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Abstract—NoSQL (Not only SQL) data stores become a vital 
component in many big data computing platforms due to its 
inherent horizontal scalability. HBase is an open-source 
distributed NoSQL store that is widely used by many Internet 
enterprises to handle their big data computing applications (e.g. 
Facebook handles millions of messages each day with HBase). 
Optimizations that can enhance the performance of HBase are of 
paramount interests for big data applications that use HBase or 
Big Table like key-value stores. In this paper we study the 
problems inherent in misconfiguration of HBase clusters, 
including scenarios where the HBase default configurations can 
lead to poor performance. We develop HConfig, a semi-
automated configuration manager for optimizing HBase system 
performance from multiple dimensions. Due to the space 
constraint, this paper will focus on how to improve the 
performance of HBase data loader using HConfig. Through this 
case study we will highlight the importance of resource adaptive 
and workload aware auto-configuration management and the 
design principles of HConfig. Our experiments show that the 
HConfig enhanced bulk loading can significantly improve the 
performance of HBase bulk loading jobs compared to the HBase 
default configuration, and achieve 2~3.7x speedup in throughput 
under different client threads while maintaining linear horizontal 
scalability. 
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1. INTRODUCTION 
NoSQL data stores [1] have enjoyed continued growth in 

many large-scale web applications over the recent years thank 
to their high horizontal (‘scale-out’) scalability. NoSQL data 
stores are typically key-value stores such that nothing will be 
shared among the key-value pairs. This enables a large dataset 
of key-value pairs to be partitioned into independent subsets 
according to keys and key ranges, which can be distributed 
across a cluster of servers independently. Thus, NoSQL 
systems can provide high throughput (a large number of 
Get/Put operations per second) through massive parallel 
processing. Successful examples include Bigtable [12] at 
Google; Dynamo [14] at Amazon; HBase [3] at Facebook and 
Yahoo!; Voldemort [15] at Linkedin and so forth. Among 
these NoSQL data stores, the open-source HBase is widely 
used by many Internet enterprises not only because it is used 
in routine operations by Facebook and Yahoo but also because 
HBase is an open-source implementation of a truly distributed, 
versioned, non-relational database modeled after Bigtable. 
Instead of using Google File System (GFS) [13] as the 
distributed storage system, HBase is developed on top of the 
open source Hadoop Distributed File System (HDFS) [4, 5]. 
‘Facebook Messages’ [11] is a typical application at Facebook 
that handles millions of messages daily through HBase. 

However, most of the efforts on tuning HBase performance 
in terms of system configuration management have been done 
as in-house projects. As a result, most of HBase users rely on 
the default configuration of HBase for their big data 
applications given the complexity of the configuration in terms 
of both the number of parameters and the complex correlation 
among many system parameters. Very few can answer the 
questions such as when will the HBase default configuration 
no longer be effective? What side effect should be watched 
when changing the default setting of a specific parameter? 
And how can we tune the HBase configuration to further 
enhance the application performance? We argue that how to 
setup HBase clusters with high resource utilization and high 
application level performance remains to be a significant 
challenge for system administrators, HBase developers and 
users.  

In this paper we study the problems inherent in 
misconfiguration of HBase clusters, including scenarios where 
the HBase default configurations may lead to poor 
performance. For example, we will show through experiments 
that the default configuration may provide poor resource 
utilization of HBase cluster for some test cases. We will also 
show that some simple optimizations may even hurt HBase 
performance, for example, by changing the HBase Java 
runtime environment to bigger heapsize (from default 1GB to 
4GB), the throughput performance may be degraded by 20~30% 
(throughput loss) compared with the default choice for some 
test cases. With these problems in mind, we develop HConfig, 
a semi-automated configuration manager for optimizing 
HBase system performance from multiple dimensions. Due to 
the space constraint, this paper will focus on how to improve 
the HBase bulk loading performance by HConfig. Through 
this case study we will highlight the importance of resource 
adaptive and workload aware auto-configuration management 
and the design principles of HConfig. Our experiments show 
that the HConfig enhanced bulk loading can significantly 
improve the performance of HBase bulk loading jobs 
compared to the HBase default configuration, and achieve 
2~3.7x speedup in throughput under different client threads 
while maintaining linear horizontal scalability.  

2. OVERVIEWAND PROBLEM STATEMENT 

2.1 HBase Overview 

HBase [3] is an open source distributed key-value store 
developed on top of the distributed storage system HDFS [4, 
5]. An HBase system consists of four major components, as 
shown in Fig.1: HMaster, ZooKeeper cluster, RegionServers 
(RSs), and HBaseClient (HTable). HMaster is responsible for 
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monitoring all the RegionServer instances in the cluster, and is 
the interface for all metadata management. ZooKeeper [23] 
cluster maintains the concurrent data access to the data stored 
in the HBase cluster. HBaseClient is responsible for finding 
RegionServers that are serving the particular row (key) range. 
After locating the required region(s) by querying the metadata 
tables (.MATA. and -ROOT-), the client can directly contact 
the RegionServer assigned to handling that region without 
going through the HMaster, and issues the read or write 
requests. Each of the RegionServers is responsible for serving 
and managing those regions which are assigned to it through 
server side log buffer and MemStore. HBase handles basically 
two kinds of file types: the write-ahead log and the actual data 
storage through the RegionServers. The RegionServers store 
all the files in HDFS. HBase RegionServer and HDFS 
DataNode are usually deployed in the same cluster. The basic 
data manipulation operations referred to as CRUD (stands for 
Create, Read, Update, and Delete) and are implemented in 
HBase as Put, Get and Delete methods. The bulk loading 
process primarily uses the Put method. Fast bulk loading aims 
at distributing data to the secondary storage of the HBase 
cluster nodes efficiently and evenly. 

 
Fig. 1. HBase architecture combined with YCSB benchmark. 

2.2 Bulk loading in HBase 

In this section, we briefly describe the bulk loading process 
in HBase with default configuration. Broadly speaking, all 
four core components of the HBase collaborate to accomplish 
the bulk loading of raw datasets into the HBase cluster in three 
steps.  

