Automatic Policy Conflict Analysis for Cross-domain Collaborations
Using Semantic Temporal Logic

Zhengping Wu
Department of Computer Science and Engineering,
University of Bridgeport
221 University Avenue, Bridgeport, CT 06604, USA
zhengpiw@bridgeport.edu

Abstract

Policy-based methods simplify the management
of cross-domain collaborations by establishing
policies to control various cross-domain activities
involved in those collaborations. Administrators
and users from participant domains can use policies
to define control rules and restrictions, and to
configure execution environments for these
collaborations. To detect and resolve potential
dynamic conflicts between different administrative
domains, Semantic Temporal Logic (STL) is
proposed and implemented in this paper to
automatically analyze policy conflicts. STL
incorporates relationships between different policy
elements into temporal logic using a semantic
format (ontology). A prototype system in the web
services environment is implemented to illustrate
the capability of STL and the dynamic policy
analysis framework utilizing STL.
Keyword: Policy analysis, Policy-based management,
Security, Trust, Web services

1. Introduction

Collaboration needs two or more participants
working together towards a common goal. It involves
resource sharing, task distribution and control. Policy-
based management is a method that helps participants
to manage their resources. Different participants may
have different information management policies. Even
within the same organization, different departments
have different policies to protect and manage their
information. In collaborations, information distribution
becomes obligatory, but some information can be
shared and some cannot. On the other hand, policy-
based management can be viewed as an administrative
approach to manage system behaviors and rules within
a policy domain. The policy domain (as followed
domain) is a collection of elements and services,
administered in a coordinated fashion [1]. More and
more policy management systems are used in network
and information management systems.

Web service is a software system designed to
support interoperable machine-to-machine interaction
over a network [2]. Web services have become a
practical data and information exchange platform
among domains for collaborations. Management of
these collaborations needs a set of controls to
accommodate security and trust requirements for
exchanged information or data. Policy-based

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8392
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8392

Yuanyao Liu
Department of Computer Science and Engineering,
University of Bridgeport
221 University Avenue, Bridgeport, CT 06604, USA
yuaoyaol@bridgeport.edu

management offers a convenient way to handle this.
Web service policies can control dynamic trust
behaviors across security domains. To detect and
control potential conflicts in cross-domain behaviors,
collaboration management systems need to be able to
perform dynamic conflict analysis over web service
policies.

A policy is a statement that describes what
participants can do and how it can be done. In another
word, a policy describes a behavior and its attributes.
Police-based management systems are suitable
solutions for automated online collaborations across
domain boundaries, but policies become more and
more complicated for cross-domain activities, which
require more adaptive management approaches. Since
a request or an action from a foreign domain may not
have an exact match with an existing policy, several
compatible policies can be applied to it. Choosing one
of these policies may lead to a conflict with another
related policy or violate the principle of least privilege
[3]. Even a similar request or action with different
parameters may lead to difficulties when applying a
previously compatible policy. In general, whenever
multiple policies are applied to an action or request,
there is the potential for a conflict, but it is essential
that multiple policies should be applied in order to
cover the diversity of management needs and of
different groups of users. There may be different
policies related to security, privacy, or other
management requirements, which are applied to
different aspects reflecting different management needs.
So policy conflict analysis (detection and/or resolution)
becomes an essential part in the management of policy-
based systems.

Policy conflicts [1] can be classified into static
conflicts and dynamic conflicts. Analysis of static
policy conflicts is time-independent. These conflicts
can be resolved by simple logic reasoning or compiling
techniques. Dynamic policy analysis is time-
dependent, which means the applicability of policies
and information will change over time. The major issue
about dynamic policy analysis is the changing
information. The information covered by policies can
be identified as different types of elements. Relations
between different elements are critical to conflict
detection and resolution.

