
Towards a Common Platform for the Support of

Routine and Agile Business Processes

Michael Zeising, Stefan Schönig, Stefan Jablonski

Chair for Applied Computer Science IV

University of Bayreuth

Bayreuth, Germany

{michael.zeising, stefan.schoenig, stefan.jablonski}@uni-bayreuth.de

Abstract—The spectrum of an organization’s business processes

ranges from routine processes with a well-defined flow to agile

processes with a degree of uncertainty. The Process Navigation

platform aims at supporting both types of processes as well as

combinations of them. It offers execution support for traditional

flow-oriented notations like BPMN as they are well-suited for the

routine type of processes. Rule-based notations for agile processes

like CMMN are on the way of getting established but still have a

number of weaknesses. As a consequence, the platform’s agile part

does not target one single notation but relies on a rule-based cross-

perspective and modal intermediate language. CMMN models are

then translated to the intermediate language for execution. The

contribution of this paper is built up in three parts: first of all, the

overall architecture of the execution platform is explained. In a

second step, the intermediate language is evaluated on the basis of

a comprehensive and acknowledged framework of business

process requirements. And finally, the translation of CMMN to the

intermediate language is described by means of an example.

Keywords-business processes, routine processes, agile processes,

procedural modeling, rule-based modeling, cross-perspective

modeling, modalities, Workflow Patterns, Process Navigation,

CMMN

I. INTRODUCTION

The success of an organization primarily depends upon its ability
to accomplish its tasks in a structured and reliable manner. A
well accepted method for structuring an organization is business
process management. It is usually motivated by the drive
towards the implementation of regulatory measures like the
Sarbanes-Oxley Act, the implementation of quality management
or a general increase of efficiency. [1]

 As already recognized about 20 years ago, at least two
different types of business processes can be distinguished [2]:

 well-structured routine processes of which the exact
flow is in focus and is known a priori and

 agile processes of which the exact flow cannot be
determined completely a priori.

Traditional notations for business process modelling like
flow charts [3], EPCs [4] and BPMN [5] rely on an explicit
encoding of sequential, alternative and parallel paths. As a result,
every possible flow must be known at design time. In the context

of programming languages this paradigm is known as procedural
(or imperative) programming. The term has been applied to
process modelling so that models with an explicit encoding of
flow are called procedural business process models. Procedural
models are well-suited for routine processes [6].

During the mid-1990s, it has been recognized that there are
processes of which the exact flow of activities cannot be
determined at design time [2]. These processes heavily depend
on the human participants, their decisions and their expert
knowledge. These information cannot be identified and
formalized in a whole. As a result, these processes require highly
flexible IT support. [7] In brief, a more flexible business process
and IT support means a greater number of alternative paths [8].
However, to make a procedural process more flexible, all
additional and alternative paths have to be added explicitly [8].
This results in a tendency to overspecify the process [9]. The
requirement, e.g., that, within a process, two activities should
never be performed both cannot be expressed directly. Instead,
the modeler is forced to provide a detailed strategy that
implements this requirement [10].

An alternative to procedural is rule-based business process
modelling. It prevents overspecification by a paradigm shift.
Within a rule-based model initially all paths are considered
viable. The more constraints are added to the model the less
paths remain. As result, to make a rule-based model more
flexible constraints have to be removed or weakened [8].
Moreover, a rule-based model focuses on crosscutting relations
instead of the flow of activities [6]. Hence, a rule-based approach
is well-suited for modelling agile processes [7].

As mentioned above, rule-based modelling provides means
for increasing the number of alternative paths without explicitly
modelling them. Given the vast amount of alternatives, a
differentiation between mandatory, recommended and forbidden
actions in the form of modalities is reasonable [11]. They are
necessary to reflect, e.g., a legal framework on the one hand and
good practice on the other hand. An IT system that supports agile
processes is not only a means of automation but a decision
support system. A central characteristic of such a system is that
it explains and qualifies its output [12]. In the context of business
process execution, this means that some of the proposed actions
may be marked as recommended and that this qualification can
be tracked back to the process model and/or other contextual
information like, e.g., the organizational structure [13].

Regardless of the modelling paradigm, business processes
can be described using five fundamental perspectives:

This research was conducted as part of the project Kompetenzzentrum für
praktisches Prozess- und Qualitätsmanagement (KpPQ) which is funded by

the European Regional Development Fund (ERDF).

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257269

 The functional perspective describes the functional
elements of a process. Atomic activities form the
smallest unit of work. Composite activities, however,
refer to a sub-process and can be used to reuse sets of
activities or to structure large processes.

 The behavioral perspective describes the chronological
behavior of a process and is covered by the control flow
in traditional process models.

 The organizational perspective covers the assignment
of human tasks to participants.

 The informational perspective describes the information
entities accessed during process activities. [14]

 The operational perspective describes how an atomic
activity is implemented, i.e., what exactly is to be done
when the execution of a process reaches a certain
activity. [15]

A rule-based model focuses on crosscutting relations rather
than the exact flow of activities [6]. A typical requirement is that
“assuming that it has been created by a trainee, the document
must be reviewed by his or her supervisor before it can be
published”. In this example, the behavior, the information and
the organization are interwoven. If a modelling construct is
viewed as a rule, then cross-perspective business process
modelling involves that both the conditions and the
consequences may depend on all of the supported perspectives.