(1) HBaseClient prepares the data for bulk loading. 
After setting up a HBase cluster of n server nodes (n>1), we 
need to first load the data to the HBase store. Typically, the 
remote client will need to run the HBaseClient at the client 
side of the HBase cluster to initiate the data loading process. In 
order to load the raw dataset to the HBase cluster, we need to 
first place the key-value pairs in the write buffer of 
HBaseClient. The default write buffer size is usually set to 
12MB. When the write buffer is full, the client sets up 
connections with the HBase cluster via HBaseClient in three 
steps: (1) the client via HBaseClient contacts the server side 
manager ZooKeeper [23] to get all the related regions and the 
region locations information based on the keys; (2) it shuffles 
all the buffered records according to key ranges of each region. 
By HBase default configuration, initially, only one region is 
created at a randomly selected region server (RS) when 
creating a new table and the intial region has the key range for 
any key. We can describe the initial key range as (-∞, +∞), so 

all the records will be routed to the same intial region initially. 
One parameter in the default configuratin is the threshold of 
when the intial region will be splited into two regions with two 
different key ranges as (-∞, key1) and [key1, +∞). When the 
threshold is met, the region split will be triggered by dividing 
the key range into two sub-ranges and each is assigned to a 
different region.  

(2) Loading Data to the initial region on a RS. When 
the data records are delivered to the initial region hosted at a  
RS, all the records are first written into a server side buffer, 
and then the data will be read from the server side buffer and 
merged into the key range hosted in the MemStore of the intial 
region with lexicographic order. The default size of the 
MemStore is 128MB. When the MemStore is 80% full, it 
begins to flush records into the secondary storage of this RS 
managed by HDFS by creating a HFile. Each MemStore flush 
will create a new HFile, and one region can host several 
HFiles until the number of HFiles reaches the 
compactionThreshold (default is 3), which will trigger a minor 
compaction in HBase. Each minor compaction will merge the 
HFiles into one large HFile. 

(3) Region splitting and records loading across regions 
and RSs. When the amount of data records loaded to a region 
reaches some specific threshold defined in the default 
configuration, the region split will be triggered. For example, 
the default region split policy in HBase is the 
IncreasingToUpperBoundSplitPolicy, which defines when the 
region split should happen: 

(Split size = min(Num3
region/RS*2*Flushsize,MaxregionSplitSize)). 

For example, if the raw dataset is 10GB, then the region split 
size for default configuration is 
{Split1:min(13*2*128MB=256MB,10GB)=256MB, 
Split2:min(23*2*128MB=2,048MB,10GB)=2048MB, 
Split3:min(33*2*128MB=6,912MB,10GB)=6912MB, 
Split4:min(43*2*128MB=16,384MB,10GB)=10GB,…, all are 10GB}.  

There are two types of load balancer triggers that can 
reassign the generated regions across the RSs: time cycle 
(default is 5 minutes) and the number of regions on each RS. 
Concretely, by setting the parameter region.slop, the rebalance 
will be triggered if the number of regions hosted by any RS 
has exceeded the average+(average*slop) regions. Upon each 
region split, one of the new regions will be reassigned to 
another randomly selected RS.  

2.3 Problem Observations 

Bulk loading using the default configuration suffers from a 
number of problems due to poor resource utilization at both 
HBase cluster and each region server. In this section, we 
present problem statement with experimental observations. 

2.3.1 Experiment setup 
Each node setup: each node of the cluster has AMD 

Opteron single core (Dual socket) CPU operating at 2.6GHz 
with 4GB RAM per core (total 8GB RAM per node), and two 
Western Digital WD10EALX SATA 7200rpm HDD with 1TB 
capacity. All nodes are connected with 1Gigabit Ethernet 
(125MB/sec), run Ubuntu12.04-64bit with kernel version 3.2.0, 
and the Java Runtime Environment with version 1.7.0_45. 

HBase and HDFS cluster: we use HBase with version 
0.96.2 and Hadoop with version 2.2.0 (including HDFS) in all 
the experiments. And run HBase and HDFS in the same 



cluster to achieve data locality (HMaster & NameNode on 
manager node, RegionServer & DataNode on each worker 
node). We use two clusters: 

Cluster-small: consists of 13 nodes: 1 node hosts both 
HMaster and NameNode as the manager, 3 nodes host 
ZooKeeper cluster as the coordinators and 9 nodes host 
RegionServers and DataNodes as the workers.  

Cluster-large: consists of 40 nodes: 1 node as manager, 3 
nodes as the coordinators and 36 nodes as the workers.  

YCSB benchmark:Yahoo! Cloud Serving Benchmark 
(YCSB) [10] is a framework for evaluating and comparing the 
performance of different NoSQL data stores. There are several 
parameters defined in this benchmark, which can be 
configured on the client side to generate adaptive workloads. 
The common parameters include the number of client threads, 
the target number of operations per second, the record size (the 
number of fields * each field size), the number of operations, 
the insertion order and so forth. We generate synthetic 
workload using YCSB load command with uniform request 
distribution, hash-based insert order, unlimited target number 
of operations per second (i.e., the YCSB client will try to do as 
many operations as possible). In addition, we vary the number 
of client threads, the record size, the number of client nodes to 
understand how client side configuration may impact on the 
bulk loading performance. 

2.3.2 Unbalanced bulk loading across RegionServers 
The first observation from our experiments is the 

unbalanced bulk loading across the cluster of RegionServers 
(RSs) when using the default configuration for bulk loading. 
Concretely, we bulk load HBase using the default 
configuration on the small cluster with 10 millions of data 
records of key-value format, which is 1KB/record and 10GB 
total. To gain an in-depth understanding of the problems 
inherent in the default configuration, we also bulk load HBase 
on the same cluster with 100 millions of records, a total of 
100GB. Fig.2 (a) and Fig.2 (b) show the file sizes of all region 
servers (RSs) upon the completion of the bulk loading for 10 
millions of records and 100 millions of records respectively. In 
the scenario of loading 10 millions of records, there are only 
four RSs used for handling bulk loading during the whole data 
loading process and other five RSs are idle with no records 
stored. Clearly, the default HBase configuration aims at 
loading data region by region and region server by region 
server through a conservative region split policy for data 
distribution. Thus, a region split will be triggered only when 
the data loaded to a region exceeds some default threshold. In 
the scenario of loading 100 millions of records to the same 
cluster, we observe that all 9 region servers are loaded with 
some portions of the input dataset but the data loading remains 
not well balanced across the cluster of 9 RSs (see Fig.2 (b)). 
To further study this result, we measured the CPU utilization 
for each of the four RSs that are loaded with input data for the 
10 millions of records scenario shown in Fig.2 (c). In addition, 
we measured the throughput (#operations/sec) for both 
scenarios. Fig.3 (a) and Fig.3 (b) compare the throughput 
measurement for loading 10GB and 100GB data to the small 
HBase cluster respectively. Table I shows the regions and 
detailed data loaded on each RS for both scenarios. From Fig.3 
(a), the throughput is unbalanced during the whole bulk 
loading process and the process can be divided into three 
stages. Meantime, we observe some short pauses during each 
of the three throughput stages, which lead to unstable 

throughputs even within each stage. By examining the CPU 
utilization trace data collected by SYSSTAT1 [17] on the 
number of busy RSs, during each of the three throughput 
stages. We observe clearly from Fig.2 (c) that initially there is 
only one single busy RS (RS-1). Then during the stage 2, there 
are two busy RSs (RS-1 & RS-5). During the stage 3, there are 
four busy RSs (RS-1, RS-5, and RS-7 & RS-9). 

