherwise. Notice that as a result of this process, only
the entity enforcing the conditions is able to see the outcome
of private matching protocol, while the profile owner does not
learn anything about the outcome. These steps are executed
by both PSE CLIENT and PSE SP module. More precisely,
in case of search criteria PSE CLIENT and PSE SP play the
constraint and profile owner, respectively, and vice-versa in
case of provisioning rule. In any case, the constraint owner is
the initiator of the two-party process, and is the one who learns
the outcome of the process, while the profile owner is the
one that just provides the input to the two-party process. The
same property applies in case of multi-party processes. These
features are key to increase the secrecy of information among
the participants, and will allow only the necessary participants
to know the outcome of the processes.

After selecting a clause from each DNF of a SP, two party
and multi-party private set intersection protocols (Sections V-A
and V-B) are performed over the attributes in the clauses.
That is, each service provider uses its final clause during the
provisioning rule compatibility check coordinated by the two-
party and multi-party coordinators.

B. Multi-Party Coordinator

We now focus on the case where a user selects a composite
service. Here, provisioning rules of multiple service providers
have to be combined together for actual service provisioning.
Our approach is to combine rules applied by the providers
in a private fashion, before presenting them to the user. This
strategy has two main benefits: first, it minimizes the number
of provisioning rules that the user is eventually asked to com-
ply to, and, second, it minimizes the amount of information
disclosed by service providers (in terms of provisioning rules)
to clients and competing providers. Each provider enforces one



provisioning rule expressed as a DNF, from which a clause is
selected as explained in Section VI-A. We also assume that the
workflow is modeled as a sequence of activities. The following
example is used throughout the section to clarify the main
steps.

Example 4: For the travel service from Example 1, con-
sisting of the WF of three activities for which there
are three services from distinct service providers, namely
SP1, . . . , SP3.Assume that each service provider has a clause
whose conditions are defined over a set of attributes or
capabilities, denoted as SPj ATT , where SP1 ATT : {Age,
Cost, Bags, Weight} SP2 ATT : {Age, Cost, Salary, Hours},
SP3 ATT : {Age, Cost, Salary, Bags}.
Let us consider in particular clauses specified over Age and
let RSCond Age SPj be the range of satisfiability of condition
imposed by rule at SPj side. The following conditions hold.
RSCond Age SP1 = {1, 8, 9}; RSCond Age SP2 = {1, 9, 7, 6};
RSCond Age SP3 = {5, 1, 9}.

The overall process is as follows. In brief, the algorithm
has two main phases: the first one allows individual service
providers to identify the common set of attributes used by
other service providers in their clauses. The second part instead
consists of determining whether or not the conditions where
the common attributes appear have overlapping ranges of sat-
isfiability. If no overlap among the common attributes exists,
i.e. if a common satisfiability range cannot be determined, the
conditions of the clauses are incompatible with each other, and
hence the service providers’ rules are not compatible.

In order to complete these tasks, the service providers
run on-cascade two-party set intersection protocols with other
providers in the WF. In addition, to find common satisfiability
ranges, multi party set intersection private protocols are carried
out.

The multi-party set intersection aims at comparing the
range of satisfiability of conditions defined on the attribute.
The providers essentially compute the intersection among
RSCondX SPi

and RSCondX SPj
with j ∈ [1, n], where X

is the common attribute and n is the number of services in
the WF. The actual multi-party set intersection protocol builds
on the Beaver-Micali-Rogaway cryptographic protocol, that
operates on a Boolean circuit representation of the computed
function (see [3] for details). As in the case of two-party in-
tersection, the outcome of this protocol, that is, the acceptable
satisfiability range, is known only to the service provider who
initiated the multi-party private set intersection process.

Example 5: To compute the acceptable satisfiability range
on conditions with domain ’Age’, SP1 initiates a multi-
party private set intersection process with SP2, SP3, and
SP4. In this process, each service provider SPj , j ∈
{1, . . . , 4} participates by passing encrypted version of its
RSCondAge SPj .Thus, the outcome of the multi-party private
set intersection process initiated by SP1 on domain ’Age’ is
the set {1,9}. Similarly, multi-party private set intersection
process is conducted on every common attribute with other
service providers.