To summarize, we claim that an organization’s business
processes cover the entire range of process types from routine to
agile. In order to support such landscapes, the challenge is now
to provide IT support for both process types and especially
combinations of them. Throughout this paper, we will show that
existing approaches do not handle this task sufficiently. As a
result, the contribution of this paper consists of the following
parts:

 An integrated business process execution platform for
routine and agile processes and combination of them
will be presented.

 It comprises an alternative solution for agile processes
allowing for rule-based, cross-perspective and modal
process modelling.

 This solution will be evaluated on the basis of an
acknowledged requirements framework for business
process management systems.

The remainder of this paper is organized as follows. Section
II describes the structure of the Process Navigation platform and
the reasons for its design. Section III shows how behavioral
patterns can be implemented for agile processes on the PN
platform. Sections IV and V continue for organizational and
informational patterns. Section VI summarizes the evaluation of
the platform. Section VII describes how agile processes can be
executed on the platform. Section VIII gives an overview of
other approaches to supporting routine and agile business
processes and Section IX concludes the paper.

II. THE PROCESS NAVIGATION PLATFORM

The goal of the Process Navigation (PN) platform is to support
both routine and agile business processes in an integrated
manner. As mentioned above, procedural flow-oriented process
models are considered as well-suited for capturing routine
processes. BPMN represents the state of the art of procedural
modelling. As a result, routine business processes can be
covered by offering execution support for BPMN models. For
this, the PN platform implements a variant of the Process Virtual
Machine (PVM) [16] which also forms the basis of widely used
process engines like Activiti.

The Case Management Model and Notation (CMMN)
represents recent efforts to standardize rule-based business
process modelling. Instead of relying on an explicit flow, event-
condition-action (ECA) rules constrain the entry and/or exit of
activities within the model. [17] On the basis of the above
mentioned requirements, CMMN still has a number of
weaknesses:

 CMMN does not support different modalities so that
rules may not be classified, e.g., as only recommended.
As a result, mandatory and recommended actions may
not be distinguished and, e.g., a legal framework may
not be distinguished from good practice.

 CMMN neglects the organizational perspective. The
potential performer of a human task can only be selected
on the basis of a role and the perspective is completely
missing in the graphical representation of CMMN
models (diagrams).

 Cross-perspective modelling is limited in CMMN.
Rules may only depend on events of informational
entities (case file items) and activities and may only
constrain the entry and exit of activities. They may not,
e.g., depend on or constrain organizational aspects.

For this reason, the rule-based part of PN does not target one
single modelling language. Instead, it relies on a rule-based
cross-perspective and modal intermediate language on a textual
basis. This language is called Declarative Process Intermediate
Language (DPIL). The details of DPIL will be described
throughout the rest of this paper. To support agile business
processes, PN transforms CMMN models into DPIL models and
executes them on the rule-based part of the engine [18].

Note that an organization’s business processes are not all of
the same kind, i.e., routine or agile, but rather form a
heterogeneous landscape [19]. In order to support such
landscapes, procedural and rule-based process models can be
combined by nesting them. A BPMN model may reference a
CMMN sub-processes and vice versa. As the execution of
procedural and rule-based models differs considerably, the PN
platform comprises two process virtual machines, each adjusted
to the respective paradigm. Crosscutting services like human
task management, enterprise content management (ECM) and
identity management (IdM) integration, the monitoring interface
and the decomposition of process models is provided by a
common process infrastructure. This architecture is shown in
Fig. 1.

Figure 1. Architecture of the Process Navigation platform

Clearly, the key task now is to evaluate to what extent DPIL
itself is suited for business process modelling. For this purpose,
the Workflow Patterns Initiative has proposed a comprehensive
framework of requirements for a business process modelling and
execution approach. These so-called Workflow Patterns consist
of recurring requirements from the behavioral, organizational
and informational perspective [20] [21] [22]. These patterns will
be used to evaluate DPIL itself on the one hand and to compare
it with BPMN on the other hand. Note that the evaluation follows
a pragmatic approach. It does not only require a pattern to be
implemented at all but with reasonable efforts. This means that
an excessively large number of constraints is not a feasible
implementation.

Figure 2. Procedure of rule-based process execution

In order to understand how the business process patterns are
implemented in DPIL, its execution principle as shown Fig. 2
will be briefly described in the following. Some of the elements
of a DPIL process model (1) undergo a life cycle composed of
events that is managed by the engine. A human task, e.g., can be
started and completed while a data object can be read or written.
The current state of a process is then the series of past events (2).

Besides the static elements like human tasks and data
objects, a process model may specify rules constraining that
series of events. It may, e.g., claim that some data object may
only be written after some task has been started. On the one
hand, these rules may be hard rules reflecting, e.g., the legal
framework. Hard rules can be used to model mandatory and
forbidden actions. On the other hand, there are soft rules
reflecting, e.g., good practice. Soft rules can be used to model
recommendations.