When the bulk loading dataset is increased to the 100 
millions of records, we observe from Fig.3 (b) that the low 
throughput during the first throughput stage for the first 10 
million records still exists, but the peak throughput for this 
scenario is much higher reaching more than 35,000 ops/sec. 
This shows two facts: (1) When the total size of the data for 
bulk loading is big enough, the generated key-range based 
regions will be distributed across all the RSs after the initial 
warming up stage and the bulk loading of 100 millions of 
records can be concurrently routed to all the RSs (see the 
region and file size details in Table I). Moreover, the average 
throughput of bulk loading larger 100 million records is 37% 
higher than the scenario of 10 millions of records, a result that 
is benefited from the concurrent data loading to all the RSs of 
the HBase cluster introduced by the incremental region splits 
and data loading re-distribution. .  

These observations motivate us to raise a number of 
interesting questions: How can we improve the unbalanced 
bulk loading and achieve more balanced data distribution 
across RSs? Can we increase the bulk loading throughput to 
further speedup the performance of bulk loading? What 
configuration parameters in the default configuration of HBase 
should be revisited? The efforts made to answer the many 
questions as such motive us to develop HConfig, a semi-
automated HBase configuration manager. 
2.3.3 Inefficient resource utilization on RSs 

The second set of observations made from our 
experimental study on the bulk loading performance is the 
inefficient resource utilization of both cluster and individual 
RS nodes. First, from Fig.3 (a), the bulk loading of 10 millions 
of records (1KB/record) is dealing with the raw dataset of 
10GB total on a HBase cluster with a total RAM capacity of 
all nine RSs (8GB*9=72GB RAM). However, there are only 
four out of nine RSs active and the average throughput of a 
single active RS is only about 5MB/sec, this is much less than 
the disk I/O bandwidth of 50~100MB/sec and network I/O 
bandwidth of 125MB/sec. When the bulk loading dataset is 
increased to 100 millions of records (about 100GB, more than 
the total RAM size of the cluster), we still observe the unstable 
throughputs in Fig.3 (b) characterized by different throughput 
stages and the short pauses that leads to frequent oscillation in 
throughputs during each stage. Although from the previous 
analysis, we know that one of the main causes for only a 
selection of RSs being active during bulk loading and for 
unbalanced bulk loading is the default data distribution 
strategy implemented through the incremental region split 
policy in HBase default configuration. Further understanding 
for root causes of short pauses that lead to throughput 
oscillation is as follows: we performed a series of in-depth 
experimental measurements by varying certain memory and 
disk I/O related parameters. For example, Fig.4 shows the 
throughput with the JVM heap size used by each RS ranging 
from 1GB to 4GB, the number of threads used at the client 
ranging from 1 to 40. Also the client threading decision has 
also some impact on the loading performance with 4 threads to 
be better than 1 thread, 2 threads, 20 or 40 threads. 
1SYSSTAT Trace item: %user-Percentage of CPU utilization that occurred 
while executing at the user level (RS level) 



 
                        (a) 10 million records                        (b) 100 million records                              (c) CPU trace on RSs of bulk loading 10 million records 

Fig. 2. Records distributions across 9RSs with default configuration 

 
       (a) 10 million records (1KB/record)                                                                (b) 100 million records (1KB/record) 

Fig. 3. Real-time throughput of bulk loading with default configurations 

TABLE I.  REGION AND HFILE DETAILS ON EACH RS 

RS / dataset 
10 million records 100 million records 

#Region File Size(MB) #Region File Size(MB)
RS-1 2 3,641 4 22,474

RS-2 1 
(.MATA.) 

0 4* 
(.MATA.) 

11,197 

RS-3 0 0 4 18,028
RS-4 0 0 4 17,941
RS-5 2 3,615 4 11,202
RS-6 0 0 4 18,078
RS-7 2 3,618 4 18,060

RS-8 1 
(-ROOT-) 

0 4* 
(-ROOT-) 

8,917 

RS-9 2 3,639 4 18,100
* RS-2 and RS-8 only have 3 regions for handling bulk loading 

Furthermore, the frequent flushing of data from MemStore 
to disk (HDFS) and consequently frequent minor compactions 
can be caused due to inefficient utilization of the memory 
resources on individual RSs. The momentary decrease in 
throughput when the regions on some RSs are split and re-
assigned to the other RSs are obviously due to the contention 
experienced in MemStore. These analysis results motive us to 
study the set of configuration parameters that can be turned 
automatically or semi-automatically according to cluster 
resource, node resource and workload characterization. 

3. HCONFIG: DESIGN OVERVIEW 
In this section, we first briefly discuss the objectives of 

HConfig system design and then give an overview of the set of 
bulk loading related parameters used in HBase configuration 
and analyze how these parameters may affect the bulk loading 
performance, followed by the concrete design considerations 
and optimizations implemented in HConfig. 

3.1 Design Objectives 

The HConfig design for bulk loading intends to help speed 
up the bulk loading process in HBase regardless of the 
workload variations and the cluster resource variations by 
providing the semi-automated configuration management. The 
concrete techniques we use focus on optimizing the utilization 
of both cluster resource and per-node resource at each region 
server. Our concrete design objectives can be summarized 
along three perspectives: high concurrency across all the RSs, 
high resource utilization on each RS and minimum bulk 
loading pause during the whole data loading process. 

