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Abstract—A novel class of mobile Internet of Things applica-
tions falls under the category of mobile crowdsensing, whereby
large amounts of sensed data are collected and shared by mobile
sensing and computing devices for the purposes of observing
phenomena of common interest (e.g., traffic monitoring, environ-
mental monitoring). Challenges arise with respect to collecting
and managing sensor data in an energy- and bandwidth-efficient
manner. In this paper we present a cloud-based system architec-
ture centred around a publish/subscribe middleware interfaced
with a quality-driven sensor management function, applicable for
building mobile IoT applications. The architecture is designed
so as to smartly manage and acquire sensor readings in order
to satisfy global sensing coverage requirements, while obviating
redundant sensor activity and consequently reducing overall
system energy consumption. We evaluate the system using a
proposed model for calculating bandwidth and energy savings.
Model evaluation based on simulation results provides insight
into the energy savings for different application requirements
and geographical sensor distribution scenarios. Our results show
that in certain identified cases, significant energy consumption
reductions can be achieved utilizing the proposed architecture
and sensor management scheme (as compared to a standard
publish/subscribe approach), while maintaining overall global
sensing quality level (in terms of required sensing coverage).
Assumptions with regards to user distributions in urban areas
are verified using an existing dataset reported in literature.

I. INTRODUCTION

With the proliferation of mobile sensing and computing
devices (e.g., smartphones) equipped with various embedded
sensors and network communication capabilities, such devices
are becoming a potential source of large amounts of sensing
data at the edge of the Internet. A wide range of new applica-
tions utilizing such data have been envisioned across a number
of domains, such as healthcare, transportation, environmental
monitoring, smart homes, and social networks [1]. Billions of
objects are expected to take on the role of providing data from
the physical world to the Internet [2]. While certain application
scenarios focus around data collected by/for a single individual
for personal reasons (e.g., personal health monitoring), an
emerging category of applications are based on the collection
of sensing data at a community-wide level, whereby multiple
individuals provide sensing data in order to contribute to the
observation of a large scale phenomena, such as for example
the occurrence of traffic congestion, or environmental pollution
and temperature monitoring.

The notion of Mobile Crowdsensing (MCS) has been intro-
duced to refer to a category of applications where individuals

utilizing mobile devices “collectively share data and extract
information to measure and map phenomena of common
interest” [3]. Such applications have been further categorized
as either participatory [4] (assuming the active involvement of
participants in choosing to contribute data), and opportunistic
[1] (referring to autonomous data collection, not requiring
explicit user interaction).

While a number of challenges arise in the context of
deploying MCS applications, we focus this paper around three
main issues. First of all, battery-operated mobile devices and
sensors suffer from a limited battery lifetime. Hence, there is
a need for solutions that will limit the energy consumptions of
such mobile Internet-connected objects (ICOs) while at the
same time providing sufficient sensing coverage. Secondly,
collecting and transmitting large amounts of sensed data over
wireless network interfaces imposes a heavy burden in terms of
network bandwidth consumption. Consequently, solutions are
needed that will optimize the amount of data transmitted over
the network in accordance with the needs of users/applications
in terms of sensor data readings. For example, if certain sensor
readings are not of interest, or redundant, filtering mechanisms
may be applied at the network edges. In a mobile crowdsensing
scenario, the mobility of users and ICOs leads to the dynamic
sensing coverage of geographical areas, potentially leading
to certain areas being sufficiently/redundantly covered, while
other areas may suffer from lack of available data. As a
third issue, efficient data processing mechanisms are needed
to handle large amounts of collected data, closely linked to the
problem of Big Data processing in the cloud [5].

In our previous work [6], [7], we have proposed a CloUd-
based PUblish/Subscribe (CUPUS) middleware solution for
MCS applications, supporting selective real-time acquisition
and filtering of sensor data on mobile devices (hence address-
ing energy- and bandwidth-efficiency), efficient continuous
data processing in the cloud, and near real-time delivery
of sensor data to mobile devices. Data is collected from
mobile devices over widespread geographical areas using an
opportunistic sensing approach, i.e., sensor data is acquired
autonomously and reported to a cloud platform without explicit
user intervention, typically periodically. The solution has been
developed within the scope of the EU FP7 OpenIoT project
(Open Source blueprint for large scale self-organizing cloud
environments)1, and demonstrated via an MCS air quality
monitoring application.

1http://openiot.eu/
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While energy-efficient and flexible data acquisition mech-
anisms have been previously addressed, in this paper we build
on this previous work by introducing support for quality-
driven continuous sensor management, i.e. in cases of re-
dundant available sensor data, intelligent decisions are made
regarding an optimal subset of available sensors which to
keep active in order to meet subscription requirements. Such
decisions are made by a QoS sensor management component
and based on parameters such as sensor accuracy, level of
trustworthiness, and available battery level. The overall system
architecture and communication infrastructure are evaluated
based on simulation results using a proposed model for calcu-
lating energy savings. The model assumptions which are made
with regards to user distributions in urban areas are verified
using an existing dataset reported in literature. Obtained results
provide insight into the energy savings for different application
requirements (in terms of sensor coverage) and geographical
sensor distribution scenarios. Our results show that in certain
cases, energy consumption reductions between 40-80% can be
achieved utilizing the proposed sensor management scheme,
while maintaining overall global sensing quality level (in terms
of required sensing coverage).