At the end of each and every computation, the multi-party
coordinator obtains a message with the resulting outcome.
When all the individual conditions are evaluated for a given
SP, the SP also indicates whether or not the provisioning
rule of the service provider is satisfiable. Further, it receives
attribute names and corresponding conditions not in common
with others. Upon receiving input from all the providers, the
multi-party coordinator generates a unique provisioning rule
composed by the set of conditions (i.e., a unique set of range
of satisfiability) identified for each common attribute whose
range of satisfiability is computed as intersection, plus those
conditions defined over non common attributes. The result-
ing provisioning rule is then evaluated against user’s profile
mediated by the two-party coordinator. If the set intersection
protocols do not produce a final rule over the selected clauses
(that is, the clauses have not complied with each other meaning
there are no common values for at least one attribute of two
clauses), we re-execute the clause selection algorithm to select
one clause from each SP trying with a different clause than
last time.

C. Clause selection from a non-atomic rule

We now discuss how to relax the assumption made in
the previous section, that is, each service provider has a
single provisioning rule defined by a single atomic clause.
In reality, service providers (and users as well) are likely to
maintain non-atomic rules wherein conditions are combined
using disjunctions and conjunctions operators. In this case,
each actor (e.g. user or provider) at each round needs to
identify the atomic condition to match first. It is highly
likely that if clauses are randomly selected for matching by
each service provider, the compatibility match may fail, even
if other compatible clauses exist. For example, if a given
provider SP’ has a rule (Age > 40 AND Salary > 4000)
OR (Cost < 100), and SP” has a rule (Age > 10 OR
Cost > 300), by matching Cost < 100 and Cost > 300 the
providers will find an empty intersection of acceptable values,
leading to a halt or additional compatibility checks despite
the existence of two other compatible clauses (Age > 40
AND Salary > 4000) and Age > 10, respectively). To avoid
these pitfalls, the proposed approach attempts to maximize the
chance of matching compatible clauses .

We provide a step-by-step informal discussion of the
overall algorithm through an example. We consider the
scenario from Example 1, where SP1, SP2, and SP3 are the
airline reservation, hotel reservation, and payment services
respectively. We consider that the services have the following
provisioning rules.
SP1: (Age < 60 AND Cost < 15) OR (Cost < 15 AND
Weight > 35 AND Salary < 5000);
SP2: (Age < 30 AND Cost < 25) OR (Cost < 20 AND
Weight < 65) OR (Days > 5 AND CreditScore > 60);
SP3: (Age < 55 AND Salary > 2000 AND Hours > 40)
OR (Cost > 50 AND Bags < 5)

1) The first service provider, SP1, selects a clause from its



provisioning rule which is the shortest among all other
clauses of its rule, that is, a clause with lesser number
of atomic conditions (e.g. Age < 60 AND Cost < 15).

2) SP1 adds the attributes to an array, V . Array V is used
to add the attributes of the clauses from all the service
providers which are likely to be in the final provisioning
rule of the composite service. That is, V consists of
{Age,Cost}, properly indexed.

3) Next, SP1 performs two-party private intersection with
the remaining providers, one by one, over attributes in
V and the attributes of all clauses of SPi. For example,
the two-party private intersection takes place between V:
{Age,Cost} and {Age,Cost,Weight,Days,Credit Score}
of SP2. SPi, as a result of the computation, only sees the
result of the private intersection but not the contents of V
in clear. SPi selects a clause from its provisioning rule
that does not contain common attributes between SP1

and itself, and adds the attributes to V . For example, SP2

chooses the clause (Days > 5 AND CreditScore >
60) and V has {Age,Cost,Days,Credit Score}.

4) If all the clauses of SPi have different attributes from
those in V , SPi selects a clause randomly, and adds the
attributes of the selected clause to array V if not in V
already

5) If all the clauses of SPi have at least one common
attribute with those in V , SPi selects a clause with
the same operators as those attributes in the array V ,
if known (the operators may be given by SP1). There
is a higher chance of compatibility of conditions if
the conditions have same operators for the common at-
tributes, than if the conditions have dissimilar operators.
In our example, SP3 requests SP1 for the operators
of Age and Cost which are < and < respectively.
Hence, SP3 chooses the clause (Age < 55 AND
Salary > 2000 AND Hours > 40) as the operator of
’Age’ is the same, and it adds these attributes to array
V: {Age,Cost,Days,Credit Score,Salary,Hours}. SPi se-
lects a clause with higher satisfaction level of operators,
that is, the clause with the higher number of operators
similar to those in Age. Further, if two or more clauses
have the same satisfaction level of operators, then the
SPi selects a clause with common attributes having
wider range of values. This way, attributes with wider
range of values have higher chance to be compatible
with any condition than narrow range of values. For
example, suppose that the attribute Age of SP3 has the
operator >, different from that in array V , SP3 chooses
clause (Cost > 50 AND Bags < 5) as Cost > 50 has
a range of 50-infinity which is greater than 55-infinity,
the range of Age > 55.