 
Fig. 4. Throughput of bulk loading with different heapsize 

High execution concurrency. We plan to explore 
execution concurrency from both server and client side. At the 
server side, we promote the configuration of no idle RSs 
during the bulk loading process, enabling each RS to handle 
the bulk loading requests in a well-balanced manner, removing 
or alleviating the overload problem in the initial region hosted 
on single RS and during the region-split and key-range re-
distribution phase. At the client side, we are interested in 
tunning the number of threads per client and the number of 
concurrent clients to better utilize the cluster resource for 
speeding up the bulk loading of large datasets. 

High resource utilization. Instead of relying on the 
conservative default configuration for getting the average 
utiliztion of the cluster resources and per-RS resources at the 
best, HConfig by design improves the default configuration in 
HBase by providing resource-aware and workload adaptive 
configuration management, enabling HBase to run more 
efficiently for clusters of different size and capacity and 
applications with different workloads, including datasets, 
request types and rates and so forth, by maximizing the 
resource utilization and througput performance. For example, 
in HConfig we optimize the bulk loading performance through 
tunning the RAM and disk I/O related parameters. 

Minimum load pause. By analyzing the measurement 
results for both data loading scenarios (10 millions and 100 
millions of records) shown in Fig.2, Fig.3 and Fig.4, bulk 
loading pauses occur independent of the cluster size and the 
dataset size. We observe that those short pauses are caused 
primarily by three factors: a) too small MemStore and b) too 
frequent flushing of HFiles and consequently too many minor 



compactions to be performed, and c) too frequent region 
creation and re-distribution among RSs. 

3.2 Bulk Loading Performance Related Parameters 

Based on the above three optimization objectives, we 
select a set of configuration parameters that are highly related 
to the resource consumption and execution efficiency of bulk 
loading on both server side and client side.  
3.2.1 Server-side Parameters 

When bulk loading data is ready to be uploaded from the 
write buffer at the client, the clients can directly deliver data 
records to the corresponding regions hosted on different RSs 
of the HBase cluster. HBaseClient is the interface for the 
client to obtain the relevant regions for a given range of keys 
and the RS location information. Thus, the sever size 
configuration parameters are focused on RS related parameters. 

TABLE II.  RELATED SERVER SIDE PARAMETERS 

Parameters of RS Descriptions  Default

heapsize The maximum amount of heap to use.  1GB 
memstore. 
flush.size 

Memstore is flushed to disk if size of the 
memstore exceeds this number of bytes. 

128MB

memstore.block. 
multiplier 

Block the update if memstore occupancy 
has reached memstore.block.multiplier * 
HBase.hregion.flush.size bytes.  

2 

memstore. 
upperLimit 

Maximum occupancy size of all 
memstores in a RS before new updates 
are blocked and flushes are forced.  

0.4 

memstore. 
lowerLimit 

Minimum occupancy of all memstores in 
a RS before flushes are forced.  

0.38 

compaction-
Threshold 

When the number of HFiles in any 
HStore (per region on a RS) exceeds this 
threshold, a minor compaction is 
triggered to merge all HFiles into one.  

3 

blockingStoreFiles 

If more than this number of HFiles in 
any one HStore then updates are blocked 
for the Region until a compaction is 
completed.  

10 

compaction.kv. 
max 

How many KVs to read and then write in 
a batch when do flush or compaction. 

10 

region.split.policy 
determines when a region should be split. Default 
policy is IncreasingToUpperBound. 

RAM sensitive parameters. There are several 
configuration parameters in HBase is related directly to 
distributing and putting data into the secondary storage of 
individual RSs, including {heapsize, memstore.flush.size, 
memstore.block.multiplier, memstore.upperLimit&lowerLimit}. 
Before writing data to the secondary storage on a RS, the data 
needs to be placed in the MemStore of the region hosted on a 
RS based on their key ranges. When the MemStore overflow 
happens, a new HFile is created to hold the data in the 
MemStore and flushed to HDFS. During the flushing, all data 
loading to this region is blocked by the Update block until 
MemStore flushing is completed. The Updates block is 
determined by {memstore.flush.size, memstore.block. 
multiplier} or {heapsize, memstore.upperLimit}, and the 
MemStore flushing is determined by {memstore.flush.size} or 
{heapsize, memstore. lowerLimit & upperLimit}. 

Disk I/O sensitive parameters. The following three 
parameters are disk I/O related configuration parameters: 
compactionThreshold,blockingStoreFiles,compaction.kv.max. 
The parameter {blockingStoreFiles} sets the threshold in 
terms of the number of stored HFiles and it triggers the 
updates block when the threshold is exceeded. The parameter 
{compactionThreshold} defines the threshold for invoking a 

minor compaction in terms of the number of HFiles. Too small 
threshold in conjunction with small MemStore size may lead 
to frequent minor compactions and heavy disk read/write 
when a compaction starts. {compaction.kv.max} specifies a 
batch disk I/O operation threshod for flusing and compaction.  
This parameter affects the disk read/write speed when 
handling the memstore flushes or compactions. 
3.2.2 Client-side Parameters 

In order to load the dataset from the client side to a HBase 
cluster, the client needs to prepare (or generate in the case of 
using YCSB) all the bulk loading data records and also use the 
HBaseClient module running at the client site to obtain the 
region information based on the key range and the location of 
RS hosting the region. Based on the region and the location of 
the region, the client then submits (loads) the data records to 
the corresponding RSs in the HBase cluster. All these 
operations are performed at the client side machine(s) and 
consume the client resources (e.g., RAM for write buffer) and 
network I/O bandwidth between client and the RSs of the 
cluster. The related parameters are listing in Table III. Among 
these parameters, {WriteBufferSize, KeyValueSize} have 
significant impaction the number of data records to be batch 
loaded to a RS. Also the client side RAM size plays a key role 
in configuring these two parameters. The parameters 
{AutoFlush, KeysDistribution} affect how and when the data 
records are distributed and loaded to the cluster of RSs. By 
turning off AutoFlush, the batch loading will be used to 
optimize the network I/O. 

TABLE III.  RELATED CLIENT SIDE PARAMETERS 

YCSB Parameters Descriptions  Default

AutoFlush do batch writes by turning off auto flush false 

WriteBufferSize 
both client side and server side use the 
same write-buffer size to transfer data 

12(MB)

KeyValueSize 
the size of a record with N fields and 
each field is M bytes = N*M (Bytes) 

1KB 

KeysDistribution 
Key ranges generated in an ordered list by sort or 
hash function. The default is hash function with key 
ranges split uniformly by # of RSs (FNVhash64). 

