
HConfig: Resource Adaptive Fast Bulk Loading in HBase

Xianqiang Bao*†, Ling Liu†, Nong Xiao*, Fang Liu*, Qi Zhang†and Tao Zhu†

*State Key Laboratory of High Performance Computing,
National University of Defense Technology

Changsha, Hunan 410073, China
{baoxianqiang, nongxiao, liufang}@nudt.edu.cn

†College of Computing, Georgia Institute of Technology
Atlanta, Georgia 30332-0765, USA

{ling.liu, qzhang90, tao.zhu}@cc.gatech.edu

Abstract—NoSQL (Not only SQL) data stores become a vital
component in many big data computing platforms due to its
inherent horizontal scalability. HBase is an open-source
distributed NoSQL store that is widely used by many Internet
enterprises to handle their big data computing applications (e.g.
Facebook handles millions of messages each day with HBase).
Optimizations that can enhance the performance of HBase are of
paramount interests for big data applications that use HBase or
Big Table like key-value stores. In this paper we study the
problems inherent in misconfiguration of HBase clusters,
including scenarios where the HBase default configurations can
lead to poor performance. We develop HConfig, a semi-
automated configuration manager for optimizing HBase system
performance from multiple dimensions. Due to the space
constraint, this paper will focus on how to improve the
performance of HBase data loader using HConfig. Through this
case study we will highlight the importance of resource adaptive
and workload aware auto-configuration management and the
design principles of HConfig. Our experiments show that the
HConfig enhanced bulk loading can significantly improve the
performance of HBase bulk loading jobs compared to the HBase
default configuration, and achieve 2~3.7x speedup in throughput
under different client threads while maintaining linear horizontal
scalability.

Keywords—HBase; Bulk Loading; Optimization; Big Data

1. INTRODUCTION
NoSQL data stores [1] have enjoyed continued growth in

many large-scale web applications over the recent years thank
to their high horizontal (‘scale-out’) scalability. NoSQL data
stores are typically key-value stores such that nothing will be
shared among the key-value pairs. This enables a large dataset
of key-value pairs to be partitioned into independent subsets
according to keys and key ranges, which can be distributed
across a cluster of servers independently. Thus, NoSQL
systems can provide high throughput (a large number of
Get/Put operations per second) through massive parallel
processing. Successful examples include Bigtable [12] at
Google; Dynamo [14] at Amazon; HBase [3] at Facebook and
Yahoo!; Voldemort [15] at Linkedin and so forth. Among
these NoSQL data stores, the open-source HBase is widely
used by many Internet enterprises not only because it is used
in routine operations by Facebook and Yahoo but also because
HBase is an open-source implementation of a truly distributed,
versioned, non-relational database modeled after Bigtable.
Instead of using Google File System (GFS) [13] as the
distributed storage system, HBase is developed on top of the
open source Hadoop Distributed File System (HDFS) [4, 5].
‘Facebook Messages’ [11] is a typical application at Facebook
that handles millions of messages daily through HBase.

However, most of the efforts on tuning HBase performance
in terms of system configuration management have been done
as in-house projects. As a result, most of HBase users rely on
the default configuration of HBase for their big data
applications given the complexity of the configuration in terms
of both the number of parameters and the complex correlation
among many system parameters. Very few can answer the
questions such as when will the HBase default configuration
no longer be effective? What side effect should be watched
when changing the default setting of a specific parameter?
And how can we tune the HBase configuration to further
enhance the application performance? We argue that how to
setup HBase clusters with high resource utilization and high
application level performance remains to be a significant
challenge for system administrators, HBase developers and
users.

In this paper we study the problems inherent in
misconfiguration of HBase clusters, including scenarios where
the HBase default configurations may lead to poor
performance. For example, we will show through experiments
that the default configuration may provide poor resource
utilization of HBase cluster for some test cases. We will also
show that some simple optimizations may even hurt HBase
performance, for example, by changing the HBase Java
runtime environment to bigger heapsize (from default 1GB to
4GB), the throughput performance may be degraded by 20~30%
(throughput loss) compared with the default choice for some
test cases. With these problems in mind, we develop HConfig,
a semi-automated configuration manager for optimizing
HBase system performance from multiple dimensions. Due to
the space constraint, this paper will focus on how to improve
the HBase bulk loading performance by HConfig. Through
this case study we will highlight the importance of resource
adaptive and workload aware auto-configuration management
and the design principles of HConfig. Our experiments show
that the HConfig enhanced bulk loading can significantly
improve the performance of HBase bulk loading jobs
compared to the HBase default configuration, and achieve
2~3.7x speedup in throughput under different client threads
while maintaining linear horizontal scalability.

2. OVERVIEWAND PROBLEM STATEMENT

2.1 HBase Overview

HBase [3] is an open source distributed key-value store
developed on top of the distributed storage system HDFS [4,
5]. An HBase system consists of four major components, as
shown in Fig.1: HMaster, ZooKeeper cluster, RegionServers
(RSs), and HBaseClient (HTable). HMaster is responsible for

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257304

monitoring all the RegionServer instances in the cluster, and is
the interface for all metadata management. ZooKeeper [23]
cluster maintains the concurrent data access to the data stored
in the HBase cluster. HBaseClient is responsible for finding
RegionServers that are serving the particular row (key) range.
After locating the required region(s) by querying the metadata
tables (.MATA. and -ROOT-), the client can directly contact
the RegionServer assigned to handling that region without
going through the HMaster, and issues the read or write
requests. Each of the RegionServers is responsible for serving
and managing those regions which are assigned to it through
server side log buffer and MemStore. HBase handles basically
two kinds of file types: the write-ahead log and the actual data
storage through the RegionServers. The RegionServers store
all the files in HDFS. HBase RegionServer and HDFS
DataNode are usually deployed in the same cluster. The basic
data manipulation operations referred to as CRUD (stands for
Create, Read, Update, and Delete) and are implemented in
HBase as Put, Get and Delete methods. The bulk loading
process primarily uses the Put method. Fast bulk loading aims
at distributing data to the secondary storage of the HBase
cluster nodes efficiently and evenly.

Fig. 1. HBase architecture combined with YCSB benchmark.