When the model is executed, the engine simulates one event
ahead for every model element (3) and evaluates the resulting
series of events on the basis of the rules (4). Each simulated
event that does not violate any hard rule is related to an action
that the engine interprets immediately (5). A simulated start of a
task by a certain participant, e.g., is interpreted as the assignment
of this task to the participant. If the start event violates a soft rule,
the action is marked as not recommended.

III. BEHAVIORAL PATTERNS

The following sections will show selected example
implementations of patterns and will highlight alongside the key
concepts of the DPIL notation.

Patterns concerning process control flow have been initially
proposed in [23] and were then revised and extended in [20] and
[24]. The basic patterns cover the classic sequential, alternative
and parallel paths. The sequence pattern (WCP1), e.g., claims
that an activity is enabled after the completion of another
activity. This is implemented by the following DPIL process:

sequence(a, b) iff

 start(of b at :t)

 implies complete(of a at < t)

process Example {

 task CaptureCardDetails

 task VerifyAccount

 ensure sequence(CaptureCardDetails,

 VerifyAccount)

}

DPIL allows for the definition of macros in order to make it
possible for expressions to be reused. The sequence macro

claims the existence of a start event of task b implies the

occurrence of a complete event of task a before that. The
example process comprises the two tasks
CaptureCardDetails and VerifyAccount. A hard rule

(type ensure) leads to a sequence between the two tasks. Note

that the pattern as well as its implementation above only claims
a partial order of the activities which differs from the sequence
flow as specified in BPMN [5].

A parallel split (WCP2) denotes a point in the process where
a single thread of control splits into multiple threads which can
be executed in parallel, thus allowing activities to be executed

simultaneously or in any order [20]. This pattern has no
equivalent in a rule-based model (code ‘~’) as all activities can
be executed simultaneously or in any order without any
constraints imposed on the model. The same holds for a simple
merge (WCP5) where two or more alternative branches come
together without synchronization [20], i.e., without imposing
any constraints.

Most of the advanced control flow patterns represent diverse
variations of the inclusive join (OR join) and other complex
procedural constructs. No attempt was made to transfer these
patterns to the rule-based world (code ‘?’) so that they are
considered unsupported (code ‘-‘) later on. For reasons of
simplicity, DPIL does not support multiple instances of an
activity. As a result, the according patterns are considered as
unsupported as well. Table I lists all behavioral patterns together
with their support by DPIL and BPMN according to [25].

TABLE I.
SUPPORT FOR BEHAVIORAL PATTERNS IN DPIL AND BPMN

Basic D B 34

Static Partial
Join for

Multiple

Instances

- +/-

1 Sequence + + 35

Cancelling
Partial Join

for Multiple
Instances

- +/-

2 Parallel Split ~ + 36

Dynamic

Partial Join

for Multiple
Instances

- -

3 Synchronization + + State-based D B

4 Exclusive Choice + + 16
Deferred

Choice
+ +

5 Simple Merge ~ + 17

Interleaved

Parallel

Routing

+ -

Advanced D B 18 Milestone + -

6 Multi-Choice + + 39
Critical

Section
- -

7

Structured

Synchronizing
Merge

? + 40
Interleaved

Routing
+ +/-

8 Multi-Merge ? +
Cancellation and

Force Completion
D B

9
Structured
Discriminator

? +/- 19 Cancel Task - +

28
Blocking

Discriminator
? +/- 20 Cancel Case + +

29
Cancelling
Discriminator

? + 25
Cancel
Region

+/- +/-

30
Structured Partial
Join

? +/- 26

Cancel

Multiple
Instance

Activity

- +

31
Blocking Partial

Join
? +/- 27

Complete
Multiple

Instance

Activity

- -

32
Cancelling Partial
Join

? +/- Iteration D B

33
Generalized AND-

Join
? + 10

Arbitrary

Cycles
+ +

37
Local
Synchronizing

Merge

? - 21
Structured

Loop
+ +

38

General

Synchronizing
Merge

? - 22 Recursion - -

41 Thread Merge ? + Termination D B

42 Thread Split ? + 11
Implicit

Termination
- +

Multiple Instances D B 43
Explicit
Termination

+ +

12
without

Synchronization
- + Trigger D B

13
with a Priori
Design-Time

Knowledge

- + 23
Transient

Trigger
- -

14
with a Priori Run-
Time Knowledge

- + 24
Persistent
Trigger

+ +

15

without a Priori

Run-Time

Knowledge

- -

IV. ORGANIZATIONAL PATTERNS

Patterns concerning the organizational aspects of a business
process are summarized in [21] where process participants are
referred to as ‘resources’. They are divided into patterns that
refer to the design phase of the process (creation), to the system’s
perspective (push), to the participants’ perspective (pull), to
exceptional situations (detour), to event- or context-based
execution (auto-start), to visibility and to multiple participants
working on the same task.