In most cases, administrators can define a very long
policy containing different scopes and for different
actions. Therefore, we introduce a general policy

model, which decomposes policies into several policy
segments. A policy segment is a small functional
policy unit. In each policy segment, there is a subject
set, an object set, an action set, and other related
information set. This policy model (discussed in
section 3) leads to a policy ontology, which will be
combined with temporal logic to represent changing
policies. Ontology [4] is an explicit specification of a
conceptualization, which represents a set of entities
and the relationships between these entities in a
specific domain. Entities are abstracted from real world
objects in that domain; relationships are contacts or
effects between objects. The ontology describing this
type of information uses a set of formal terms and
operators.

The primary feature of a logic theory is its order,
which defines the domain of all formulae described by
the logic [5]. In classical logic, propositional logic is
based on a set of elementary facts by using a set of
logic operators. It indicates a Boolean value set. First
order logic (FOL) [6] is an extension of propositional
logic. Higher order logic [7] is an extension of first
order logic. Temporal logic [5] is an extension of
classical propositional logic, which represents the set
of domain elementary facts by using a set of logic
operators [5]. The classical logic is a clear
representation of static state, value, and etc. However,
time-dependent characteristics cannot be represented
by classical logic. For example, in a situation such as
“a user is using a computer,” the term “using” is the
critical part, it expresses the action is being preformed.
The classical logic cannot be used to denote this
situation, because the situation is time-dependent.
Temporal logic can be used to represent time-
dependent situations. In most policy languages, time is
always an important property, which could affect other
properties. Therefore, time issue should be considered
when analyzing policies. In this paper, we introduce a
Semantic Temporal Logic (STL), which is based on
traditional temporal logic and is a combination of
temporal logic and ontology to represent and reason
over changing and dynamic policies from multiple
domains for cross-domain activities.

2. Policy Model
2.1 General Policy Model

As we discussed before, policies describe behaviors
and attributes about these behaviors. For each behavior,
there is an executor or a type of executors, an object or
a type of objects, and some constraints, which limit
and describe the action. So in each policy, there are
four major components: subject, object, action and
context constraints. In most policy languages, users can
define a long policy containing different actions or
within different scopes. Although one policy is
enforced as a whole, it can be decomposed into policy
segments. A segment describes a complete behavior,
which contains subject, object, action, and context

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8392
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8392

constraints. The policy’s subject is a set of attributes
(A) identifying the action’s executor, it can be denoted
as s={A}; the object is a set of attributes (A) that
describes an action’s target, it can be denoted as 0={A};
context constraints include other attributes within the
policy, such as network contexts, execution
environments, and etc. We distinguish this type of
context information to other attributes for subjects and
objects. A policy’s action actually represents a
temporary binding between subjects and objects, which
can be denoted as A(c)=sxo. Table 1 shows the
components of a policy segment in this general policy
model.

A: attribute A: the attribute that limit
subjects and objects

s={A} s: the subject of a segment

o={A} o: the object of a segment

A(c) =sxo0 A(c): the action of a segment

Context: information Context: the information that

hide in network or
environment
Segment ={ | segment: a part of policy
sxoxA(c)xContext}

Table 1. Policy Model

Under different situations, one single policy
element may play different roles in different policy
segments. For example, in Web Service environment,
Amazon.com provides Web Services to Alexa.com,
which is built on Amazon Web Service. Alexa
provides Alexa Web Services to its customers. (To
distinguish these two Web Service provider, we call
Amazon’s Web Service “AWS”, call Alexa’s Web
Service “ALS”.) Alexa.com may play two roles in this
scenario, the object in user’s request, and subject in its
request that is sent to AWS. There are two policies to
protect these two web sites.

Policy 1:
<ALS >
<allow = user>
<Timeperiod start ="0000" Expires="2300" />
</ALS >
Policy 2:
<AWS Maintenance >

<deny = user, Alexa>

<allow = administrator>

<Timeperiod start="2200" Expires="2400" />

</AWS Maintenance >

In Policy 1, ALS provides services from 00:00 to
23:00. In Policy 2, AWS performs maintenance from
21:00 to 23:00. When user request both ALS from
Alexa and AWS from Amazon between 22:00 and
23:00, user’s requests may be denied by Alexa and
Amazon, because Alexa cannot get service from
Amazon, and Amazon does not provide service to user.