2.2 Bulk loading in HBase

In this section, we briefly describe the bulk loading process
in HBase with default configuration. Broadly speaking, all
four core components of the HBase collaborate to accomplish
the bulk loading of raw datasets into the HBase cluster in three
steps.

(1) HBaseClient prepares the data for bulk loading.
After setting up a HBase cluster of n server nodes (n>1), we
need to first load the data to the HBase store. Typically, the
remote client will need to run the HBaseClient at the client
side of the HBase cluster to initiate the data loading process. In
order to load the raw dataset to the HBase cluster, we need to
first place the key-value pairs in the write buffer of
HBaseClient. The default write buffer size is usually set to
12MB. When the write buffer is full, the client sets up
connections with the HBase cluster via HBaseClient in three
steps: (1) the client via HBaseClient contacts the server side
manager ZooKeeper [23] to get all the related regions and the
region locations information based on the keys; (2) it shuffles
all the buffered records according to key ranges of each region.
By HBase default configuration, initially, only one region is
created at a randomly selected region server (RS) when
creating a new table and the intial region has the key range for
any key. We can describe the initial key range as (-∞, +∞), so

all the records will be routed to the same intial region initially.
One parameter in the default configuratin is the threshold of
when the intial region will be splited into two regions with two
different key ranges as (-∞, key1) and [key1, +∞). When the
threshold is met, the region split will be triggered by dividing
the key range into two sub-ranges and each is assigned to a
different region.

(2) Loading Data to the initial region on a RS. When
the data records are delivered to the initial region hosted at a
RS, all the records are first written into a server side buffer,
and then the data will be read from the server side buffer and
merged into the key range hosted in the MemStore of the intial
region with lexicographic order. The default size of the
MemStore is 128MB. When the MemStore is 80% full, it
begins to flush records into the secondary storage of this RS
managed by HDFS by creating a HFile. Each MemStore flush
will create a new HFile, and one region can host several
HFiles until the number of HFiles reaches the
compactionThreshold (default is 3), which will trigger a minor
compaction in HBase. Each minor compaction will merge the
HFiles into one large HFile.

(3) Region splitting and records loading across regions
and RSs. When the amount of data records loaded to a region
reaches some specific threshold defined in the default
configuration, the region split will be triggered. For example,
the default region split policy in HBase is the
IncreasingToUpperBoundSplitPolicy, which defines when the
region split should happen:

(Split size = min(Num3
region/RS*2*Flushsize,MaxregionSplitSize)).

For example, if the raw dataset is 10GB, then the region split
size for default configuration is
{Split1:min(13*2*128MB=256MB,10GB)=256MB,
Split2:min(23*2*128MB=2,048MB,10GB)=2048MB,
Split3:min(33*2*128MB=6,912MB,10GB)=6912MB,
Split4:min(43*2*128MB=16,384MB,10GB)=10GB,…, all are 10GB}.

There are two types of load balancer triggers that can
reassign the generated regions across the RSs: time cycle
(default is 5 minutes) and the number of regions on each RS.
Concretely, by setting the parameter region.slop, the rebalance
will be triggered if the number of regions hosted by any RS
has exceeded the average+(average*slop) regions. Upon each
region split, one of the new regions will be reassigned to
another randomly selected RS.

2.3 Problem Observations

Bulk loading using the default configuration suffers from a
number of problems due to poor resource utilization at both
HBase cluster and each region server. In this section, we
present problem statement with experimental observations.

2.3.1 Experiment setup
Each node setup: each node of the cluster has AMD

Opteron single core (Dual socket) CPU operating at 2.6GHz
with 4GB RAM per core (total 8GB RAM per node), and two
Western Digital WD10EALX SATA 7200rpm HDD with 1TB
capacity. All nodes are connected with 1Gigabit Ethernet
(125MB/sec), run Ubuntu12.04-64bit with kernel version 3.2.0,
and the Java Runtime Environment with version 1.7.0_45.

HBase and HDFS cluster: we use HBase with version
0.96.2 and Hadoop with version 2.2.0 (including HDFS) in all
the experiments. And run HBase and HDFS in the same

cluster to achieve data locality (HMaster & NameNode on
manager node, RegionServer & DataNode on each worker
node). We use two clusters:

Cluster-small: consists of 13 nodes: 1 node hosts both
HMaster and NameNode as the manager, 3 nodes host
ZooKeeper cluster as the coordinators and 9 nodes host
RegionServers and DataNodes as the workers.

Cluster-large: consists of 40 nodes: 1 node as manager, 3
nodes as the coordinators and 36 nodes as the workers.

YCSB benchmark:Yahoo! Cloud Serving Benchmark
(YCSB) [10] is a framework for evaluating and comparing the
performance of different NoSQL data stores. There are several
parameters defined in this benchmark, which can be
configured on the client side to generate adaptive workloads.
The common parameters include the number of client threads,
the target number of operations per second, the record size (the
number of fields * each field size), the number of operations,
the insertion order and so forth. We generate synthetic
workload using YCSB load command with uniform request
distribution, hash-based insert order, unlimited target number
of operations per second (i.e., the YCSB client will try to do as
many operations as possible). In addition, we vary the number
of client threads, the record size, the number of client nodes to
understand how client side configuration may impact on the
bulk loading performance.

2.3.2 Unbalanced bulk loading across RegionServers
The first observation from our experiments is the

unbalanced bulk loading across the cluster of RegionServers
(RSs) when using the default configuration for bulk loading.
Concretely, we bulk load HBase using the default
configuration on the small cluster with 10 millions of data
records of key-value format, which is 1KB/record and 10GB
total. To gain an in-depth understanding of the problems
inherent in the default configuration, we also bulk load HBase
on the same cluster with 100 millions of records, a total of
100GB. Fig.2 (a) and Fig.2 (b) show the file sizes of all region
servers (RSs) upon the completion of the bulk loading for 10
millions of records and 100 millions of records respectively. In
the scenario of loading 10 millions of records, there are only
four RSs used for handling bulk loading during the whole data
loading process and other five RSs are idle with no records
stored. Clearly, the default HBase configuration aims at
loading data region by region and region server by region
server through a conservative region split policy for data
distribution. Thus, a region split will be triggered only when
the data loaded to a region exceeds some default threshold. In
the scenario of loading 100 millions of records to the same
cluster, we observe that all 9 region servers are loaded with
some portions of the input dataset but the data loading remains
not well balanced across the cluster of 9 RSs (see Fig.2 (b)).
To further study this result, we measured the CPU utilization
for each of the four RSs that are loaded with input data for the
10 millions of records scenario shown in Fig.2 (c). In addition,
we measured the throughput (#operations/sec) for both
scenarios. Fig.3 (a) and Fig.3 (b) compare the throughput
measurement for loading 10GB and 100GB data to the small
HBase cluster respectively. Table I shows the regions and
detailed data loaded on each RS for both scenarios. From Fig.3
(a), the throughput is unbalanced during the whole bulk
loading process and the process can be divided into three
stages. Meantime, we observe some short pauses during each
of the three throughput stages, which lead to unstable