DPIL assumes a simple organizational metamodel where
identities and groups can be interconnected by relations of a
certain relation type [26]. The information is taken from a
central organizational model like, e.g., an LDAP service and is
only referenced within the DPIL process model. Human
participation in a DPIL process is implemented using the task

type of activity. From the rule-based engine’s viewpoint, a task
may be started and completed. The task management service of
the PN platform extends the life cycle of a task by reserve/release
and suspend/resume states.

Figure 3. Life cycle of a human task in DPIL

Fig. 3 shows the combined life cycle of a task. States in black
are managed by the engine and can therefore be observed and
constrained by process rules. States in white are added by the
task management service.

The simplest method of distribution is the direct allocation
of a participant to a task at design time (WRP1). Besides this,
tasks may be distributed on the basis of roles (WRP2),
capabilities (WRP8) or organizational relationships (WRP10).
The following example process contains each of these patterns:

identity Fred

group Manager, Engineer

relationtype hasRole, hasJob, isManagerOf

direct(t, i) iff

 start(of t) implies start(of t by i)

role(t, r) iff

 start(of t by :i)

 implies relation(subject i

 predicate hasRole object r)

process Organisation {

 task FixBentley

 task ApproveTravelRequisition

 task AirframeExamination

 task ClaimExpenditure

 task AuthoriseExpenditure

 advise direct(FixBentley, Fred)

 advise role(ApproveTravelRequisition,

 Manager)

 advise start(of AirframeExamination)

 implies start(of AirframeExamination

 by :i

 by.servicingExperienceInYears >= 10)

 and relation(subject i predicate hasJob

 object Engineer)

 advise start(of AuthoriseExpenditure

 by :authoriser at :t)

 implies start(of ClaimExpenditure

 by :claimer at < t)

 and relation(subject authoriser

 predicate isManagerOf object claimer)

}

The above model references the identity Fred, two groups

and three relation types. The task FixBentley should only be

performed by Fred (WRP1). The rule is soft (type advise) so

that the assignment to Fred is recommended but not mandatory,
i.e., other participants are allowed to perform the task but they
are advised not to do so. The task
ApproveTravelRequisition should be performed by a

participant having the role of a Manager (WRP2). The

AirframeExamination should be performed by an

Engineer having at least ten years of servicing experience

(WRP8). Finally, AuthoriseExpenditure should be
performed by the manager of the participant who has performed
ClaimExpenditure (WRP10). For reasons of simplicity,
DPIL does not offer any means of referencing earlier process

instances (WRP9) and is not able to perform any scheduling
(WRP15-17). Table II lists all organizational patterns together
with their support by DPIL and BPMN according to [25].

TABLE II.
SUPPORT FOR ORGANIZATIONAL PATTERNS IN DPIL AND BPMN

Creation D B 23 Resource-

Initiated

Execution -
Offered Work

Item

+ -

1 Direct
Distribution

+ + 24 System-
Determined Work

Queue Content

- -

2 Role-Based

Distribution

+ + 25 Resource-

Determined Work
Queue Content

+ -

3 Deferred

Distribution

+ - 26 Selection

Autonomy

+ -

4 Authorization + - Detour D B

5 Separation of

Duties

+ - 27 Delegation - -

6 Case Handling - - 28 Escalation - -

7 Retain Familiar + - 29 Deallocation + -

8 Capability-

Based

Distribution

+ - 30 Stateful

Reallocation

- -

9 History-Based
Distribution

+/- - 31 Stateless
Reallocation

- -

10 Organisational

Distribution

+ - 32 Suspension-

Resumption

+ -

11 Automatic
Execution

+ + 33 Skip +/- -

Push D B 34 Redo + -

12 Distribution by

Offer - Single
Resource

+ - 35 Pre-Do +/- -

13 Distribution by

Offer - Multiple

Resources

+ - Auto-Start D B

14 Distribution by

Allocation -

Single
Resource

+ + 36 Commencement

on Creation

+ +

15 Random

Allocation

- - 37 Commencement

on Allocation

- -

16 Round Robin

Allocation

- - 38 Piled Execution - -

17 Shortest Queue - - 39 Chained

Execution

+ +

18 Early

Distribution

- - Visibility D B

19 Distribution on

Enablement

+ + 40 Configurable

Unallocated
Work Item

Visibility

- -

20 Late

Distribution

- - 41 Configurable

Allocated Work

Item Visibility

+ -

Pull D B Multiple Resources D B

21 Resource-
Initiated

Allocation

+ - 42 Simultaneous
Execution

+ +

22 Resource-

Initiated
Execution -

Allocated Work

Item

+ - 43 Additional

Resources

- -

V. INFORMATIONAL PATTERNS

Patterns concerning the informational aspects of a business
process are collected in [22]. DPIL distinguishes two types of
data objects within processes. A variable is bound to the lifetime
of the process instance and references an object within the
address space of the engine. A variable represents process
instance-specific data. Instead, a document references a file
managed externally by an Enterprise Content Management
(ECM) system and is therefore independent from the lifetime of
the process instance. The PN platform implements the Content
Management Interoperability Services (CMIS) standard so that
it may communicate with a large number of current ECM
systems [27]. Both types of data objects may be read or written
by an identity involved into the process. These read and write
events may be observed and constrained within process rules.