The rest of the paper is organized as follows: Section II
gives a brief overview of related work addressing energy-
and bandwidth-efficient data collection. In Section III we
present our overall MCS architecture including a cloud-based
publish/subscribe middleware and sensor management func-
tion. We further discuss a decision-making mechanism for
managing sensor data acquisition based on a top k/w approach.
Section IV presents an analytical model for calculating energy
savings, while Section V presents the results of simulations
aimed to test the energy savings based on different input sce-
narios. Section VI provides concluding remarks and directions
for ongoing and future work.

II. RELATED WORK

With regards to sensing data acquisition and processing,
two general scenarios may be identified. The first deals with
situations in which there is a lack of data needed to meet ap-
plication requirements (e.g., for an environmental monitoring
application, there are no available sensor readings in a given
geographic area, or for a given time frame). In such cases,
techniques based on data interpolation and estimation may
be employed. In a second scenario, there may be redundant
data available, hence providing opportunities to optimize data
acquisition and achieve energy efficiency.

An important issue to address in the deployment of a
successful sensor network is the tradeoff between obtaining
a sufficient amount of sensor measurements in order to meet
existing application requirements, and achieving energy effi-
ciency in order to extend the overall lifetime of the network
[8]. The authors in [9] provide an extensive overview of utility-
driven data acquisition techniques for efficient collection of
data in participatory sensing, whereby queries of different
types (e.g., one-shot queries, continuous monitoring queries)
may come from different applications. Multi-query optimiza-
tion problems are formulated and heuristics are proposed for
providing effective solutions such as maximizing the over-
all system utility (i.e., social welfare). Utility functions are
introduced specifying the difference between the value of

given query results, and the cost for obtaining results. In the
context of data acquisition, proposed algorithms aim to achieve
efficient sharing of sensor data among multiple queries that
may be of different types.

Specifically focusing on mobility aspects, MCS applica-
tions take the advantage of a population of individuals to
measure large-scale phenomenon that cannot be otherwise
measured by individuals [10]. The challenges of meeting
resource limitations in the context of MCS applications are
summarized in [3]. The authors further discuss resource alloca-
tion challenges in the case of multiple concurrent applications
sampling various sensors on a single mobile device. Potential
solutions include prioritizing applications that require sensor
data, hence reducing or increasing the sampling rate of certain
sensors while aiming to achieve efficient energy consumption
of the mobile device.

A discussion of different MCS applications and optimiz-
ing smartphone related energy consumption is given in [11].
Within the scope of the NSF-funded project Citisense, a
participatory air quality sensing system has been developed
that collects data from body-worn sensor boards which relay
the sensor readings to the wearers mobile phone, both for
display to the user and relay to a back-end server for a variety
of uses, such as the inference of a more detailed regional
air quality map [12], [13]. Such an application provides the
opportunity to more accurately model air quality that captures
microenvironment variations, as compared to data collected
only from stationary government monitoring sites. In addition
to Citisense, another project addressing environmental expo-
sure feedback systems in the form of mobile participatory
sensing is the Common Sense project [14].

In [12], the authors address the problem of energy ef-
ficiency and present an approach for model-driven adaptive
environmental sensing. They focus on reducing the amount of
redundant sensor readings, consequently reducing the amount
of communication between client devices and a back-end data
collection server. Mobile devices maintain local models of
expected sensor readings, hence generate predictive readings,
and push updates to the back-end server only in cases when
predicted values do not match actual sensor readings. We
note that such an approach could potentially be considered
complementary to the energy savings mechanisms proposed
in the scope of this paper. Similar work also addressing the
use of predictive probabilistic models to minimize energy
consumption in wireless sensor networks has been previously
reported in a highly cited paper by [15].

Further in the scope of the Citisense project, studies
reported on efficient energy management and data recovery [8],
where authors describe how they leverage correlations between
different types of data sources to dramatically reduce the
amount of data sent while still being able to reconstruct all of
the data with small and controllable error. Experimental results
with simulated wireless channel conditions and data collected
from two real-world sensor networks (environmental monitor-
ing application and health monitoring application) show that
by sampling only 20% of the data, the remaining 80% can be
reconstructed with 9% mean error, and energy savings up to
76%. Both tested sensor networks rely on fixed sensors; hence
do not take into account any mobility aspects. Related work has
been also reported in [16], leveraging contextual information



(both user requests and harvesting energy availability) to
intelligently adapt sensor sampling rate.

In the work reported in [10], the authors propose a collab-
orative mobile sensing framework called Mobile Sensor Data
EngiNe (MOSDEN), designed to operate on smartphones and
capture and share sensed data between multiple distributed
applications and users. The engine is designed so as to be
compatible with a GSN (Global Sensor Network) middleware.
By supporting processing and storage on end user smart-
phone devices, the platform aims to reduce the necessary data
transmission to a centralized server, consequently achieving
bandwidth and energy efficiency. In their subsequent work
[17], the authors specifically address sensor discovery and con-
figuration challenges. In that context, they address issues such
as configuring sensor sampling rate to determine an optimal
balance between user (application) requirements and energy
consumption; and determining the frequency of network data
transmission, e.g., to a cloud-based IoT platform.