throughputs even within each stage. By examining the CPU
utilization trace data collected by SYSSTAT1 [17] on the
number of busy RSs, during each of the three throughput
stages. We observe clearly from Fig.2 (c) that initially there is
only one single busy RS (RS-1). Then during the stage 2, there
are two busy RSs (RS-1 & RS-5). During the stage 3, there are
four busy RSs (RS-1, RS-5, and RS-7 & RS-9).

When the bulk loading dataset is increased to the 100
millions of records, we observe from Fig.3 (b) that the low
throughput during the first throughput stage for the first 10
million records still exists, but the peak throughput for this
scenario is much higher reaching more than 35,000 ops/sec.
This shows two facts: (1) When the total size of the data for
bulk loading is big enough, the generated key-range based
regions will be distributed across all the RSs after the initial
warming up stage and the bulk loading of 100 millions of
records can be concurrently routed to all the RSs (see the
region and file size details in Table I). Moreover, the average
throughput of bulk loading larger 100 million records is 37%
higher than the scenario of 10 millions of records, a result that
is benefited from the concurrent data loading to all the RSs of
the HBase cluster introduced by the incremental region splits
and data loading re-distribution. .

These observations motivate us to raise a number of
interesting questions: How can we improve the unbalanced
bulk loading and achieve more balanced data distribution
across RSs? Can we increase the bulk loading throughput to
further speedup the performance of bulk loading? What
configuration parameters in the default configuration of HBase
should be revisited? The efforts made to answer the many
questions as such motive us to develop HConfig, a semi-
automated HBase configuration manager.
2.3.3 Inefficient resource utilization on RSs

The second set of observations made from our
experimental study on the bulk loading performance is the
inefficient resource utilization of both cluster and individual
RS nodes. First, from Fig.3 (a), the bulk loading of 10 millions
of records (1KB/record) is dealing with the raw dataset of
10GB total on a HBase cluster with a total RAM capacity of
all nine RSs (8GB*9=72GB RAM). However, there are only
four out of nine RSs active and the average throughput of a
single active RS is only about 5MB/sec, this is much less than
the disk I/O bandwidth of 50~100MB/sec and network I/O
bandwidth of 125MB/sec. When the bulk loading dataset is
increased to 100 millions of records (about 100GB, more than
the total RAM size of the cluster), we still observe the unstable
throughputs in Fig.3 (b) characterized by different throughput
stages and the short pauses that leads to frequent oscillation in
throughputs during each stage. Although from the previous
analysis, we know that one of the main causes for only a
selection of RSs being active during bulk loading and for
unbalanced bulk loading is the default data distribution
strategy implemented through the incremental region split
policy in HBase default configuration. Further understanding
for root causes of short pauses that lead to throughput
oscillation is as follows: we performed a series of in-depth
experimental measurements by varying certain memory and
disk I/O related parameters. For example, Fig.4 shows the
throughput with the JVM heap size used by each RS ranging
from 1GB to 4GB, the number of threads used at the client
ranging from 1 to 40. Also the client threading decision has
also some impact on the loading performance with 4 threads to
be better than 1 thread, 2 threads, 20 or 40 threads.
1SYSSTAT Trace item: %user-Percentage of CPU utilization that occurred
while executing at the user level (RS level)

 (a) 10 million records (b) 100 million records (c) CPU trace on RSs of bulk loading 10 million records

Fig. 2. Records distributions across 9RSs with default configuration

 (a) 10 million records (1KB/record) (b) 100 million records (1KB/record)

Fig. 3. Real-time throughput of bulk loading with default configurations

TABLE I. REGION AND HFILE DETAILS ON EACH RS

RS / dataset
10 million records 100 million records

#Region File Size(MB) #Region File Size(MB)
RS-1 2 3,641 4 22,474

RS-2 1
(.MATA.)

0 4*
(.MATA.)

11,197

RS-3 0 0 4 18,028
RS-4 0 0 4 17,941
RS-5 2 3,615 4 11,202
RS-6 0 0 4 18,078
RS-7 2 3,618 4 18,060

RS-8 1
(-ROOT-)

0 4*
(-ROOT-)

8,917

RS-9 2 3,639 4 18,100
* RS-2 and RS-8 only have 3 regions for handling bulk loading

Furthermore, the frequent flushing of data from MemStore
to disk (HDFS) and consequently frequent minor compactions
can be caused due to inefficient utilization of the memory
resources on individual RSs. The momentary decrease in
throughput when the regions on some RSs are split and re-
assigned to the other RSs are obviously due to the contention
experienced in MemStore. These analysis results motive us to
study the set of configuration parameters that can be turned
automatically or semi-automatically according to cluster
resource, node resource and workload characterization.

3. HCONFIG: DESIGN OVERVIEW
In this section, we first briefly discuss the objectives of

HConfig system design and then give an overview of the set of
bulk loading related parameters used in HBase configuration
and analyze how these parameters may affect the bulk loading
performance, followed by the concrete design considerations
and optimizations implemented in HConfig.

3.1 Design Objectives

The HConfig design for bulk loading intends to help speed
up the bulk loading process in HBase regardless of the
workload variations and the cluster resource variations by
providing the semi-automated configuration management. The
concrete techniques we use focus on optimizing the utilization
of both cluster resource and per-node resource at each region
server. Our concrete design objectives can be summarized
along three perspectives: high concurrency across all the RSs,
high resource utilization on each RS and minimum bulk
loading pause during the whole data loading process.