A variable is visible to instances of the surrounding process
(WDP5) and those of its sub-processes (WDP2). Read and write
events of a data object may be constrained so that the object may
only be accessed during the execution of a certain task (WDP1).
This pattern is claimed by the local macro in the following
process:

local(task, object) iff

 read(of object at :tr)

 implies start(of task at < tr at :ts)

 and not complete(of task at > ts at < tr)

process Example {

 task CalculateFlightPath

 variable WorkingTrajectory

 advise local(CalculateFlightPath,

 WorkingTrajectory)

}

The above process claims that the WorkingTrajectory
may only be read during the execution of the
CalculateFlightPath task. Data-based pre- and
postconditions on tasks can be implemented by constraining
their start and complete events. They may depend on a certain
data value or just its existence (WDP34-37) like in the following:

consumes(consumer, incoming) iff

 start(of consumer)

 implies write(of incoming)

produces(producer, outgoing) iff

 complete(of producer)

 implies write(of outgoing)

process Example {

 task RocketInitiation

 variable Countdown

 variable IgnitionData

 ensure consumes(RocketInitiation,

 Countdown)

 ensure start(of RocketInitiation)

 implies write(of Countdown value 2)

 ensure produces(RocketInitiation,

 IgnitionData)

}

In the above model, the task RocketInitiation requires

the Countdown variable to exist, the variable IgnitionData

must be updated during the RocketInitiation task and the

RocketInitiation may only start after the Countdown has

a value of 2. The consumes and produces macros impose the
classic data existence pre- and postconditions for modelling data
flows within a process.

A business process may be partially performed by pieces of
software that might simply be termed ‘services’. Calling such
services from a DPIL process is supported by the operation

type of activity. Operations may access data objects of the
process as parameters (with) and may write their result into data

objects again (to). The life cycle of an operation comprises the

event of its invocation (event invoke) and its return (event

return). Operations may be used to implement data

transformations (WDP32, 33) like in the following:

process Example {

 operation FromKmhToMph

 "http://service.org/kmhToMph"

 with SpeedKmh as speed

 to SpeedMph as result

 task ReviewSpeed

 variable SpeedKmh

 variable SpeedMph

 ensure start(of ReviewSpeed)

 implies return(of FromKmhToMph)

 ensure invoke(of FromKmhToMph)

 implies write(of SpeedKmh)

}

The FromKmhToMph is invoked immediately after the

SpeedKmh has been updated and the ReviewSpeed task can
only be started after the operation has returned.

Service operations can be used to implement most of the
external interaction patterns. Table III lists all informational
patterns together with their support by DPIL and BPMN
according to [25].

TABLE III.
SUPPORT FOR INFORMATIONAL PATTERNS BY DPIL AND BPMN

Visibility D B 21 Environment to
Case - Push-

Oriented

+ -

1 Task Data +/- + 22 Case to
Environment -

Pull-Oriented

+ -

2 Block Data + + 23 Workflow to
Environment -

Push-Oriented

+ -

3 Scope Data - - 24 Environment to

Workflow - Pull-
Oriented

- -

4 Multiple

Instance Data

- +/- 25 Environment to

Workflow -
Push-Oriented

- -

5 Case Data + + 26 Workflow to

Environment -
Pull-Oriented

+ -

6 Folder Data + - Transfer D B

7 Workflow Data + - 27 Transfer by

Value -
Incoming

- +

8 Environment

Data

+/- - 28 Transfer by

Value - Outgoing

- +

Internal Interaction D B 29 Transfer - Copy
In/Copy Out

- +/-

9 Task to Task + + 30 Transfer by

Reference -

Unlocked

+ -

10 Block Task to

Sub-Workflow

Decomposition

+ + 31 Transfer by

Reference - With

Lock

+ +

11 Sub-Workflow
Decomposition

to Block Task

+ + 32 Transformation -
Input

+ +/-

12 to Multiple
Instance Task

- - 33 Transformation -
Output

+ +/-

13 from Multiple

Instance Task

- - Data-based Routing D B

14 Case to Case + - 34 Task
Precondition -

Data Existence

+ +

External Interaction D B 35 Task
Precondition -

Data Value

+ -

15 Task to

Environment -
Push-Oriented

+ + 36 Task

Postcondition -
Data Existence

+ +

16 Environment to

Task - Pull-
Oriented

+ + 37 Task

Postcondition -
Data Value

+ -

17 Environment to

Task - Push-

Oriented

+ + 38 Event-based

Task Trigger

+ +

18 Task to

Environment -

Pull-Oriented

+ + 39 Data-based Task

Trigger

+ +

19 Case to
Environment -

Push-Oriented

+ - 40 Data-based
Routing

+ +

20 Environment to
Case - Pull-

Oriented

+ -

VI. SUMMARY

Fig. 4 shows the proportion of supported patterns from the three
perspectives for DPIL and BPMN. DPIL supports 52% of the
behavioral, 62% of the organizational and 75% of the
informational patterns. BPMN supports 67% of the behavioral,
19% of the organizational and 75% of the informational patterns.