While a number of aforementioned projects and approaches
focus on mobile/fixed sensing architectures and address the
issues of energy- and bandwidth-efficient data collection, what
is missing is a generalized solution for providing quality-driven
support for achieving energy efficiency, applicable in particular
for cloud-based mobile IoT application scenarios.

III. SYSTEM ARCHITECTURE

A. Cloud-based publish/subscribe middleware

As stated in the introduction, our previous work has intro-
duced the CUPUS2 middleware [6], [7], supporting context-
aware and energy-efficient acquisition and filtering of sen-
sor data in mobile environments. The CUPUS communica-
tion infrastructure is based on a continuous processing and
communication model, whereby data sources (referred to as
publishers) disseminate data using a push-based mechanism
to interested data destinations (subscribers). Users/applications
generate data queries referred to as subscriptions [18].

A view of the CUPUS architecture is given in Fig. 1.
The central component is the Cloud-based Publish/Subscribe
Processing Engine (CPSP Engine), responsible for acquiring
data from external data sources (e.g., smartphones) processing
the data to see if it matches any active subscriptions, and
disseminating the data to external data consumers. The en-
gine performs efficient data processing of continuous sensor
readings and data queries, and has the ability to elastically
adapt to an incoming publication rate and to scale with an
increasing number of components. It is implemented as a
multi process Java application running on a server machine.
Since the matching of publications to subscriptions is the most
demanding task performed by the CUPUS middleware, we
replicate the matcher processes and dynamically allocate cloud
resources for matching in accordance with the processing load.

The described communication model provides the means
for selective acquisition of sensor data from mobile wearable
sensors as well as filtering of sensor data on mobile devices
prior to its delivery into the cloud for further processing. This is
done by way of deploying a component called a mobile broker

2The CUPUS and QoS Sensor Management Function source codes are avail-
able at the OpenIoT project’s Github - https://github.com/OpenIotOrg/openiot/

on an external data source. The mobile broker announces to
the CPSP engine the type of data that may be provided by one
or more data publishers (sensors representing a data source)
connected to the device running the mobile broker (e.g., via
bluetooth). The mobile broker is implemented as an Android
application which consists of two background services (i.e. of
the sensor and mobile broker services), a GUI for controlling
the services and presenting the live data, and the mobile broker
component. The main task of the sensor service is to acquire
sensor readings from connected sensors. It serves as a publisher
which is connected to the mobile broker service. In practice,
the communication between the sensor and mobile broker
service is implemented through the Android internal intent
broadcasting and filtering mechanism.

In contrast to existing centralized database solutions that
typically send all sensed data into the cloud, the CUPUS
publish/subscribe-based solution enables flexible and con-
trolled data acquisition and its subsequent transmission into the
cloud only in situations when the sensed data is indeed required
by an application. The filtering process itself is performed on
the mobile device and guided from the cloud based on global
sensor data requirements.

The system is designed so as to keep track of all avail-
able sensors and their current locations. Based on received
Announce messages, the CPSP Engine knows the locations
and characteristics of all available data sources for an MCS
application, and can turn them on when their data is needed
by sending subscriptions matching defined data types to mobile
brokers. A main novelty of CUPUS as compared to existing
publish/subscribe solutions is in the implementation of such
mobile brokers running on mobile devices. We note that further
details regarding the CUPUS communication infrastructure can
be found in [7].

B. Quality-driven sensor management support

While the CUPUS architecture supports controlled data
acquisition based on global data requirements, the CPSP
engine does not provide further intelligent decision-making
mechanisms aimed at optimizing sensing data quality and
energy consumption, since its main task is to perform efficient
matching of sensor data to subscriptions (i.e., continuous
queries) and to deliver notifications reporting sensor mea-
surements to distributed destinations (e.g. mobile devices) in
near real-time. Cases when redundant sensed data is available
may be envisioned (e.g., due to a large number of sensors
generating data in a certain geographic area), whereby a subset
of sensors may be requested to transmit data, while others may
be deactivated. Decisions on determining an optimal subset
of sensors which to keep active in order to meet subscription
requirements may be made based on parameters such as sensor
accuracy, level of sensor trustworthiness, and available battery
level.

In order to address the challenges of quality-driven sensor
management, we introduce a QoS Sensor Management Func-
tion (QSMF) interfacing with the CPSP engine. The QSMF
is designed to be responsible for two key functionalities:
(1) subscription monitoring and management, whereby the
QSMF monitors subscriptions received by the CPSP engine
and aggregates multiple sensor data subscriptions to determine



Fig. 1. The CUPUS architecture enhanced with a QoS sensor management function

global application requirements with respect to sensor data
acquisition; and (2) data acquisition management, whereby the
QSMF manages the sensor data acquisition in order to optimise
energy and bandwidth consumption while meeting application
requirements.

The QSMF is composed of the following elements:

• Quality of Service Broker (QoS broker): collects infor-
mation about all available data sources in the CUPUS
middleware and all currently active user subscriptions,
publishes processed data readings and sends control
messages to the CUPUS middleware based on deci-
sions made by a decision making engine.