Fig. 4. Throughput of bulk loading with different heapsize

High execution concurrency. We plan to explore
execution concurrency from both server and client side. At the
server side, we promote the configuration of no idle RSs
during the bulk loading process, enabling each RS to handle
the bulk loading requests in a well-balanced manner, removing
or alleviating the overload problem in the initial region hosted
on single RS and during the region-split and key-range re-
distribution phase. At the client side, we are interested in
tunning the number of threads per client and the number of
concurrent clients to better utilize the cluster resource for
speeding up the bulk loading of large datasets.

High resource utilization. Instead of relying on the
conservative default configuration for getting the average
utiliztion of the cluster resources and per-RS resources at the
best, HConfig by design improves the default configuration in
HBase by providing resource-aware and workload adaptive
configuration management, enabling HBase to run more
efficiently for clusters of different size and capacity and
applications with different workloads, including datasets,
request types and rates and so forth, by maximizing the
resource utilization and througput performance. For example,
in HConfig we optimize the bulk loading performance through
tunning the RAM and disk I/O related parameters.

Minimum load pause. By analyzing the measurement
results for both data loading scenarios (10 millions and 100
millions of records) shown in Fig.2, Fig.3 and Fig.4, bulk
loading pauses occur independent of the cluster size and the
dataset size. We observe that those short pauses are caused
primarily by three factors: a) too small MemStore and b) too
frequent flushing of HFiles and consequently too many minor

compactions to be performed, and c) too frequent region
creation and re-distribution among RSs.

3.2 Bulk Loading Performance Related Parameters

Based on the above three optimization objectives, we
select a set of configuration parameters that are highly related
to the resource consumption and execution efficiency of bulk
loading on both server side and client side.
3.2.1 Server-side Parameters

When bulk loading data is ready to be uploaded from the
write buffer at the client, the clients can directly deliver data
records to the corresponding regions hosted on different RSs
of the HBase cluster. HBaseClient is the interface for the
client to obtain the relevant regions for a given range of keys
and the RS location information. Thus, the sever size
configuration parameters are focused on RS related parameters.

TABLE II. RELATED SERVER SIDE PARAMETERS

Parameters of RS Descriptions Default

heapsize The maximum amount of heap to use. 1GB
memstore.
flush.size

Memstore is flushed to disk if size of the
memstore exceeds this number of bytes.

128MB

memstore.block.
multiplier

Block the update if memstore occupancy
has reached memstore.block.multiplier *
HBase.hregion.flush.size bytes.

2

memstore.
upperLimit

Maximum occupancy size of all
memstores in a RS before new updates
are blocked and flushes are forced.

0.4

memstore.
lowerLimit

Minimum occupancy of all memstores in
a RS before flushes are forced.

0.38

compaction-
Threshold

When the number of HFiles in any
HStore (per region on a RS) exceeds this
threshold, a minor compaction is
triggered to merge all HFiles into one.

3

blockingStoreFiles

If more than this number of HFiles in
any one HStore then updates are blocked
for the Region until a compaction is
completed.

10

compaction.kv.
max

How many KVs to read and then write in
a batch when do flush or compaction.

10

region.split.policy
determines when a region should be split. Default
policy is IncreasingToUpperBound.

RAM sensitive parameters. There are several
configuration parameters in HBase is related directly to
distributing and putting data into the secondary storage of
individual RSs, including {heapsize, memstore.flush.size,
memstore.block.multiplier, memstore.upperLimit&lowerLimit}.
Before writing data to the secondary storage on a RS, the data
needs to be placed in the MemStore of the region hosted on a
RS based on their key ranges. When the MemStore overflow
happens, a new HFile is created to hold the data in the
MemStore and flushed to HDFS. During the flushing, all data
loading to this region is blocked by the Update block until
MemStore flushing is completed. The Updates block is
determined by {memstore.flush.size, memstore.block.
multiplier} or {heapsize, memstore.upperLimit}, and the
MemStore flushing is determined by {memstore.flush.size} or
{heapsize, memstore. lowerLimit & upperLimit}.

Disk I/O sensitive parameters. The following three
parameters are disk I/O related configuration parameters:
compactionThreshold,blockingStoreFiles,compaction.kv.max.
The parameter {blockingStoreFiles} sets the threshold in
terms of the number of stored HFiles and it triggers the
updates block when the threshold is exceeded. The parameter
{compactionThreshold} defines the threshold for invoking a

minor compaction in terms of the number of HFiles. Too small
threshold in conjunction with small MemStore size may lead
to frequent minor compactions and heavy disk read/write
when a compaction starts. {compaction.kv.max} specifies a
batch disk I/O operation threshod for flusing and compaction.
This parameter affects the disk read/write speed when
handling the memstore flushes or compactions.
3.2.2 Client-side Parameters

In order to load the dataset from the client side to a HBase
cluster, the client needs to prepare (or generate in the case of
using YCSB) all the bulk loading data records and also use the
HBaseClient module running at the client site to obtain the
region information based on the key range and the location of
RS hosting the region. Based on the region and the location of
the region, the client then submits (loads) the data records to
the corresponding RSs in the HBase cluster. All these
operations are performed at the client side machine(s) and
consume the client resources (e.g., RAM for write buffer) and
network I/O bandwidth between client and the RSs of the
cluster. The related parameters are listing in Table III. Among
these parameters, {WriteBufferSize, KeyValueSize} have
significant impaction the number of data records to be batch
loaded to a RS. Also the client side RAM size plays a key role
in configuring these two parameters. The parameters
{AutoFlush, KeysDistribution} affect how and when the data
records are distributed and loaded to the cluster of RSs. By
turning off AutoFlush, the batch loading will be used to
optimize the network I/O.

TABLE III. RELATED CLIENT SIDE PARAMETERS

YCSB Parameters Descriptions Default

AutoFlush do batch writes by turning off auto flush false

WriteBufferSize
both client side and server side use the
same write-buffer size to transfer data

12(MB)

KeyValueSize
the size of a record with N fields and
each field is M bytes = N*M (Bytes)

1KB

KeysDistribution
Key ranges generated in an ordered list by sort or
hash function. The default is hash function with key
ranges split uniformly by # of RSs (FNVhash64).