6) If there are no clauses with same operators, for the
common attributes, as those in V , SPi randomly picks a
clause with an overall wider range of all of its attributes.

7) In any case, the attributes of the selected clause are
added by each SPi to the array V , and the algorithm is
repeated for the remaining SPs (that is, executed from

Fig. 2: WSDL parser results

step 3).

VI. EXPERIMENTAL RESULTS

Tests and implementation have been conducted on a Intel
core 2 quad CPU, Q6700 @ 2.66GHz, 4 CPU cores, 3 GB
RAM, Red Hat Enterprise Linux 5.6 operating system.
As depicted in Figure 1, the proposed framework’s prototype
consists of the following components: a client, set of Service
Providers, a UDDI registry entity hosted by a UDDI provider,
a planner module and the core component of our architecture,
the Private Service Selection. The main algorithms of PN
are written in a high-level definition language called Secure
Function Definition Language (SFDL) adapted from [9]. The
intersection function, written in SFDL, is given as input to the
two-party secure function evaluation core algorithm or to the
multi-party secure function evaluation algorithm [3].

In what follows, we report our results concerning the
algorithms implemented by the PN.

A. Private Service Negotiation

WSDL Parser. We analyze the overhead incurred by running
private selection of Web service, in case of simple and
composite Web services. As part of the analysis of private
search, we also extensively tested the overhead added by the
parser, to estimate whether it significantly affects the search
time for a client.

Precisely, for this experiment, we performed several rounds
of tests for different set of actual WSDL documents by
varying the number of attributes/search keywords in a WSDL
document and tracked the time taken to parse these documents.
At each round, we submitted a certain number of documents
consisting of the same number of attributes -operations of the
WSDL, that are the function names of the interface of a Web
service- as input to the parser and recorded the time taken
to parse these documents. In the same round, we considered
the same number of documents but with a different number of
attributes and tracked the time taken to parse these documents.
In the consecutive rounds, we gradually increased the number
of documents with the same test procedure, from 20 to 200, for
each round as described. In Figure 2, we present the test results
for this experiment. The time to parse a set of documents



Fig. 3: Two-party set intersection, with two and four parties

slightly increases as the number of attributes in the documents
increases and is always below 1000 ms (for 200 documents).
Private Selection. As far as private selection goes, we re-
call that enforcing search criteria and provision rules while
selecting a simple service requires the execution of two-party
private intersection protocol. The overall results for running
two party set intersection protocols are reported in Figure 3. As
anticipated, the overhead is linear with respect to the size of the
set intersection input, i.e. the number of attributes considered.

To estimate the overhead added by private selection in case
of composite Web services, we completed two experiments on
provisioning rule composition. There are two main steps to be
completed, (1) to identify the common attributes and (2) check
their satisfiability ranges.

First, we calculated the time required to identify the com-
mon attribute sets. In Figure 3, the actual results for the case
of a workflow with 4 providers is also considered. In this
experiment, we let the service providers execute the two-party
protocols in cascade. If the protocols are executed in parallel,
the overall execution time is of the same order of the time
for single two-party process, otherwise it increases by a factor
equal to the number of providers participating in the process.
Next, we considered the overhead added by computing private
intersection among range of satisfiability of conditions held
by multiple providers on common attribute domains. Our
results show that with increasing number of service providers
participating in a multi-party process, the run time of the multi-
party algorithm quadratically increases. Further experiments,
not reported for lack of space, also confirmed that, as the
total number of common attributes among all the participating
service providers increases (keeping the number of service
providers constant), the run time of the multi-party algorithm
grows linearly. The execution time of the multi-party processes
can be substantially reduced if the parties execute the multi-
party intersection protocols in parallel, rather than sequentially.

VII. CONCLUSION

Web service selection plays a crucial role in Web service
life-cycle. Several application-dependent requirements might
constrain the selection of the best service. Although there is
a large body of work in service selection and composition,
several issues related to privacy and security are still unsolved.
Privacy, in particular, is becoming a key requirement in the

selection process, from both service providers and client ends.
Toward addressing this need, in this paper we presented a com-
prehensive framework for private selection of Web services.

We will extend the current solution along two dimensions.
First, we will develop a framework that suggests security
settings, by analyzing the candidate services, to the user
which he or she will take into account in his or her security
policies. Second, we will conduct a formal security analysis
to estimate the amount of information possibly inferred by
service providers and users during the protocols.