3.3 Desgin Consideration and Optimizations 
In this section we give an overview of the design 

consideration and optimizations in HConfig, focusing on 
tuning the bulk loading performance.  
3.3.1 Cluster-aware optimization 

This type of optimization is focused on tuning the 
configuration parameters that can encourage high concurrency 
across all the RegionServers. 

PreSplit.To promote the high horizonal scalability, we 
design the PreSplit configuration, which pre-splits the big 
tables to be bulk loaded to the HBase cluster into independent 
and well-balanced reigons according the number of RSs in the 
cluster and distribute the regions across all the RSs based on 
the KeysDistribution. First, the cluster-aware focuses on the 
number of living RSs to determine how many initial regions 
for the target table. Then the regions are given out by splitting 
the table according to the KyesDistribution. Each region hosts 
a subset of the records in the input big table with certain start 
key and end key. This policy can avoid or minimize the 
regions re-assignment across RSs. One of the main challenges 
is to devise a well balanced data partitioning function that can 
partition the input data into regions according to the number of 
RSs. For example, keys generated by default hash function 



‘FNVhash64(long)’ in YCSB start with the prefixes: ‘user1’, 
‘user2’, ‘user3’, ‘user4’, ‘user5’, ‘user6’, ‘user7’, ‘user8’, 
‘user9’. So we can split the dataset evenly into 9 regions, and 
initially assign one region to each RS. In HConfig, we allow 
the external data partitioning algorithms to be added through 
the configuration manager. 

ConstantSizeRegionSplitPolicy. As a companion of the 
PreSplit policy, in HConfig we replace the current default 
policy IncreasingToUpperBoundSplitPolicy to ConstantSize-
RegionSplitPolicy for region split and region re-distribution 
upon MemStore overflow and minor compaction. The 
ConstantSizeRegionSplitPolicy splits a region as soon as any 
of its store files exceeds a maximum configurable size. In 
comparison, the IncreasingToUpperBoundSplitPolicy (the 
default used in current HBase releases) leads to unnecessarily 
regions re-assignment accorss the RSs after pre-split. By 
replacing it in PreSplit, we can adaptively set the region size 
according to the dataset size that we can provide the optiml 
configuration for different datasets scenarios respectively.  

3.3.2 Node-aware optimization 
The node-aware optimization focuses on tuning the 

parameters that can impact on resource utilization at single RS, 
mainly centered on high efficiency in RAM and disk I/O. 

RAM related tuning. The design of PreSplit in HConfig is 
also to obtain high utilization of the resources on each RS. 
One of the main design ideas is to delay the loading related 
update blocking and the LSM-tree [16] related minor 
compaction by using bigger heap (RAM) in each region. This 
allows to buffer more records and give priority to batch disk 
I/O in order to flush more records for each disk I/O. For 
example, the default heapsize in HBase is 1GB regardless the 
application tasks and the size of the memory resource on each 
RS. Recall the clusters used in our experiments, each RS has 
8GB RAM. One simple and intuitive idea is to configure the 
JVM heap used by each region with a bigger heap size than 1 
GB. However, simply using a bigger heapsize not only fails to 
deliver improved performance but also produces worse 
throughput than the smaller heap size. This is one of the 
typical misconfigurations that should be avoided. By further 
investigating the other RAM related configuration parameters, 
we discover that the MemStore related parameters should be 
taken into account to use the bigger heapsize efficiently. For 
example, we need to tune the bigger heapsize by jointly 
considering the settings for MemStore flush size and 
MemStore block multiplier, as well as the compaction 
threshold and the max number of HFiles hosted in a region 
(each flush create a HFile), to generate our optimal 
configuration in HConfig. 

Concretely, MemStore is hosted in the young generation 
portion of the heap. Larger MemStore allows batching more 
records for flushing. Moreover, bigger memstore.flush.size 
delays the timing and the number of MemStore flushes by 
holding records in RAM longer. Thus, bigger 
memstore.flush.size also decreases the garbage collection 
frequency of young generation. The next complication is the 
setting of the parameter memstore.block.multiplier. Increasing 
the memstore.block.multiplier can delay the updates blocking, 

so when the MemStore becomes full and starts flush, if there 
is enough heapsize for the bulk loading, one region can utilize 
the multiplier MemStores to handle bulk loading records while 
flushing without blocking. In addition, by increasing the 
settings of the parameters: memstore.upperLimit and 
memstore.lowerLimit, the updates blocking and the MemStore 
flushes may be further delayed at the global level across all the 
RSs of the HBase cluster. But too big size may lead to 
runaway MemStore or long time to complete minor 
compaction and/or region split, possibly cause the out of 
memory error (OOME). Based on extensive experiments the 
trade-off for the heapsize and the RAM consumption, in 
HConfig, we recommend the biggest global MemStoresize to 
be set to no more than half of the heapsize, and the biggest 
memstore.flush.size to be 1/8 of the heapsize. 

Disk I/O related tuning. Frequent flushes and frequent 
minor compactions can lead to higher disk I/O cost. Thus, in 
the bulk loading of big data, the disk I/O can easily become 
the bottleneck. One of the principles for optimizing the bulk 
loading performance is to provide high utilization of disk I/O 
resource during the bulk loading. For example, flushes from 
MemStores to HFiles stored on disk should always come first. 
We can increase the compactionThreshold to delay 
compactions that consume disk I/O, and increase the threshold 
of the blockingStoreFiles to delay the blocking of new updates 
whenever possible. Also the adaptive compaction.kv.max is 
very important to fully utilize the disk I/O bandwith, 
especially when the records are wide and the number of KV 
rows is relatively small. This enables us to use the sequential 
disk I/O speed for bulk loading. However, a careful trade-off 
is required, as too big size leads to the risk of unacceptable 
compaction delay or high contention in MemStore, which 
hurts the throughput performance of bulk loading. 

3.3.3 Application-aware optimization 
In order to further optimize the bulk loading performance 

based on application specific features, we can also take into 
account a set of client-side parameters, such as key-value 
record size, the application client running threads and the 
number of client nodes running to bulk load the data to the 
HBase. Our experimental results show that these application 
specific features also play an important role in generating the 
optimal configuration for further improving the throughput 
performance. In this paper, we focus on obtaining the optimal 
client side configuration by tuning the load pattern and the 
following parameters: WriteBufferSize, the number of running 
threads at the client, the number of concurrent client nodes, 
and the KeyValueSize. The default batch loading pattern is 
chosen to generate the loading workload with high client 
resource utilization. The number of concurrently running 
client nodes is determined by the number of RSs. The other 
parameters are determined by the resources at the client node(s) 
and the number of RSs, including network I/O. 