3.3 Desgin Consideration and Optimizations
In this section we give an overview of the design

consideration and optimizations in HConfig, focusing on
tuning the bulk loading performance.
3.3.1 Cluster-aware optimization

This type of optimization is focused on tuning the
configuration parameters that can encourage high concurrency
across all the RegionServers.

PreSplit.To promote the high horizonal scalability, we
design the PreSplit configuration, which pre-splits the big
tables to be bulk loaded to the HBase cluster into independent
and well-balanced reigons according the number of RSs in the
cluster and distribute the regions across all the RSs based on
the KeysDistribution. First, the cluster-aware focuses on the
number of living RSs to determine how many initial regions
for the target table. Then the regions are given out by splitting
the table according to the KyesDistribution. Each region hosts
a subset of the records in the input big table with certain start
key and end key. This policy can avoid or minimize the
regions re-assignment across RSs. One of the main challenges
is to devise a well balanced data partitioning function that can
partition the input data into regions according to the number of
RSs. For example, keys generated by default hash function

‘FNVhash64(long)’ in YCSB start with the prefixes: ‘user1’,
‘user2’, ‘user3’, ‘user4’, ‘user5’, ‘user6’, ‘user7’, ‘user8’,
‘user9’. So we can split the dataset evenly into 9 regions, and
initially assign one region to each RS. In HConfig, we allow
the external data partitioning algorithms to be added through
the configuration manager.

ConstantSizeRegionSplitPolicy. As a companion of the
PreSplit policy, in HConfig we replace the current default
policy IncreasingToUpperBoundSplitPolicy to ConstantSize-
RegionSplitPolicy for region split and region re-distribution
upon MemStore overflow and minor compaction. The
ConstantSizeRegionSplitPolicy splits a region as soon as any
of its store files exceeds a maximum configurable size. In
comparison, the IncreasingToUpperBoundSplitPolicy (the
default used in current HBase releases) leads to unnecessarily
regions re-assignment accorss the RSs after pre-split. By
replacing it in PreSplit, we can adaptively set the region size
according to the dataset size that we can provide the optiml
configuration for different datasets scenarios respectively.

3.3.2 Node-aware optimization
The node-aware optimization focuses on tuning the

parameters that can impact on resource utilization at single RS,
mainly centered on high efficiency in RAM and disk I/O.

RAM related tuning. The design of PreSplit in HConfig is
also to obtain high utilization of the resources on each RS.
One of the main design ideas is to delay the loading related
update blocking and the LSM-tree [16] related minor
compaction by using bigger heap (RAM) in each region. This
allows to buffer more records and give priority to batch disk
I/O in order to flush more records for each disk I/O. For
example, the default heapsize in HBase is 1GB regardless the
application tasks and the size of the memory resource on each
RS. Recall the clusters used in our experiments, each RS has
8GB RAM. One simple and intuitive idea is to configure the
JVM heap used by each region with a bigger heap size than 1
GB. However, simply using a bigger heapsize not only fails to
deliver improved performance but also produces worse
throughput than the smaller heap size. This is one of the
typical misconfigurations that should be avoided. By further
investigating the other RAM related configuration parameters,
we discover that the MemStore related parameters should be
taken into account to use the bigger heapsize efficiently. For
example, we need to tune the bigger heapsize by jointly
considering the settings for MemStore flush size and
MemStore block multiplier, as well as the compaction
threshold and the max number of HFiles hosted in a region
(each flush create a HFile), to generate our optimal
configuration in HConfig.

Concretely, MemStore is hosted in the young generation
portion of the heap. Larger MemStore allows batching more
records for flushing. Moreover, bigger memstore.flush.size
delays the timing and the number of MemStore flushes by
holding records in RAM longer. Thus, bigger
memstore.flush.size also decreases the garbage collection
frequency of young generation. The next complication is the
setting of the parameter memstore.block.multiplier. Increasing
the memstore.block.multiplier can delay the updates blocking,

so when the MemStore becomes full and starts flush, if there
is enough heapsize for the bulk loading, one region can utilize
the multiplier MemStores to handle bulk loading records while
flushing without blocking. In addition, by increasing the
settings of the parameters: memstore.upperLimit and
memstore.lowerLimit, the updates blocking and the MemStore
flushes may be further delayed at the global level across all the
RSs of the HBase cluster. But too big size may lead to
runaway MemStore or long time to complete minor
compaction and/or region split, possibly cause the out of
memory error (OOME). Based on extensive experiments the
trade-off for the heapsize and the RAM consumption, in
HConfig, we recommend the biggest global MemStoresize to
be set to no more than half of the heapsize, and the biggest
memstore.flush.size to be 1/8 of the heapsize.

Disk I/O related tuning. Frequent flushes and frequent
minor compactions can lead to higher disk I/O cost. Thus, in
the bulk loading of big data, the disk I/O can easily become
the bottleneck. One of the principles for optimizing the bulk
loading performance is to provide high utilization of disk I/O
resource during the bulk loading. For example, flushes from
MemStores to HFiles stored on disk should always come first.
We can increase the compactionThreshold to delay
compactions that consume disk I/O, and increase the threshold
of the blockingStoreFiles to delay the blocking of new updates
whenever possible. Also the adaptive compaction.kv.max is
very important to fully utilize the disk I/O bandwith,
especially when the records are wide and the number of KV
rows is relatively small. This enables us to use the sequential
disk I/O speed for bulk loading. However, a careful trade-off
is required, as too big size leads to the risk of unacceptable
compaction delay or high contention in MemStore, which
hurts the throughput performance of bulk loading.

3.3.3 Application-aware optimization
In order to further optimize the bulk loading performance

based on application specific features, we can also take into
account a set of client-side parameters, such as key-value
record size, the application client running threads and the
number of client nodes running to bulk load the data to the
HBase. Our experimental results show that these application
specific features also play an important role in generating the
optimal configuration for further improving the throughput
performance. In this paper, we focus on obtaining the optimal
client side configuration by tuning the load pattern and the
following parameters: WriteBufferSize, the number of running
threads at the client, the number of concurrent client nodes,
and the KeyValueSize. The default batch loading pattern is
chosen to generate the loading workload with high client
resource utilization. The number of concurrently running
client nodes is determined by the number of RSs. The other
parameters are determined by the resources at the client node(s)
and the number of RSs, including network I/O.