The evaluation reveals two valuable insights. On the one hand it
becomes clear that DPIL and the PN platform meet around 50%
more of the requirements than BPMN does. On the other hand it
confirms that both approaches occupy their niches. Where the
classic control flow patterns are concerned, BPMN is superior to
DPIL with a coverage of 67% instead of 52%. As expected,
when exactly specified complex control flow patterns are in
focus then BPMN is best-suited. Informational and
organizational relationships, however, can be expressed more
comprehensively and more precisely in DPIL.

Figure 4. Support for workflow patterns from three different perspectives in

DPIL and BPMN

The combination of both approaches makes the Process
Navigation platform a comprehensive platform for the support
of both routine and agile processes.

VII. EXECUTING CMMN MODELS

Although, as pointed out above, CMMN still has a number
of weaknesses, it is considered as the most advanced notation for
modelling agile business processes. A model in CMMN is called
a case and is built from at least one stage which is the equivalent
of a sub-process. A stage in turn may consist of, again, stages,
human tasks, routine sub-processes (process tasks) or
milestones. In addition, a case defines a case file comprising case
file items which are the equivalents of data objects. Plan items,
i.e., stages, tasks and milestones may declare entry and exit
criteria using sentries. A sentry is triggered by an event in turn
emitted by a plan item or case file item and may declare a
condition based only on a case file item.

A stage is the equivalent of a DPIL process and a case file
item maps to a DPIL data object. The entry and exit criteria of
plan items are translated to the according DPIL rules. A sentry
may depend on one or more events. All of them must occur and
the condition, if any, must hold to trigger the sentry. Therefore,
multiple events for the same sentry have a logically conjunctive
semantics (and). If, however, multiple sentries are used for the
same plan item, only one of them must be triggered to enter or
exit the item. Therefore, multiple sentries for the same item have
a logically disjunctive semantics (or).

Figure 5. Example CMMN process model to be translated to DPIL and

executed on the PN platform

Fig. 5 shows an example CMMN diagram that is to be
translated to a DPIL model for execution. Entry criteria are
depicted by shallow and exit criteria by filled diamond shapes.
The model claims that the task Transfer to Administration can
only be performed after Authorize Transfer and Authorize
Accommodation or after the External Authorization is present.
The stage is finished after the transfer is done and the Cost
Center is present. Note that the exact events are not represented
within the diagram.

The above model can be translated to the following DPIL
model and executed on the PN platform:

process BT "Business Trip" {

 task AT "Authorize Transfer"

 task AA "Authorize Accomodation"

 task TA "Transfer to Administration"

 variable EA "External Authorization"

 variable CC "Cost Center"

 advise "Authorization Required":

 start(of TA)

 implies (complete(of AT)

 and complete(of AA))

 or write(of EA)

 milestone complete(of TA) and write(of CC)

}

The two case file items are interpreted as process-specific
variables. The two sentries that form the entry criteria for
Transfer to Administration result in one rule respecting their
different semantics (conjunctive and disjunctive). Note that,
even though CMMN does not support different modalities, the
entry criteria are implemented as soft rules to illustrate the
explanation capabilities of the platform later on. The exit
criterion sentry of the stage is translated to a milestone which
terminates the process.

Figure 6. Process participant’s view

A prototypical web-based frontend to PN’s human task
management component enables people to communicate with
process instances. Fig. 6 shows a participant’s view on an
instance of the Business Trip process.

Current tasks appear on the left-hand side of the screen. The
example illustrates the explanation capabilities of the platform:
performing the Transfer to Administration task is possible but
not recommended because it would violate the Authorization
Required advice (not recommended). This is indicated by the
orange background and the potentially violated rule written
below the task name. Authorize Accommodation, instead, would
not violate any constraint (neutral) and is therefore written on a
blue background. Currently accessible data objects are shown on
the right-hand side of the screen.

The color coding is used throughout the entire user interface:
a blue color tone indicates a neutral action, the orange color tone
indicates a not recommended action and a green color tone
indicates a recommended action (not shown in the example).
This color coding together with the traceability of actions to the
process rules form the decision support capabilities of Process
Navigation platform. They are the main benefit to the process
participant. Up to the authors’ knowledge, these capabilities are
unique to the platform and cannot be found in traditional
business process execution solutions.

VIII. RELATED WORK

Within the scope of the MOBILE project, all five fundamental
process perspectives where combined in one workflow
management system for the first time. Moreover, a combination
of procedural and rule-based modelling was proposed.
Procedural models comprised the classic elements for serial,
alternative and parallel execution while rule-based models
where built from deadline, delay and existence constraints. Both
types of models could be nested. [2] However, the rule-based
processes where mentioned only once and never again in any
subsequent publication of the group.

The concept of Pockets of Flexibility allows a procedural
process model to contain special sub-processes that impose no
control flow [28]. However, the concept does not support the
specification of rules within the “pockets” and an inverse nesting
is not intended. As a result, this is a very limited approach.