• Decision making engine: collects and stores target
sensor data (specified by current geographic area
and mobile broker ID) regarding sensor data accu-
racy, reliability, and battery level (collected as sen-
sor metadata in publish messages) for the purpose
of invoking intelligent data acquisition mechanisms.
Based on results of the decision process, data ac-
quisition management activities will be invoked, such
as activation/deactivation of certain sensors based on
application subscription requirements, deactivation of
a chosen sensor due to low battery level, or decreased
frequency of sensor readings in order to reduce energy
consumption.

• Configuration module: offers an administrative inter-
face for configuring the decision making engine (in
terms of specifying rules and thresholds, such as
minimum number of required sensor readings in a
given geographic area).

An example of the quality-driven data acquisition manage-
ment procedure is shown in Fig. 2. The QSMF is shown as sub-
scribing to a set of mobile sensors that have announced their
presence in a given geographic area (hence the QSMF is aware
of both their location and collected data). Data is collected and
stored by the QSMF and used as input for the decision making
process. A number of different conditions may be evaluated

Fig. 2. Quality-driven sensor data acquisition management

(based on the sensor data readings and comparisons) in order
to determine the need for data acquisition management, e.g.
(i) are there redundant sensor readings available in a given
location? (ii) are there insufficient sensor data readings to
provide the target level of data accuracy? (iii) are there sensors
providing data with large variance as compared to the mean
sensor data readings for a given area (hence indicating corrupt
data or fault issues)? and (iv) based on sensor data readings,
are there sensors providing data falling outside of expected
ranges?

Based on evaluated conditions, different decisions may
be drawn. For example, given redundant sensor readings,
a decision needs to be made as to how many and which
sensors may be deactivated, in order to determine a subset
of sensors that will meet the current requirements of active
applications (determined based on subscriptions) in terms of
the number/frequency of necessary sensor readings. These
requirements correspond to how many sensor data readings are



needed in a given geographic area and over a given time period
to adequately respond to the existing application subscriptions,
which will depend on the phenomenon being observed and
the quality and trustworthiness of the sensors. As an example,
consider an air quality monitoring application offering end
users the ability to subscribe to the following data: current
data regarding air temperature, CO and SO2 for a defined
geographic area x; or data regarding average air temperature,
CO and SO2 for a defined geographic area x in the time period
[t1, t2].

In the case of redundant sensors available in a certain area,
the basis for making decisions with regards to deactivation
of certain sensors is in determining which of the available
sensors are of higher value (i.e., compared to other sensors) in
terms of their ability to respond to the defined subscriptions
with the highest quality. The quality may be directly linked to
the the accuracy and sensitivity of the measurements provided
by a sensor, as well as the level of trustworthiness (in terms
of the trust one can place on a sensor that it will deliver
true measurements in time within the scope of its technical
parameters). In addition, priority may be given to sensors with
a higher remaining battery lifetime, and also sensors that are
already active (as opposed to sensors that are available but
currently idle) in order to minimize the need for message
exchanges (between the CPSP engine, mobile broker, and
publisher). Hence, the values of different sensors may be cal-
culated using so-called valuation functions (calculated in order
to rank sensors from “best” to “worst”), expressed in terms of
parameters such as battery level, trust level, and current state
of the sensor (active/inactive). Optimization techniques such
as those extensively discussed in [9] propose formulating and
solving an optimization solution to calculate an optimal sensor
allocation scheme in a mobile context taking into account
sensor valuation functions. A myopic approach is discussed,
in which utility is maximized at a current time slot without
considering the future state of the system. Given the highly
dynamic nature of mobile sensors, and potential scalability and
performance issues related to solving the posed optimization
problem, a simplified approach may be adopted.

One possible option is adopting a top-k/w algorithm ap-
proach, based on finding the top-k elements (sensors) in a
fixed geographic-window, i.e., the window corresponds to a
specific geographic area. The value of k corresponds to the
minimum number of sensors that is needed in a given time
interval in order to obtain the required sensor readings. This
will clearly depend on the frequency of sensor readings that
a given sensor is able to publish. Hence, a decision making
process determining the top-k sensors can be used to determine
which sensors to activate/deactivate. Consequently, sensors can
be ranked based on some form of specified valuation function,
as previously discussed. Such a solution assumes a sorted set
of sensors according to calculated rank (Fig. 3). Upon a new
sensor entering a given geographic area, it is necessary to
determine whether it is among the top-k sensors. If so, a sensor
at the end of the top-k queue is dropped, i.e. it is deactivated.
Analogously, if an active sensor (i.e. belongs to top-k) leaves
a designated geographic area, a new sensor will be required to
enter the top-k queue.

We note that the focus of this paper is not on exploring
the formulation of different sensor valuation functions (certain

Fig. 3. Top-k/w sensor ranking approach

Fig. 4. Example mobile sensor distribution across different cells. Value k
refers to the number of required unique sensors publishing data needed to
meet the sensing coverage requirements of a given application.

examples can be found in [9]) and evaluating the perfor-
mance of the aforementioned top-k/w approach, but rather on
modeling the energy and bandwidth savings of the CUPUS
communication approach (assuming the role of the QSMF)
regardless of the methodology used to determine which k
sensors (of those announced) to keep active. We therefore focus
on modeling and evaluating the energy savings for different
application requirements and sensor distributions, and leave
further modeling and evaluation of the QSMF decision making
engine for future work.