4. EXPERIMENT RESULTS AND ANALYSIS
In this section, we present the details of the evaluation

results for optimal configuration design compared with the
default configuration used in current HBase releases.

 (a)PreSplit: Throughput (b)PreSplit: Average Latency (c)PreSplit: Client node CPU trace with different YCSB threads

Fig. 5. Throughput and average latency of PreSplit configuration with different YCSB threads.

 Step 1 (a) Step 1 (b) Step 2 (a)

 Step 2 (b) Step 3 Step 4

Fig. 6. Node-aware optimization throughput results.

4.1 Cluster-aware optimization evaluation
In this experiment, we use the small cluster (9RSs) to run

PreSplit with ConstantSizeRegionSplitPolicy to achieve
cluster-aware optimization (short for PreSplit configuration).
According to the description of PreSplit design, we can pre-
split the bulk loading target table ‘usertable’ into 9 regions as
there are 9 RSs in cluster-small. From Fig.5 (a), we can see the
PreSplit configuration significantly accelerates the throughput
compared with the Default configuration, the speedup is
from1.9x to 3.6x with different thread cases. And the more
threads case gets the more speedup due to the high
concurrency from PreSplit. What we should mention here is
the best throughput cases of both Default and PreSplit are
running with 4 client threads (Default: 13171 ops/sec ->
PreSplit: 30353 ops/sec, 2.3x speedup), and from Fig.5. (b)
the average latency of the best throughput cases are still low.
Digging into the SYSSTAT CPU trace in Fig.5 (c), we find
that CPU becomes the bottleneck when the client threads ≥ 8,
while using less than 2 threads the CPU is underutilized. So
using 4 unlimited YCSB threads will make full use of the CPU
resource without network I/O bottleneck at the same time to
achieve best throughput and low latency. Same situations
occur in the following experiments and we use 4 threads as the
optimal client thread parameter. When the key range
distribution is highly skewed, a more carful configuration in
terms of data partitioning is critical. In HConfig, we allow the
external data partitioning algorithms [24] to be plugged into
the data loader.
4.2 Node-aware optimization evaluation

The following four steps are based on PreSplit:

Step 1 (memstore.flush.size). we configure the small
cluster (9RSs) with default 1GB or bigger 4GB heapsize, then
change the memstore.flush.size from default 128MB to
256MB, 512MB in this step. There are two main questions
here: (1) If small heapsize with bigger memstore.flush.size
works well (in Section II, we get performance loss when using
bigger heapsize with small size) and (2) find the adaptive
memstore.flush.size for bigger heapsize. From Fig.6. Step1 (a),
the answer to question (1) is that small heapsize with bigger
memstore.flush.size ({1GB, 512MB}) leads to performance
loss, and bigger heapsize with adapative memstore.flush.size
({4GB, 512MB}) improves the performance and partly
resolves the bigger heapsize hurts performance problem. Fig.6.
Step(b) shows that the adaptive memstore.flush.size for bigger
heapsize (4GB) is 512MB, and the improvementis 40~50%
compared with the only setting 4GB bigger heapsize cases,
even compared with the PreSplit, the improvement is 3~17%
(and has 2~3.7x speedup compared with Default). Also the
best throughput case is running 4 client threads. So far, the
optimal configuration is HConfig1 => {PreSplit +
heapsize:4GB, memstore.flush.size:512MB}.

Step 2 (blockingStoreFiles & compactionThreshold). In
this step we increase blockingStoreFiles from default 10 to 20,
30 to delay updates blocking and then increase
compactionThreshold from default 3 to 6, 12 to delay
compaction. From the result in Fig.6. Step 2 (a), we can see
the optimal blockingStoreFiles is 20, while too bigger
blockingStoreFiles (e.g. 30 in this experiment) leads to
throughput decrease as later blocking new updates causes
MemStore too stressful in doing flushes rather than to handle
new arrived records.

 (a) Real-time throughput of bulk loading 100million records (b) Different dataset size

Fig. 7. Throughput of basic optimal configHConfig3.

Fig. 8. Real-time throughput of bulk loading 100 million records with HConfig4 vs. HConfig3.

And from Fig.6. Step 2 (b), the optiaml
compactionThreshold is 12 as expect, and as too bigger
compactionThreshold leads to unacceptable compaction delay
risk, we just use 12 as the optimal parameter. And the best
throughput case now is 37007 ops/sec (2.81x speedup
compared with Default). So the principle about using limited
disk I/O for MemStore flushes first works well. And the
optimal configuration becomes HConfig2=>{ HConfig1 +
blockingStoreFiles:20, compactionThreshold:12}

Step 3 (compaction.kv.max). In this step, we use the
YCSB default KeyValueSize 1KB/record (100B/field*10field).
And from the result in Fig.6. Step 3, there is only a tiny
speedup when increasing compaction.kv.max from the default
10 to 20, the bigger setting with 40 even dereases the
throughput. So we use 20 as the optimal parameter and the
best throughput increased to 37037ops/sec (2.8102x speedup
compared with Default). Till now, the optiaml configuration
becomes HConfig3=>{HConfig2+compaction.kv.max: 20 }.

So far, we get the basic optimal configuration HConfig3 for
loading small dataset (10 million records). However, when we
use HConfig3 to load a larger dataset (100 million records), we
observe some new problems. From Fig.7 (a), HConfig3 is still
better than the average Default configuration with a much
earlier finish time to bulking loading 100 million records, but
periodic long loading pause occurs when finishes loading
about 30 million records till the end. And from Fig.7 (b), the
loading pauses leads to 36% throughput decrease (37037
ops/sec ->23781 ops/sec), and the speedup compared with
Default is also decreased from 2.81x to 1.32x. As the disk I/O
resources are already full used in HConfig3, so we turn to
increase the whole RAM used by MemStores to get the
optimal configuration for bulk loading very large dataset.

Step 4 (memstore.block.multipiler). When dataset
becomes much larger, although compaction is delayed in basic
optimal configuration, but it should not be delayed too much
to cause unacceptable compaction delay risk. And when doing
the compaction and the periodic MemStore flushing at the
same time, new updates blocking occurs due to shortage of
disk I/O as well as too stressful MemStore also shows as
periodic pauses. In this step, we increase the global
MemStores of one region to further delay updates blocking
based on HConfig3 by using bigger memstore.block. multipiler
(changed from Default 2 to 3, 4). From the result in Fig.6.