The Declare framework was designed for modelling and
executing rule-based business processes. In its combination with
the procedural modelling and execution system YAWL it
represents an alternative to the Process Navigation platform. In
its most publicized variant, a Declare process model is built from
a set of rule templates each of which is mapped to an expression
in Linear Temporal Logic (LTL). One such template is, e.g.,
response(a, b) with the LTL mapping □(a → ◊b) claiming that
whenever a is performed then b must be performed eventually.
The resulting LTL formula is then converted to an automaton for
execution. [29] Declare only constrains the starts of activities
and interrelates them temporally. However, a rule as a whole
may depend on arbitrary conditions including informational and
organizational context. The rule response(a, b) with the
condition x < 3 claims that whenever a is performed then b must
be performed eventually if x < 3. However, a requirement like
“assuming that it has been created by a trainee, the document
must be reviewed by his or her supervisor before it can be
published” cannot be expressed in this way. Hence, Declare does
not support cross-perspective modelling on the basis of the
requirements and is therefore not suited for the rule-based part
of the PN platform.

The Engine for Semantic Process Navigation (ESProNa) is a
concept for the execution of rule-based business processes [30].
It has no specific rule language and is rather a programming
library for developing business processes in the Prolog language.
As a result, ESProNa processes may not be validated in any way
but only checked for correct Prolog syntax. In addition,
ESProNa does not represent a process execution engine [23] but
only covers the evaluation of the process rules. Concepts like
process instance management, rules for terminating instances
and nesting of process models are missing. ESProNa may not
cover the rule-based part of the PN platform but is rather a
predecessor of the approach at hand.

The EM-BrA2CE project [31] represents a first step towards
the unification of business rules and processes. It extends the
Semantics of Business Vocabulary and Business Rules (SBVR)
framework [32] by concepts like activities, states and
participants and therefor allows for the specification of business
processes in SBVR. The main difficulty lies within the
enforcement of these process rules, i.e., the execution of such
processes. For this, the SBVR rules are translated to event-
condition-action (ECA) rules using templates [33]. As only the
rules covered by a template can be translated and executed, the
original advantage of the use of SBVR becomes worthless.
Process are effectively modelled using the ECA templates. In
addition, the authors do not mention how different modalities are
handled during translation. As a result, neither EM-BrA2CE is
not a candidate for the rule-based part of the PN platform.

IX. CONCLUSION

This paper introduced the Process Navigation platform
supporting both routine and agile business processes. Routine
processes can be modelled by traditional flow-oriented notations
like BPMN and executed. This paper now focusses on agile
business processes that require a rule-based cross-perspective
modal way of modelling. The recent standard CMMN
introduces rule-based modelling with a graphical representation
but still has a number of weaknesses. As a result, the agile part
of the platform relies on the intermediate language DPIL that
meets the requirements. CMMN models can be translated to
DPIL for executing them on the platform. Furthermore, the
paper evaluated DPIL concerning its suitability for business
process modelling. It could be shown that, in total, DPIL even
meets more requirements than BPMN. However, BPMN is
better suited for routine processes as it outperforms DPIL
concerning flow-oriented process patterns. DPIL in turn excels
BPMN concerning organizational and informational patterns
which makes it more suitable for context-focused agile
processes. Finally, it was described how CMMN process models
can be translated to DPIL models and executed on the Process
Navigation platform.

CMMN already represents the state of the art of rule-based
business process modelling and is certainly a step in the right
direction. However, as mentioned above, a number of
weaknesses have been identified. The authors intend to address
these weaknesses and propose improvements concerning the
organizational perspective, cross-perspective modelling and
modalities.

REFERENCES

[1] M. Hammer and J. Champy, Reengineering the Corporation: A

Manifesto for Business Revolution, 3rd ed. HarperBusiness, 1993.

[2] S. Jablonski, “MOBILE: A Modular Workflow Model and
Architecture,” in 4th International Working Conference on Dynamic

Modelling and Information Systems, 1994, pp. 1–30.

[3] European Computer Manufacturers Association (ECMA), “Standard
ECMA-4 - Flow Charts (2nd Edition, withdrawn).” Geneva, CH,

1966.

[4] Software AG, “ARIS Method - ARIS Platform Version 7.2 - Service
Release 3.” Software AG, Darmstadt, 2012.

[5] Object Management Group Inc., “Business Process Model and

Notation (BPMN) Version 2.0.” 2011.
[6] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M.

Weidlich, and S. Zugal, “Declarative versus Imperative Process

Modeling Languages: The Issue of Understandability,” in
Enterprise, Business-Process and Information Systems Modeling

(10th International Workshop, BPMDS 2009, and 14th International

Conference, EMMSAD 2009, held at CAiSE 2009), 2009, pp. 353–
366.

[7] R. Vaculín, R. Hull, T. Heath, C. Cochran, A. Nigam, and P.