4. EXPERIMENT RESULTS AND ANALYSIS 
In this section, we present the details of the evaluation 

results for optimal configuration design compared with the 
default configuration used in current HBase releases. 
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Fig. 5. Throughput and average latency of PreSplit configuration with different YCSB threads. 
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Fig. 6.  Node-aware optimization throughput results. 

4.1 Cluster-aware optimization evaluation 
In this experiment, we use the small cluster (9RSs) to run 

PreSplit with ConstantSizeRegionSplitPolicy to achieve 
cluster-aware optimization (short for PreSplit configuration). 
According to the description of PreSplit design, we can pre-
split the bulk loading target table ‘usertable’ into 9 regions as 
there are 9 RSs in cluster-small. From Fig.5 (a), we can see the 
PreSplit configuration significantly accelerates the throughput 
compared with the Default configuration, the speedup is 
from1.9x to 3.6x with different thread cases. And the more 
threads case gets the more speedup due to the high 
concurrency from PreSplit. What we should mention here is 
the best throughput cases of both Default and PreSplit are 
running with 4 client threads (Default: 13171 ops/sec -> 
PreSplit: 30353 ops/sec, 2.3x speedup), and from Fig.5. (b) 
the average latency of the best throughput cases are still low. 
Digging into the SYSSTAT CPU trace in Fig.5 (c), we find 
that CPU becomes the bottleneck when the client threads ≥ 8, 
while using less than 2 threads the CPU is underutilized. So 
using 4 unlimited YCSB threads will make full use of the CPU 
resource without network I/O bottleneck at the same time to 
achieve best throughput and low latency. Same situations 
occur in the following experiments and we use 4 threads as the 
optimal client thread parameter. When the key range 
distribution is highly skewed, a more carful configuration in 
terms of data partitioning is critical. In HConfig, we allow the 
external data partitioning algorithms [24] to be plugged into 
the data loader. 
4.2 Node-aware optimization evaluation 

The following four steps are based on PreSplit: 

Step 1 (memstore.flush.size). we configure the small 
cluster (9RSs) with default 1GB or bigger 4GB heapsize, then 
change the memstore.flush.size from default 128MB to 
256MB, 512MB in this step. There are two main questions 
here: (1) If small heapsize with bigger memstore.flush.size 
works well (in Section II, we get performance loss when using 
bigger heapsize with small size) and (2) find the adaptive 
memstore.flush.size for bigger heapsize. From Fig.6. Step1 (a), 
the answer to question (1) is that small heapsize with bigger 
memstore.flush.size ({1GB, 512MB}) leads to performance 
loss, and bigger heapsize with adapative memstore.flush.size 
({4GB, 512MB}) improves the performance and partly 
resolves the bigger heapsize hurts performance problem. Fig.6. 
Step(b) shows that the adaptive memstore.flush.size for bigger 
heapsize (4GB) is 512MB, and the improvementis 40~50% 
compared with the only setting 4GB bigger heapsize cases, 
even compared with the PreSplit, the improvement is 3~17% 
(and has 2~3.7x speedup compared with Default). Also the 
best throughput case is running 4 client threads. So far,  the 
optimal configuration is HConfig1 => {PreSplit + 
heapsize:4GB, memstore.flush.size:512MB}. 

Step 2 (blockingStoreFiles & compactionThreshold). In 
this step we increase blockingStoreFiles from default 10 to 20, 
30 to delay updates blocking and then increase 
compactionThreshold from default 3 to 6, 12 to delay 
compaction. From the result in Fig.6. Step 2 (a), we can see 
the optimal blockingStoreFiles is 20, while too bigger 
blockingStoreFiles (e.g. 30 in this experiment) leads to 
throughput decrease as later blocking new updates causes 
MemStore too stressful in doing flushes rather than to handle 
new arrived records.  
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Fig. 7. Throughput of basic optimal configHConfig3. 

 
Fig. 8. Real-time throughput of bulk loading 100 million records with HConfig4 vs. HConfig3. 

And from Fig.6. Step 2 (b), the optiaml 
compactionThreshold is 12 as expect, and as too bigger 
compactionThreshold leads to unacceptable compaction delay 
risk, we just use 12 as the optimal parameter. And the best 
throughput case now is 37007 ops/sec (2.81x speedup 
compared with Default). So the principle about using limited 
disk I/O for MemStore flushes first works well. And the 
optimal configuration becomes HConfig2=>{ HConfig1 + 
blockingStoreFiles:20, compactionThreshold:12} 

Step 3 (compaction.kv.max). In this step, we use the 
YCSB default KeyValueSize 1KB/record (100B/field*10field). 
And from the result in Fig.6. Step 3, there is only a tiny 
speedup when increasing compaction.kv.max from the default 
10 to 20, the bigger setting with 40 even dereases the 
throughput. So we use 20 as the optimal parameter and the 
best throughput increased to 37037ops/sec (2.8102x speedup 
compared with Default). Till now, the optiaml configuration 
becomes HConfig3=>{HConfig2+compaction.kv.max: 20 }. 

So far, we get the basic optimal configuration HConfig3 for 
loading small dataset (10 million records). However, when we 
use HConfig3 to load a larger dataset (100 million records), we 
observe some new problems. From Fig.7 (a), HConfig3 is still 
better than the average Default configuration with a much 
earlier finish time to bulking loading 100 million records, but 
periodic long loading pause occurs when finishes loading 
about 30 million records till the end. And from Fig.7 (b), the 
loading pauses leads to 36% throughput decrease (37037 
ops/sec ->23781 ops/sec), and the speedup compared with 
Default is also decreased from 2.81x to 1.32x. As the disk I/O 
resources are already full used in HConfig3, so we turn to 
increase the whole RAM used by MemStores to get the 
optimal configuration for bulk loading very large dataset.  

Step 4 (memstore.block.multipiler). When dataset 
becomes much larger, although compaction is delayed in basic 
optimal configuration, but it should not be delayed too much 
to cause unacceptable compaction delay risk. And when doing 
the compaction and the periodic MemStore flushing at the 
same time, new updates blocking occurs due to shortage of 
disk I/O as well as too stressful MemStore also shows as 
periodic pauses. In this step, we increase the global 
MemStores of one region to further delay updates blocking 
based on HConfig3 by using bigger memstore.block. multipiler 
(changed from Default 2 to 3, 4). From the result in Fig.6. 