Step 4, for the best throughput case (multipiler is 4), there is a
46% throughput improvement compared with HConfig3 and
1.92x speedup compared with Default. Then from Fig.8, when
the loading records dataset is less than about 30 million,
bigger memstore.block.multipiler behaves as the same as the
default samller one. But bigger multipiler can significantly
shorten the loading pauses due to further delay updates
blocking caused by too stressful MemStores. And the optimal
configuration is

HConfig4=>{ HConfig3 + memstore.block.multipiler:4 }.

4.3 Application-aware optimization evaluation

In the above cluster-aware optimization experiment, we
already get the optimal running threads of YCSB benchmark
on our setup client node. In this experiment, as bulking
loading requests distribution is uniform, so the main feature of
the benchmark affects performance much is the KeyValueSize
(KV size) and we change the KeyValueSize from 1KB to
5KB, 10KB, 50KB, 100KB, 500KB to get the client size
optimal configuration (each record has 10 fields, and we use
the default WriteBufferSize 12MB in YCSB). As all the
records are real-time generated by client threads, so we
analysis the client node resources and network I/O utilization
first. From the trace results in Fig.9 (a) and (b), when the KV
size is default 1KB, the CPU becomes the bottleneck and the
network I/O utilization is around half of the GbE (1Gb
Ethernet). And when KV size is 5KB or bigger, the GbE
becomes the bottleneck instead of the CPU of client node. So
when the records generated by the application hosted on
HBase are always ≤ 5KB, the bulk loading (batch model) is
more CPU sensitive than network I/O and bigger
WriteBufferSize should be configured to make full use of the
network I/O. And when the records are > 5KB, better network
I/O improves the loading performance. So we should increase
the WriteBufferSize to 2~3x to get the optimal configuration.

Moreover, from Fig.9 (c) and (d), our HConfig works well
from 1KB to 500KB cases as maintaining with 3~4x speedups.
And the 5KB KV size case gets the highest speedup due to
both full utilization of network I/O and CPU, it also verifies
that we can still optimize bulk loading performance by
improving network I/O utilization with bigger
WriteBufferSize based on the general optimal configuration
HConfig4 of the server side.

 (a) CPU trace (b) Network I/O trace (c) Throughput (ops/sec) (d) Speedup

Fig. 9. Results for application-aware optimization with varied key-value size.

 (a) Real-time throughput on cluster-large with different configurations (b) Throughput

 (c) Real-time throughput on cluster-large with single and multiple client nodes (d) Average Latency

Fig. 10. Results for scale-out evaluation.

4.4 Scale-out evaluation

We use the large cluster (36RS) and multiple client nodes
(4YCSB running nodes). From Fig.10 (a), when we use the
optimal configuration HConfig4 load 100 million records, the
periodic long pause is gone. Because records are well
balanced loading to 36RSs and the pressure of RAM or disk
I/O for single RS is much less than loading 100 GB records to
9RSs, and this indicates well scalability here. From Fig.10 (b),
when the loading records dataset is small, both small and
large cluster have significant speedup with optimal
configuration. While when the records dataset becomes much
larger, the Default on large cluster (36RS_Default) performs
much better than Default on small cluster (9RS_Default) with
1.72x speedup, even better than the optimal configuration on
small cluster (9RS_HConfig). This indicates that the Default
average configuration for HBase is fit for big data process on
large data centre environment, while the optimal configuration
on large cluster (36RS_HConfig) still gets about 50%
throughput improvement compared with 36RS_Default.
However, from the results in Fig.10 (a) and (b), there are also
two questions: (1) The throughput of optimal configuration
performs only the same level as PreSplit as well as the last
stage of Default, that means larger heapsize and other optimal
parameters have no help to the bulk loading performance. (2)
Although optimal configuration on large cluster gets
throughput improvement, but the speed up is much smaller
than small cluster under the similar pressure on RAM and disk
I/O for each RS (The speedup for 36RS_HConfig :
36RS_Default is 1.5x, while 9RS_HConfig : 9RS_Default is
2.8x). Both of the above problems due to the bulk loading
records generated by one single client node can’t feed the
36RSs up to push 36RSs running at full capacity. So we use

multiple 4 client nodes to generate enough records
concurrently to feed the 36RSs up. To be more specific, each
client node runs 4 YCSB client nodes with 4 threads per node
(so the 36RSs handle 16 client threads concurrently), and the
100 million records set is divided into 4 subsets for each client
node to load a subset including 25 million records. From the
throughput results in Fig.10. (c), when using 4 YCSB client
nodes, the throughout for 4 multiple YCSB nodes is the
superposition of each node’s throughput and the speedup is 3x
(3x=0.75x*4) compared with single client node. Although the
throughput of each node among multiple client nodes is
decreased (while the average latency of each node is still
acceptable, see Fig.10 (d)), but the whole throughput achieves
considerable speedup and almost has linear scalability with
our optimal configuration. Moreover, as using 16 threads on
single client node faces CPU bottleneck (as Fig.5 (c)), we
recommend multiple client nodes with optimal threads to bulk
load large cluster.

5. RELATED WORK
We present the recent related research works mainly in the

evaluation of NoSQL data stores and the optimization for big
data process on HBase as following:

Cooper et al. [10] present YCSB framework to compare
the performance of new generation of NoSQL data stores and
report results for HBase [3], Cassandra [18], PNUTS [19], and
a simple shared MySQL implementation based on their
defined synthesis workloads. Patil et. al [20] extend YCSB
and build YCSB++ to support advanced features for more
complex evaluation of NoSQL systems, such as multi-tester
coordination, eventual consistency test, doing anticipatory
configuration optimization and so on. These benchmark tools
are targeted at a wide range of systems and focusing on

benchmark development, both YCSB and YCSB++ turn to
use the default average configuration to evaluate the target
systems, and YCSB does not optimize the configuration of
underlying target systems. Although YCSB++ does
optimization such as B-tree pre-splitting or bulk loading in
benchmark tests, but benchmark-level optimization should
take the wide range of target systems into account to be fair to
each one, and always is general optimization. Our
optimization solution HConfig takes application-level
(benchmark-level) as well as cluster-level, node-level
resources into account to generate the optimal configuration
for HBase.