Sukaviriya, “Declarative Business Artifact Centric Modeling of
Decision and Knowledge Intensive Business Processes,” in 15th

IEEE International Enterprise Computing Conference (EDOC

2011), 2011, no. Edoc, pp. 151–160.
[8] H. Schonenberg, R. S. Mans, N. Russell, N. A. Mulyar, W. M. P.

van der Aalst, J. L. G. Dietz, A. Albani, and J. Barjis, “Process

Flexibility: a Survey of Contemporary Approaches,” in Advances in
Enterprise Engineering I, 4th International Workshop CIAO! and

4th International Workshop EOMAS, CAiSE 2008, 2008, vol. 10,

pp. 16–30.
[9] H. A. Reijers, T. Slaats, and C. Stahl, “Declarative Modeling — An

Academic Dream or the Future for BPM?,” in 11th International

Conference on Business Process Management (BPM 2013), 2013,
pp. 307–322.

[10] M. Pešić, H. Schonenberg, and W. M. P. van der Aalst,

“DECLARE: Full Support for Loosely-Structured Processes,” in
11th IEEE International Enterprise Distributed Object Computing

Conference (EDOC 2007), 2007, p. 287.

[11] G. Regev and A. Wegmann, “A Regulation-Based View on
Business Process and Supporting System Flexibility,” in 17th

International Conference on Advanced Information Systems

Engineering (CAiSE ’05) Workshops, 2005, pp. 35–42.
[12] E. Turban, R. Sharda, and D. Delen, Decision Support and Business

Intelligence Systems, 9th ed. Prentice Hall, 2010.

[13] M. Zeising, S. Schönig, and S. Jablonski, “Improving Collaborative
Business Process Execution by Traceability and Expressiveness,” in

8th International Conference Conference on Collaborative

Computing: Networking, Applications and Worksharing
(CollaborateCom 2012), 2012, pp. 435–442.

[14] B. Curtis, “Process Modeling,” Commun. ACM, vol. 35, no. 9, pp.
75–90, Sep. 1992.

[15] S. Jablonski and C. Bußler, Workflow Management: Modeling

Concepts, Architecture and Implementation. London: Thomson,
1996.

[16] T. Baeyens and M. V. Faura, “The Process Virtual Machine,” 2007.

[Online]. Available: http://docs.jboss.com/jbpm/pvm/article/.
[17] Object Management Group, “Case Management Model and

Notation (CMMN) - Version 1.0,” no. May. 2014.

[18] S. Schönig, M. Zeising, and S. Jablonski, “Supporting Collaborative
Work by Learning Process Models and Patterns from Cases,” in 9th

IEEE International Conference on Collaborative Computing:

Networking, Applications and Worksharing (CollaborateCom
2013), 2013, pp. 60–69.

[19] M. Reichert and B. Weber, Enabling Flexiblity in Process-Aware

Information Systems. Springer-Verlag Berlin Heidelberg, 2012.
[20] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,

and A. P. Barros, “Workflow Patterns,” Distrib. Parallel Databases,

vol. 14, no. 3, pp. 5–51, 2003.
[21] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and D.

Edmond, “Workflow Resource Patterns: Identification,

Representation and Tool Support,” in 17th Conference on Advanced

Information Systems Engineering (CAiSE’05), 2005, pp. 216–232.
[22] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van

der Aalst, “Workflow Data Patterns: Identification, Representation

and Tool Support,” in 24nd International Conference on Conceptual
Modeling (ER 2005), 2005, pp. 353–368.

[23] Workflow Management Coalition, “Workflow Management

Coalition: Terminology & Glossary 3.0 (WFMC-TC-1011).”
Workflow Management Coalition, 1999.

[24] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and N.

Mulyar, “Workflow Control-Flow Patterns: A Revised View (BPM
Center Report BPM-06-22),” 2006.

[25] Workflow Patterns Initiative, “Workflow Patterns Home Page,”

2011. [Online]. Available: http://www.workflowpatterns.com/.
[26] C. Bußler, Organisationsverwaltung in Workflow-Management-

Systemen. Wiesbaden: DUV, 1998.

[27] OASIS, “Content Management Interoperability Services (CMIS)
Version 1.1.” 2012.

[28] S. Sadiq, W. Sadiq, and M. Orlowska, “Pockets of Flexibility in

Workflow Specification,” in 20th International Conference on
Conceptual Modeling (ER’2001), 2001, pp. 513–526.

[29] M. Pešić, “Constraint-Based Workflow Management Systems:

Shifting Control to Users,” Technische Universiteit Eindhoven,
2006.

[30] M. Igler, “ESProNa - Eine Constraintsprache zur multimodalen

Prozessmodellierung und navigationsgestützten Ausführung,”
Universität Bayreuth, 2011.

[31] S. Goedertier, R. Haesen, and J. Vanthienen, “Rule-based Business

Process Modelling and Enactment,” Bus. Process Integr. Manag.,
vol. 3, no. 3, pp. 194–207, 2008.

[32] Object Management Group, “Semantics of Business Vocabulary and

Business Rules (SBVR) - Version 1.2.” 2013.
[33] W. De Roover, F. Caron, and J. Vanthienen, “A Prototype Tool for

the Event-Driven Enforcement of SBVR Business Rules,” in

Business Process Management Workshops, BPM 2011 International
Workshops, Clermont-Ferrand, France, August 29, 2011, Revised

Selected Papers, Part I, Springer Berlin Heidelberg, 2012, pp. 446–

457.