IV. MODELING ENERGY SAVINGS OF THE CUPUS
SENSOR MANAGEMENT SYSTEM

In this section we first present a mobility model for mobile
sensors in urban crowdsensing applications. After that we use
this model to estimate the number of exchanged messages
in a crowdsensing application with and without the CUPUS
middleware. This knowledge is then further used to model the
potential energy savings achieved by deploying the CUPUS
middleware together with the QSMF.

It has been previously shown that the distribution of
smartphone users in urban areas (frequency of places visited)
follows a power law distribution [19] (confirming also previous
findings [20]). Consequently, a large number of areas (referred
to as cells) will exist in the ‘long tail’ of the distribution,
i.e., they will be infrequently visited. Therefore, we draw on
the assumption that mobile sensors (carried by individuals)
are distributed in cells according to a power law distribution
such that there are just a few cells with a large number of
sensors, while only a small number of sensors are located in the
remaining cells. In Fig. 4 we can see such a sensor distribution
across different cells, where cells are ranked from left to right
according to the number of sensors in each cell. The number k
indicates the number of sensors needed to obtain the required
sensor readings (for simplification purposes, we assume that



sensors generate data at the same frequency). The number of
sensors in a cell with rank ci = 1, 2, . . . , C is given by the
following equation:

n(ci) = β · ci−α, (1)

where β is the number of sensors in the most populated cell
and α is a constant close to 1 which determines the rate of the
distribution tail decay.

If N is the total number of sensors across all C cells,
parameter β can be calculated as follows:

β =
n(ci)

ci−α
=

∑C
ci=1 n(ci)∑C
ci=1 ci

−α
=

N∑C
i=1 i

−α
(2)

In our mobility model, the behavior of mobile sensors in
a period of time can be described as a finite sequence of S
steps: s1, s2, · · · sS . As we assume that sensors are mobile,
i.e., some of them will go to a neighboring cell between
each two consecutive steps. To quantify the number of moving
sensors, we use parameter pcng which defines the probability
the a sensor will move to a neighboring cell between any two
consecutive steps. Additionally, we assume that sensors which
are active always produce exactly mp publications of sensor
readings between each of the consecutive steps.

One of the main characteristics of the CUPUS middleware
is that it suppresses redundant and non-relevant sensor readings
(i.e. no subscription exists for that reading) by deactivating
some of the sensors. In a standard publish/subscribe system, all
collected sensor data would be published. Hence, without the
CUPUS middleware, all of the N sensors would be active and
publish mp publications in each step. Therefore, in this case
the following equation gives the total number of exchanged
messages between each two consecutive steps:

Malternative = N ·mp. (3)

The number of exchanged messages when the CUPUS
middleware is used is equal to the sum of publish, announce
and control (i.e. activation and deactivation) messages:

MCUPUS =Mpublish +Mannounce +Mcontrol. (4)

To estimate the number of exchanged messages when the
CUPUS middleware is used, we use the following set of
assumptions:

1) the probability that a cell has at least one active
subscription between any two consecutive steps is
defined as pcov ,

2) if a cell is covered by at least one subscription
between any two consecutive steps then every other
more populated cell is also covered in this period (as
subscriptions and publications have similar distribu-
tions in practice [21]) and

3) the overall sensor distribution across different cells
does not change between two consecutive steps.

According to the second assumption, only pcov · C most
populated cells are covered with subscriptions between any
two consecutive steps. The third assumption means that the
distribution of sensors (as depicted in the example in Fig. 4)

will remain unchanged between the steps, even if their ranks
(according to the popularity) are changed in this period due to
sensor mobility. We base this assumption on the fact that we
are considering small time steps and cell size. Future empirical
data is needed to confirm such assumptions for concrete time
intervals and sensor mobility behavior.

In a covered cell with rank ci, there are n(ci) sensors
which are potential publishers. Since k sensor publishers per
cell is adequate for the application scenario, the QSMF will
deactivate ci − k sensors in a cell for which n(ci) > k
and none otherwise. In Fig. 4 we can easily identify cells in
which sensors will be deactivated as those that are crossed
by the red line which shows parameter k. Therefore, when the
CUPUS middleware is used, the number of published messages
between each two consecutive steps is equal to the following:

Mpublish = mp ·
pcov·C∑
i=1

min(β · i−α, k). (5)

Note that in the previous equation we use the second
assumption from the list above such that we assume that only
pcov · C most populated cells are covered.