Harter et. al [2] present a detailed study of the Facebook
Message stack as the case study to analysis HDFS under
HBase, and suggest to add a small flash layer between RAM
and disk to get best performance improvement with certain
budget based on the cost simulations. Huang et. al [21] use
high performance networks to optimize HBase read/write
performance by exploiting the Infiniband RDMA capability to
match the object delivery model in HBase. These works can
significantly improve HBase performance by taking advantage
of novel data storage and transfer technologies.

Das et. al [9] present G-Store implemented based on
HBase to provide efficient, scalable, and transactional multi
key access with low overhead. Similarly, Nishimura et. al [22]
proposed MD-HBase to extend HBase to support advanced
features. These functionality optimizations are orthogonal to
our work, and our optimal configuration can improve the
performance with significant speedup for any HBase
applications.

6. CONCLUSION AND FUTURE WORK
We have presented HConfig, a semi-automated

configuration management system. We show through our
experimental study that the default configuration in current
HBase releases can hurt the average performance in bulk
loading regardless of the dataset sizes and the cluster sizes.
The problems inherent in misconfiguration are addressed by
HConfig with providing resource adaptive and workload
aware configuration management. Our experiments show that
the HConfig enhanced bulk loading can significantly improve
the performance of HBase bulk loading jobs compared to the
default configuration, and achieve 2~3.7x speedup in
throughput under different client threads while maintaining
linear horizontal scalability.

ACKNOWLEDGEMENT
This work is carried out when Xianqiang Bao is a visiting

PhD student in Georgia Institute of Technology supported by
scholarship from the China Scholarship Council. Authors
from Georgia Tech are partially supported by NSF under
Grants IIS-0905493, CNS-1115375, IIP-1230740 and a grant
from Intel ISTC on Cloud Computing. Authors from NUDT
are partially supported by the National High Technology
Research and Development 863 Program of China under
No.2013AA013201, and the NSF of China under Grant Nos.
61433019, 61232003, 61025009, 61170288, 61332003, and
61120106005.

REFERENCES
[1] R. Cattell, “Scalable SQL and NoSQL Data Stores,” Proceedings of

ACMSIGMOD’10 Record, vol. 39, No.4, pp. 12–27, 2010.

[2] T. Harter, D. Borthakur, S. Dong, A. Aiyer, et al."Analysis of HDFS
Under HBase: A Facebook Messages Case Study". Proceedings of
USENIX FAST'14, Santa Clara, CA, February 2014

[3] Apache HBase, http://HBase.apache.org/

[4] Apache Hadoop, http://hadoop.apache.org/

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The Hadoop
Distributed File System”. Proceedings of IEEE MSST'10, Incline
Village, Nevada, May 2010.

[6] D. Borthakur, K. Muthukkaruppan, K. Ranganathan, S. Rash,et al.
"Apache Hadoop Goes Realtime at Facebook". Proceedings of ACM
SIGMOD'11, Athens, Greece, June 2011.

[7] K. Lee, L. Liu. "Efficient Data Partitioning Model for Heterogeneous
Graphs in the Cloud", Proceedings of SC'13, Denver, CO, USA,
November 17-21, 2013.

[8] B. Wu, P. Yuang, H. Jin and L. Liu. “SemStore: A Semantic-Preserving
Distributed RDF Triple Store”, Proceedings of ACM CIKM'14. Nov. 3-
7, 2014

[9] S.Das, D. Agrawal, A. Abbadi. "G-Store: A Scalable Data Store for
Transactional Multi key Access in the Cloud",Proceedings of ACM
SoCC’10, Indianapolis, Indiana, June 10-11 2010.

[10] B.F.Cooper, A.Silberstein, E. Tam, R. Ramakrishnan,and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” Proceedings of
the ACM SoCC’10, Indianapolis, Indiana, June 10-11 2010.

[11] K. Muthukkaruppan,“Storage Infrastructure Behind Facebook
Messages.” Proceedings of HPTS’11, Pacific Grove, California, October
2011.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, et al, “Bigtable: A
Distributed Storage System for Structured Data,” Proceedings of
USENIX OSDI’06, WA, November 2006.

[13] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File System,”
Proceedings of ACM SOSP’03, NY, USA, October 19-22 2003.

[14] G.DeCandia, Hastorun, D., Jampani, M., Kakulapati, G., et al. "Dynamo:
Amazon’s highly available key-value store". Proceedings of ACM
SOSP’07, pp. 205–220, Stevenson, WA, 2007

[15] Voldemort, http://www.project-voldemort.com/voldemort/

[16] P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil. "The log-structured
merge-tree (LSM-tree)". Acta Informatica, 33(4):351-385, 1996.

[17] SYSSTAT, http://sebastien.godard.pagesperso-orange.fr/

[18] A. Lakshman, P. Malik, and K. Ranganathan. "Cassandra: A structured
storage system on a P2P network". Proceedings of
ACMSIGMOD’08,Vancouver, Canada, June 9-12, 2008.

[19] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, et al,
“PNUTS: Yahoo!'s hosted data serving platform”, Proceedings of the
VLDB Endowment, v.1 n.2, August 2008

[20] S. Patil, M. Polte, K. Ren, W. Tantisiriroj,et al, “YCSB++:
Benchmarking and Performance Debugging Advanced Features in
Scalable Table Stores,” Proceedings of the ACM SoCC’11.

[21] J. Huang, X. Ouyang, J. Jose, M. Wasi-ur-Rahman, et al. "High-
Performance Design of HBase with RDMA over InfiniBand",
Proceedings of IEEE IPDPS'12.

[22] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, "MD-HBase: A
Scalable Multi-dimensional Data Infrastructure for Location Aware
Services",Proceedings of IEEE MDM'11, Vol.1 pp 7-16.

[23] Apache ZooKeeper™. http://zookeeper.apache.org/

[24] Kisung Lee and Ling Liu. "Scaling Queries over Big RDF Graphs with
Semantic Hash Partitioning", VLDB 2014, Volume 7.