Step 4, for the best throughput case (multipiler is 4), there is a 
46% throughput improvement compared with HConfig3 and 
1.92x speedup compared with Default. Then from Fig.8, when 
the loading records dataset is less than about 30 million, 
bigger memstore.block.multipiler behaves as the same as the 
default samller one. But bigger multipiler can significantly 
shorten the loading pauses due to further delay updates 
blocking caused by too stressful MemStores. And the optimal 
configuration is  

HConfig4=>{ HConfig3 + memstore.block.multipiler:4 }. 

4.3 Application-aware optimization evaluation 

In the above cluster-aware optimization experiment, we 
already get the optimal running threads of YCSB benchmark 
on our setup client node. In this experiment, as bulking 
loading requests distribution is uniform, so the main feature of 
the benchmark affects performance much is the KeyValueSize 
(KV size) and  we change the  KeyValueSize from 1KB to 
5KB, 10KB, 50KB, 100KB, 500KB to get the client size 
optimal configuration (each record has 10 fields, and we use 
the default WriteBufferSize 12MB in YCSB). As all the 
records are real-time generated by client threads, so we 
analysis the client node resources and network I/O utilization 
first. From the trace results in Fig.9 (a) and (b), when the KV 
size is default 1KB, the CPU becomes the bottleneck and the 
network I/O utilization is around half of the GbE (1Gb 
Ethernet). And when KV size is 5KB or bigger, the GbE 
becomes the bottleneck instead of the CPU of client node. So 
when the records generated by the application hosted on 
HBase are always ≤ 5KB, the bulk loading (batch model) is 
more CPU sensitive than network I/O and bigger 
WriteBufferSize should be configured to make full use of the 
network I/O. And when the records are > 5KB, better network 
I/O improves the loading performance. So we should increase 
the WriteBufferSize to 2~3x to get the optimal configuration. 

Moreover, from Fig.9 (c) and (d), our HConfig works well 
from 1KB to 500KB cases as maintaining with 3~4x speedups. 
And the 5KB KV size case gets the highest speedup due to 
both full utilization of network I/O and CPU, it also verifies 
that we can still optimize bulk loading performance by 
improving network I/O utilization with bigger 
WriteBufferSize based on the general optimal configuration 
HConfig4 of the server side. 
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Fig. 9. Results for application-aware optimization with varied key-value size. 
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Fig. 10. Results for scale-out evaluation. 

4.4 Scale-out evaluation  

We use the large cluster (36RS) and multiple client nodes 
(4YCSB running nodes). From Fig.10 (a), when we use the 
optimal configuration HConfig4 load 100 million records, the 
periodic long pause is gone. Because records are well 
balanced loading to 36RSs and the pressure of RAM or disk 
I/O for single RS is much less than loading 100 GB records to 
9RSs, and this indicates well scalability here. From Fig.10 (b), 
when the loading records dataset is small, both  small and 
large cluster have significant speedup with optimal 
configuration. While when the records dataset becomes much 
larger, the Default on large cluster (36RS_Default) performs 
much better than Default on small cluster (9RS_Default) with 
1.72x speedup, even better than the optimal configuration on 
small cluster (9RS_HConfig). This indicates that the Default 
average configuration for HBase is fit for big data process on 
large data centre environment, while the optimal configuration 
on large cluster (36RS_HConfig) still gets about 50% 
throughput improvement compared with 36RS_Default. 
However, from the results in Fig.10 (a) and (b), there are also 
two questions: (1) The throughput of optimal configuration 
performs only the same level as PreSplit as well as the last 
stage of Default, that means larger heapsize and other optimal 
parameters have no help to the bulk loading performance. (2) 
Although optimal configuration on large cluster gets 
throughput improvement, but the speed up is much smaller 
than small cluster under the similar pressure on RAM and disk 
I/O for each RS (The speedup for 36RS_HConfig : 
36RS_Default is 1.5x, while 9RS_HConfig : 9RS_Default is 
2.8x). Both of the above problems due to the bulk loading 
records generated by one single client node can’t feed the 
36RSs up to push 36RSs running at full capacity. So we use 

multiple 4 client nodes to generate enough records 
concurrently to feed the 36RSs up. To be more specific, each 
client node runs 4 YCSB client nodes with 4 threads per node 
(so the 36RSs handle 16 client threads concurrently), and the 
100 million records set is divided into 4 subsets for each client 
node to load a subset including 25 million records. From the 
throughput results in Fig.10. (c), when using 4 YCSB client 
nodes, the throughout for 4 multiple YCSB nodes is the 
superposition of each node’s throughput and the speedup is 3x 
(3x=0.75x*4) compared with single client node. Although the 
throughput of each node among multiple client nodes is 
decreased (while the average latency of each node is still 
acceptable, see Fig.10 (d)), but the whole throughput achieves 
considerable speedup and almost has linear scalability with 
our optimal configuration. Moreover, as using 16 threads on 
single client node faces CPU bottleneck (as Fig.5 (c)), we 
recommend multiple client nodes with optimal threads to bulk 
load large cluster. 

5. RELATED WORK 
We present the recent related research works mainly in the 

evaluation of NoSQL data stores and the optimization for big 
data process on HBase as following: 

Cooper et al. [10] present YCSB framework to compare 
the performance of new generation of NoSQL data stores and 
report results for HBase [3], Cassandra [18], PNUTS [19], and 
a simple shared MySQL implementation based on their 
defined synthesis workloads. Patil et. al [20] extend YCSB 
and build YCSB++ to support advanced features for more 
complex evaluation of NoSQL systems, such as multi-tester 
coordination, eventual consistency test, doing anticipatory 
configuration optimization and so on. These benchmark tools 
are targeted at a wide range of systems and focusing on 



benchmark development, both YCSB and YCSB++ turn to 
use the default average configuration to evaluate the target 
systems, and YCSB does not optimize the configuration of 
underlying target systems. Although YCSB++ does 
optimization such as B-tree pre-splitting or bulk loading in 
benchmark tests, but benchmark-level optimization should 
take the wide range of target systems into account to be fair to 
each one, and always is general optimization. Our 
optimization solution HConfig takes application-level 
(benchmark-level) as well as cluster-level, node-level 
resources into account to generate the optimal configuration 
for HBase. 