When a sensor moves to a neighboring cell it will send
an announce message and receive a reply. Therefore, we
obtain the number of exchanged messages between each two
consecutive steps by multiplying the number of sensors which
changed their cells (probability of cell change denoted as pcng)
with factor 2:

Mannounce = N · pcng · 2. (6)

To calculate the number of control messages we need to
know the probability that a sensor is being activated, which is
given by the following equation:

pactivated =
1

N
·
pcov·C∑
i=1

min(β · i−α, k). (7)

When a sensor moves to a new cell in which n(ci) > k,
it can become a (new) top-k sensor in that cell and thus a
previously active sensor needs to be deactivated. Similarly, if
the same condition holds for the source cell, then a deactivated
sensor has to be activated. The expected number of control
messages that are generated due to a moving sensor is as
follows:

mc = 2 · (pactivated)2 + 2 · pactivated · (1− pactivated) =
2 · pactivated, (8)

since 2 messages are generated when the sensor is active both
in the source and destination cell, 1 message is generated
when the sensor is active only in the source cell, 1 message is
generated when the sensor is active only in the destination cell
and 0 messages are generated when sensor is neither active in
the source nor in the destination cell.

Therefore we obtain the number of control messages be-
tween each two consecutive steps by multiplying mc with the



number of moving sensors:

Mcontrol = N · pcng · 2 · pactivated =

2 · pcng ·
pcov·C∑
i=1

min(β · i−α, k). (9)

We obtain the number of generated messages between each
two consecutive steps when the CUPUS middleware is used
from equations (4), (5), (6) and (9) as follows:

MCUPUS =Mpublish +Mannounce +Mcontrol =

mp ·
∑pcov·C
i=1 min(β · i−α, k) +N · pcng · 2 +

2 · pcng ·
∑pcov·C
i=1 min(β · i−α, k) =

(mp + 2 · pcng) ·
∑pcov·C
i=1 min(β · i−α, k) +

N · pcng · 2. (10)

Finally, we observe the possible energy savings that can
be achieved with our approach as compared to a baseline
publish/subscribe approach. Given that the energy consumption
has been shown to be in a linear relationship with the number
of generated messages [6], the savings can be calculated as
the percent decrease in the number of transmitted messages
of our solution as compared to the baseline approach without
CUPUS:

Savings =
Malternative −MCUPUS

Malternative
(11)

In the following section, we use a real data set to verify our
assumptions regarding user distribution, and further provide an
analysis of savings for different scenarios using simulations.

V. MODEL EVALUATION

A. Real data set analysis of user distribution in urban areas

To investigate our assumptions regarding user distribution
in urban areas we analyzed the data set presented in [19]. The
authors deployed a crowdsensing system in Seoul, South Korea
from March 2011 to September 2012, where 85 participants
during the campaign actively used the application for 79 days
in average. A user smartphone application gathered data from
the cellular network provider, GPS sensor, wireless module,
microphone and camera which later was used for autonomous
place detection. All users generated readings in 13500 distinct
places. We note that the dataset does not include information
with regards to energy consumption.

First, we pre-filtered the data set to remove faulty entries,
such as for example user check-ins without exact location or
timestamp. After filtering, we obtained a data set with 151649
user checkins with exact location and timestamp collected from
67 unique users. Since the number of unique users was small,
we split the set based on a user identifier and date. Each slice
(i.e. a set with user check-ins in a single day) represented
an individual user movement pattern during one day. For
our analysis, a user-day set is considered as an individual
user. The user application, due to energy-savings, did not
record user location with high frequency, instead it relied on
techniques of user motion detection and sampling strategies to
detect change of user location. To obtain data regarding user
movement between two sequential user check-ins in a data

Fig. 5. User distribution with large number of users and frequent check-ins

set, we created additional check-ins as interpolation of user
movement between two locations. Additional check-ins were
created with a sampling frequency of 1 and 5 minutes.

The analysis of the user distribution in urban areas is
highly dependent on the time slots in which an analysis is
performed, and the geographical grouping of users in cells
which represent a single location context. For geographical
grouping, i.e. determining unique cells over wide urban area,
we used the military grid reference system (MGRS) [22]. The
MGRS is a reference system for locating points on the earth.
It allows precision from 100 kilometer up to 1 meter, so it is
suitable to be used in urban or rural areas. In our analysis we
used a precision of 1 kilometer, i.e. we grouped users based on
1 kilometer squared cells. Due to the limited number of users in
the data set and the size of the Seoul area (approx. 600 km2) we
found that 1 square kilometer cells are appropriate to observe
grouping of users in such a large area while retaining location
connectivity of grouped users. A second important observation
criterion is the length of a time period in which a user
distribution is observed. Long time periods whose duration
is in days or longer are acceptable for cumulative statistics
to obtain data about popular places or general user movement
patterns. Distribution of users in urban areas is volatile during a
single day, each period of a day has its own characteristics (e.g.
users in the morning travel to work in business part of a city,
and during the afternoon users are dispersed through the city
going back home or running personal errands). We therefore
analyzed user distribution during the course of a day by using
different observation time windows whose range varied from
15 minutes to 24 hours.