REFERENCES

[1] E. Al-Masri and Q.H. Mahmoud. Qos-based discovery and ranking
of web services. In Proceedings of 16th International Conference on
Computer Communications and Networks, pages 529 –534, aug. 2007.

[2] Y. Badr, A. Abraham, F. Biennier, and C. Grosan. Enhancing web
service selection by user preferences of non-functional features. In 4th
International Conference on Next Generation Web Services Practices,
pages 60 –65, oct. 2008.

[3] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system
for secure multi-party computation. In Proc. of the ACM Conference on
Computer and Communications Security, pages 257–266, 2008.

[4] J. Biskup, B. Carminati, E. Ferrari, F. Muller, and S. Wortmann.
Towards secure execution orders for compositeweb services. In IEEE
International Conference on Web Services, ICWS 2007, pages 489 –496,
july 2007.

[5] B. Carminati, E. Ferrari, and P.C. K. Hung. Web service composition:
A security perspective. International Workshop on Challenges in Web
Information Retrieval and Integration, 0:248–253, 2005.

[6] Daniela Barreiro Claro, Patrick Albers, and Jin-Kao Hao. A framework
for automatic composition of rfq web services. Services, IEEE Congress
on, 0:221–228, 2007.

[7] Shen Hai-Bo. A semantic- and attribute-based framework for web
services access control. In Intelligent Systems and Applications (ISA),
2010 2nd International Workshop on, pages 1 –4, may 2010.

[8] S. Kalepu, S. Krishnaswamy, and S.W. Loke. Verity: a qos metric for
selecting web services and providers. In Fourth International Conference
on Web Information Systems Engineering Workshops, pages 131 – 139,
dec. 2003.

[9] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay -
secure two-party computation system. In Proc. of the USENIX Security
Symposium, pages 287–302, 2004.

[10] Maryam Zarreh Mona Tavakolan and Mohammad Abdollahi Azgomi.
Web service discovery based on privacy preferences. International
Journal of Web Services Practices, 4(1):28–35, 2009.

[11] Abdelmounaam Rezgui, Mourad Ouzzani, Athman Bouguettaya, and
Brahim Medjahed. Preserving privacy in Web services. In Proc. of the
4th international workshop on Web information and data management,
WIDM ’02, pages 56–62, New York, NY, USA, 2002.

[12] Mohamed Sellami, Samir Tata, Zakaria Maamar, and Bruno Defude.
A recommender system for web services discovery in a distributed
registry environment. In Proceedings of the 2009 Fourth International
Conference on Internet and Web Applications and Services, pages 418–
423. IEEE Computer Society, 2009.

[13] Wei She, I-Ling Yen, Bhavani M. Thuraisingham, and Elisa Bertino.
Policy-driven service composition with information flow control. In
IEEE International Conference on Web Services, ICWS 2010, pages 50–
57, 2010.

[14] Haibo Shen. A semantic-aware attribute-based access control model
for web services. In Proceedings of the 9th International Conference
on Algorithms and Architectures for Parallel Processing, ICA3PP ’09,
pages 693–703, Berlin, Heidelberg, 2009. Springer-Verlag.

[15] Anna Cinzia Squicciarini, Barbara Carminati, and Sushama Karumanchi.
A privacy-preserving approach for web service selection and provision-
ing. In IEEE International Conference on Web Service, ICWS 2011,
pages 33–40, 2011.

[16] J. Thomas, F. Paci, E. Bertino, and P. Eugster. User tasks and access
control over Web Services. In IEEE International Conference on Web
Services, ICWS 2007, pages 60 –69, july 2007.



[17] Arif Tumer, Asuman Dogac, and I. Hakki Toroslu. A semantic based
privacy framework for web services. In In Proc. of E-Services and
Semantic Web Workshop, 2003.

[18] Le Hung Vu, Manfred Hauswirth, and Karl Aberer. Qos-based service
selection and ranking with trust and reputation management. In Proceed-
ings of the Cooperative Information System Conference, pages 446–483,
2005.

[19] Ustun Yildiz and Claude Godart. Information flow control with decen-
tralized service compositions. IEEE International Conference on Web
Services, ICWS 2007, 0:9–17, 2007.

[20] E. Yuan and J. Tong. Attributed based access control (abac) for web
services. In IEEE International Conference on Web Services, CWS 2005,
pages 2 vol. (xxxiii+856), july 2005.

[21] Junqiang Zhu, Yu Zhou, and Weiqin Tong. Access control on the com-
position of web services. International Conference on Next Generation
Web Services Practices, 0:89–93, 2006.