Harter et. al [2] present a detailed study of the Facebook 
Message stack as the case study to analysis HDFS under 
HBase, and suggest to add a small flash layer between RAM 
and disk to get best performance improvement with certain 
budget based on the cost simulations. Huang et. al [21] use 
high performance networks to optimize HBase read/write 
performance by exploiting the Infiniband RDMA capability to 
match the object delivery model in HBase. These works can 
significantly improve HBase performance by taking advantage 
of novel data storage and transfer technologies.  

Das et. al [9] present G-Store implemented based on 
HBase to provide efficient, scalable, and transactional multi 
key access with low overhead. Similarly, Nishimura et. al [22] 
proposed MD-HBase to extend HBase to support advanced 
features. These functionality optimizations are orthogonal to 
our work, and our optimal configuration can improve the 
performance with significant speedup for any HBase 
applications. 

6. CONCLUSION AND FUTURE WORK 
We have presented HConfig, a semi-automated 

configuration management system. We show through our 
experimental study that the default configuration in current 
HBase releases can hurt the average performance in bulk 
loading regardless of the dataset sizes and the cluster sizes. 
The problems inherent in misconfiguration are addressed by 
HConfig with providing resource adaptive and workload 
aware configuration management. Our experiments show that 
the HConfig enhanced bulk loading can significantly improve 
the performance of HBase bulk loading jobs compared to the 
default configuration, and achieve 2~3.7x speedup in 
throughput under different client threads while maintaining 
linear horizontal scalability. 

ACKNOWLEDGEMENT  
This work is carried out when Xianqiang Bao is a visiting 

PhD student in Georgia Institute of Technology supported by 
scholarship from the China Scholarship Council. Authors 
from Georgia Tech are partially supported by NSF under 
Grants IIS-0905493, CNS-1115375, IIP-1230740 and a grant 
from Intel ISTC on Cloud Computing. Authors from NUDT 
are partially supported by the National High Technology 
Research and Development 863 Program of China under 
No.2013AA013201, and the NSF of China under Grant Nos. 
61433019, 61232003, 61025009, 61170288, 61332003, and 
61120106005. 

REFERENCES 
[1] R. Cattell, “Scalable SQL and NoSQL Data Stores,” Proceedings of 

ACMSIGMOD’10 Record, vol. 39, No.4, pp. 12–27, 2010. 

[2] T. Harter, D. Borthakur, S. Dong, A. Aiyer, et al."Analysis of HDFS 
Under HBase: A Facebook Messages Case Study". Proceedings of 
USENIX FAST'14, Santa Clara, CA, February 2014 

[3] Apache HBase, http://HBase.apache.org/ 

[4] Apache Hadoop, http://hadoop.apache.org/ 

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The Hadoop 
Distributed File System”. Proceedings of IEEE MSST'10, Incline 
Village, Nevada, May 2010. 

[6] D. Borthakur, K. Muthukkaruppan, K. Ranganathan, S. Rash,et al. 
"Apache Hadoop Goes Realtime at Facebook". Proceedings of ACM 
SIGMOD'11, Athens, Greece, June 2011. 

[7] K. Lee, L. Liu. "Efficient Data Partitioning Model for Heterogeneous 
Graphs in the Cloud", Proceedings of SC'13, Denver, CO, USA, 
November 17-21, 2013. 

[8] B. Wu, P. Yuang, H. Jin and L. Liu. “SemStore: A Semantic-Preserving 
Distributed RDF Triple Store”, Proceedings of ACM CIKM'14. Nov. 3-
7, 2014 

[9] S.Das, D. Agrawal, A. Abbadi. "G-Store: A Scalable Data Store for 
Transactional Multi key Access in the Cloud",Proceedings of ACM 
SoCC’10, Indianapolis, Indiana, June 10-11 2010. 

[10] B.F.Cooper, A.Silberstein, E. Tam, R. Ramakrishnan,and R. Sears, 
“Benchmarking Cloud Serving Systems with YCSB,” Proceedings of 
the ACM SoCC’10, Indianapolis, Indiana, June 10-11 2010. 

[11] K. Muthukkaruppan,“Storage Infrastructure Behind Facebook 
Messages.” Proceedings of HPTS’11, Pacific Grove, California, October 
2011. 

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, et al, “Bigtable: A 
Distributed Storage System for Structured Data,” Proceedings of 
USENIX OSDI’06, WA, November 2006. 

[13] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File System,” 
Proceedings of ACM SOSP’03, NY, USA, October 19-22 2003. 

[14] G.DeCandia, Hastorun, D., Jampani, M., Kakulapati, G., et al. "Dynamo: 
Amazon’s highly available key-value store". Proceedings of ACM 
SOSP’07, pp. 205–220, Stevenson, WA, 2007 

[15] Voldemort,  http://www.project-voldemort.com/voldemort/ 

[16] P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil. "The log-structured 
merge-tree (LSM-tree)". Acta Informatica, 33(4):351-385, 1996. 

[17] SYSSTAT, http://sebastien.godard.pagesperso-orange.fr/ 

[18] A. Lakshman, P. Malik, and K. Ranganathan. "Cassandra: A structured 
storage system on a P2P network". Proceedings of 
ACMSIGMOD’08,Vancouver, Canada, June 9-12, 2008. 

[19] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, et al, 
“PNUTS: Yahoo!'s hosted data serving platform”, Proceedings of the 
VLDB Endowment, v.1 n.2, August 2008 

[20] S. Patil, M. Polte, K. Ren, W. Tantisiriroj,et al, “YCSB++: 
Benchmarking and Performance Debugging Advanced Features in 
Scalable Table Stores,” Proceedings of the ACM SoCC’11. 

[21] J. Huang, X. Ouyang, J. Jose, M. Wasi-ur-Rahman, et al. "High-
Performance Design of HBase with RDMA over InfiniBand", 
Proceedings of IEEE IPDPS'12. 

[22] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, "MD-HBase: A 
Scalable Multi-dimensional Data Infrastructure for Location Aware 
Services",Proceedings of IEEE MDM'11, Vol.1 pp 7-16. 

[23] Apache ZooKeeper™. http://zookeeper.apache.org/ 

[24] Kisung Lee and Ling Liu. "Scaling Queries over Big RDF Graphs with 
Semantic Hash Partitioning", VLDB 2014, Volume 7. 