Our analysis showed that user distribution in the data set is
in accordance with the power law distribution no matter which
observation time window is used. Distribution parameters
changed for each observation time window, which is expected
since users often change location and context in urban areas.
Figure 5 depicts the distribution of users observed from 8:30
pm until 9 pm. We analyzed data of 12000 users, all taken
randomly from the prepared data set and check-in frequency
was once in a minute for all users. The mean absolute error
(MAE) was around 0.57 for α = 0.423 and β = 165.
Similar results, and a good fitting to a power law distribution
was found when the number of users was lower and check-
in frequency was once in five minutes. Figure 6 shows a
power law distribution fitting when 1400 users was observed



Fig. 6. User distribution with smaller number of users

TABLE I. DEFAULT PARAMETER VALUES

Symbol Value
N 1000
C 1000
k 5
pcov 0.2
pcng 0.05
mp 12

between 11 pm and 12 pm. The MAE parameter was 0.22
which represents good fitting results. The β parameter has
a value of 35, while the α parameter has a value of 0.553.
The α parameter defines the curve slope and hence the sensor
distributions across cells, and will be linked to the total energy
savings in the next subsection. The β parameter is highly
dependent on the number of users and does not affect the shape
of the savings curve, it only adjusts its position.

B. Evaluation of CUPUS middleware with QSMF

Following the analysis of empirical data reported in the
previous section, in this section we present the evaluation of
the CUPUS middleware with QSMF. Hereafter, referring to
(11), we analyze the number of transmitted messages in our
approach when compared to the alternative approach. Table I
shows the default parameter values used in the analysis. We
analyze the influence of parameters k, N , pcng , pcov and
α on the percent decrease Savings. For each analysis, we
modified α in combination with one of those 4 parameters,
while all other parameters are fixed to default values given
in Table I. We note that the default values chosen for pcng
and pcov are hypothetical. Our goal is to observe trends in the
energy savings with respect to modified influence parameters.
Actual values for these parameters in a real world case would
be dependent on factors such as the configuration of the city,
population, and user mobility.

Since in our model we assume that sensors are located in
cells according to a power law distribution, we analyze how
the parameter α influences the percent decrease since it models
the number of sensors in the most populated cell as well as the
distribution tail. Therefore, in all performed analysis we have
changed α in the range between 0.2 and 1.4, where a value
0.2 of α indicates a small slope and the value 1.4 indicates a
large slope and long tail, as shown in Figure 7.

Figure 8(a) shows how the required number of sensor

Fig. 7. Example power law distribution for different values of parameter α.

publishers per cell (i.e. k) influences the savings when α
changes. As we can see, the percent decrease falls with higher
values of k. As expected, the advantage of our approach drops
when increasing the value of parameter k since we increase the
required number of published messages per cell. Obviously, if
more sensors are required per cell, sensor deactivation and data
filtering on mobile phones has less influence since we need
to satisfy application requirements. Interestingly, we observe
that the energy savings curve exhibits a local minimum, after
which there is again an increase in savings. Analytical results
portray that our approach gives significant savings when α is
in the range from 0 to 0.5 as well as from 1.0 to 1.4, but drops
when α reaches approximately 0.8. We attribute the shape of
the savings curve to the nature of the power law distribution
as portrayed in Figure 7, whereby moving towards a larger
value of α the total number of sensors falling under the k line
increases (more sensors are located in cells that are not covered
by subscriptions). However, due to the shape of the curve (long
tail and larger slope) and the fact that the percentage of covered
cells is kept constant, after a certain value of α we again see
an increase in the savings.

Figure 8(b) shows how the percent energy savings increases
with an increasing number of sensors N in the system. By
increasing the value of parameter N , we increase the number
of possible publishers in the system. Therefore, as we expected,
the number of sensors located in cells for which there is interest
from subscribers (i.e., cells that are covered by subscriptions)
is grater than the required number of sensors per cell (i.e. k).
This produces savings in the number of published messages
since we deactivate n(ci) − k sensors in a cell ci for which
n(ci) > k. Once again, we observe the lowest savings when
α is approximately 0.8.

Figure 8(c) shows how the percent of savings changes with
increasing percentage of cells covered by subscriptions pcov .
As we can see, the percentage of energy savings falls with
pcov . By increasing the value of parameter pcov , we increase
the number of cells covered with at least one subscription. As
expected, the advantage of our approach drops when increasing
pcov due to the drop in retained publications. Obviously, if all
cells are covered by subscriptions, there is no value in data
filtering on mobile phones as announce and control messages
represent an overhead: Our approach drops to 0.1 when pcov
reaches 0.8, but it can cause significant savings when pcov is
in the range from 0 to 0.5.
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Fig. 8. Energy savings as a function of α for: (a) different application requirements in terms of necessary sensors k; (b) total number of sensors; (c) percentage
of cells covered with subscriptions; and (d) percentages of mobile sensors changing their cell

Finally, Figure 8(d) shows how the energy savings changes
when increasing the probability that a sensor will go to a neigh-
boring cell between any two consecutive steps. As we can see
in the figure, the percentage savings drops with an increase in
pcng . By increasing the value of parameter pcng we model the
mobility of sensors. Since our approach generates additional
announce messages when publishers are changing cells as well
as additional control messages for activation/deactivation of a
sensor in a new cell, obviously the advantage of our approach
drops when increasing pcng . As stated previously, our goal
is to show energy savings trends. With respect to realistic
pcng values for a chosen time interval and context, additional
empirical data is needed. Studies addressing such real data are
being addressed in our ongoing work.

VI. CONCLUSIONS

In this paper, we have focused on mobile crowdsensing
applications whereby mobile devices and sensors are used to
share data at a community level for the purpose of measuring

phenomena of common interest. We have presented our cloud-
based publish/subscribe middleware (CUPUS) as a solution
developed within the scope of the EU FP7 OpenIoT project
and supporting real-time acquisition of sensor data on mobile
devices, continuous data processing in the cloud, and near
real-time delivery of sensor data to mobile devices. In this
work we have particularly focused on energy-efficient and
quality-driven sensor management, supported in our system
with the addition of a QoS Sensor Management Function,
designed to obviate redundant sensor activity and consequently
reduce overall system energy consumption. We model energy
savings by comparing the calculated number of messages
exchanged in our system (as a consequence of sensor mobility
and management) with the number of messages that would be
exchanged in a system assuming the publication of all collected
data.

Following the analysis of a real data set measuring user
distribution in a large urban area (Seoul, South Korea), we
confirm our assumptions with regards to user distributions as
conforming to a power law distribution. We then use simula-



tion results to evaluate savings calculated using a proposed
analytical model for different application requirements and
geographical sensor distribution scenarios. Results show the
possibility of savings ranging from 40% to 80%. We observe
that as a consequence of the power law distribution and
simulation parameters, the shape of the savings curve as a
function of α (determining the rate of the distribution tail
decay) exhibits a local minimum at approximately a value of
0.8.

With respect to ongoing work, the CUPUS architecture
together with the QSMF have been deployed in the context
of an Urban Crowdsensing case study focused on opportunis-
tic sensing of air quality via mobile sensors and devices.
The architecture has been integrated with the open source
IoT platform developed within the scope of the OpenIoT
project, focused on enabling the semantic interoperability of
IoT services in the cloud. An ongoing field trial is being
run to test system functionality and evaluate performance,
involving individuals carrying wearable air quality sensors that
continuously contribute sensed data via a smartphone to the
cloud platform, making data available to others citizens in
the form of a real-time air quality monitoring application.
Subsequent data analysis will be conducted to empirically
determine sensor distribution and energy savings resulting
from the deployed system.
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middleware for energy-efficient mobile crowdsensing,” in Proceedings
of the 2013 ACM conference on Pervasive and ubiquitous computing
adjunct publication, ser. UbiComp ’13 Adjunct. New York,
NY, USA: ACM, 2013, pp. 1099–1110. [Online]. Available:
http://doi.acm.org/10.1145/2494091.2499577

[7] A. Antonic, K. Rozankovic, M. Marjanovic, K. Pripuzic, and I. Pod-
nar Zarko, “A mobile crowdsensing ecosystem enabled by a cloud-based
publish/subscribe middleware,” in Proc. of FiCloud-2014, to appear,
Aug. 2014.

[8] B. Milosevic, J. Yang, N. Verma, S. S. Tilak, P. Zappi, E. Farella,
L. Benini, and T. Simunic Rosing, “Efficient energy management and
data recovery in sensor networks using latent variables based tensor
factorization,” in Proceedings of the 16th ACM international conference
on Modeling, analysis & simulation of wireless and mobile systems.
ACM, 2013, pp. 247–254.

[9] M. Riahi, T. G. Papaioannou, I. Trummer, and K. Aberer, “Utility-driven
data acquisition in participatory sensing,” in Proceedings of the 16th
International Conference on Extending Database Technology. ACM,
2013, pp. 251–262.

[10] P. P. Jayaraman, C. Perera, D. Georgakopoulos, and A. Zaslavsky,
“Efficient opportunistic sensing using mobile collaborative platform
mosden,” in Collaborative Computing: Networking, Applications and
Worksharing (Collaboratecom), 2013 9th International Conference
Conference on. IEEE, 2013, pp. 77–86.

[11] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-
Yazti, “Crowdsourcing with smartphones,” Internet Computing, IEEE,
vol. 16, no. 5, pp. 36–44, 2012.

[12] N. Nikzad, J. Yang, P. Zappi, T. S. Rosing, and D. Krishnaswamy,
“Model-driven adaptive wireless sensing for environmental healthcare
feedback systems,” in Communications (ICC), 2012 IEEE International
Conference on. IEEE, 2012, pp. 3439–3444.

[13] N. Nikzad, N. Verma, C. Ziftci, E. Bales, N. Quick, P. Zappi, K. Patrick,
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[18] G. Mühl, L. Fiege, and P. Pietzuch, Distributed event-based systems.
Springer, 2006, vol. 1.

[19] Y. Chon, N. D. Lane, Y. Kim, F. Zhao, and H. Cha, “Understanding the
coverage and scalability of place-centric crowdsensing,” in Proceedings
of the 2013 ACM international joint conference on Pervasive and
ubiquitous computing. ACM, 2013, pp. 3–12.

[20] A. Noulas, S. Scellato, R. Lambiotte, M. Pontil, and C. Mascolo, “A
tale of many cities: universal patterns in human urban mobility,” PloS
one, vol. 7, no. 5, p. e37027, 2012.

[21] K. Schnaitter and N. Polyzotis, “A benchmark for online index selec-
tion,” in Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on. IEEE, 2009, pp. 1701–1708.

[22] T. D’Roza and G. Bilchev, “An overview of location-based services,”
BT Technology Journal, vol. 21, no. 1, pp. 20–27, 2003.