2.2 Security and Trust Policy Model

Security policies are designed for authentication and
authorization. Subjects of security policies are
Identifications, which indicate information of
requesters, like user names. Objects of security policies

are authentication secrets, which are verifiable
information, like passwords. Actions of security
policies are associations (bindings) between
identifications and authentication secrets. Table 2
summarizes a general security policy model.

A: attribute A: the attribute that limit
subjects and objects
s:identification
information

o={A} o: authentication
security

A(c): binding between
Identification
information and
authentication security
Context: the information
that hide in network or
environment

segment: a part of policy

s={A}

A(c) =sxo0

Context: information

Segment ={
sxoxA(c)xContext}
Table 2. General Security Policy Model

Security policies are designed for authentication
and authorization. Dynamic context information is
embedded in attributes associated with the identity or
policy context. The association between an identity and
a set of attributes (including dynamic attributes) may
cause all three major types of conflicts:

* A conflict of duty arises when the same subject

performs two actions on the same object.

* A conflict of interest arises when the same subject

performs each of the actions on different objects.

« Different subjects perform each of the actions on a

single object, and the outcome of each action is

incongruent with each other.

Security policies support exchanging multiple
security secrets, exchanging and verification of
multiple signature formats and encryption technologies,
end-to-end message content security, and co-operation
over multiple security domains. The key point in
security policies is to bind several authentication
secrets to an identity. The dynamicity in security
policies is reflected in the following situations:

a) Identity may be replaced by role information (a
type of authentication secret) to act as the subject
in a governance policy for a federated action;

b) The identity information is provisional;

¢) The authentication secret is provisional,

d) The association between an authentication secret
and an identity is provisional;

e) Authentication secrets are constrained by or
hidden in network or security domain contexts.

Trust policies are designed for verifying trust
relation between a requester and a responder. Subjects
of trust policies are identification information; objects
of trust policies are trust requirements, which
requesters have to achieve. Actions of trust policies are
associations between identifications and requirements.
Table 4 provides the general trust policy model.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8392
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8392

A: attribute A: the attribute that limit
subjects and objects

s={A} s: Identification information
o={A} 0: Trust requirements
A(c) =sxo0 A(c): association between

identification information and
trust requirements
Context: the information that

Context: information

hide in network or
environment
Segment ={ | segment: a part of policy
sxoxA(c)xContext}

Table 3. General Trust Policy Model

Trust policies are defined for trust relationships
between entities or domains. A general trust model
requires that an incoming request proves a set of trust
claims such as identity, encryption keys, permissions,
capabilities, etc., which are established beforehand.
The model includes three parties: a requester, a
responder and an authority. Trust relationships in this
model are supported by various trust claims. The
relationship between requester and responder is
temporally established by the authority through issuing
of an authority certification to the requester, which is
the proof of credentials accepted by the responder.

Similar policy conflict situations also apply to trust
policies. However, there are some specific situations
for trust policies within a dynamic environment:

a) The claims may be provisional,

b) The security token used to convey claims is
provisional;

¢) Claims are constrained by or hidden in network or
security domain contexts;

d) Other limitations imposed by third party
authorities or security token services.

3. Semantic Temporal Logic (STL)
3.1 Temporal Logic and Ontology

One major issue about dynamic policy analysis is
that fluent information will change over time. The
fluent is anything whose value is subject to change
over time. [8] The dynamic policy analysis has to keep
track of the change of fluent information.

It is easy to represent static states and values using
classical logic. However, time-dependent situations
cannot be represented by classical logic. Temporal
logic also called tense logic can handle these time-
dependent situations. Temporal logic is an extension of
classical propositional logic, which represents a set of
domain elementary facts using a set of logic operators
[1]. It has been broadly used to cover all approaches to
the representation of temporal information within a
logical framework [9].

We can express the examples we brought in Section
3 using temporal logic: Policy 1 indicates the ALS
(fluent) will be available from 00:00 (time point) to
23:00 (time point), 23 hours (time period); Policy 2
indicates AWS is not available from 22:00(time point)

to 24:00(time point), 2 hour (time period). Obviously,

there is a conflict in this policy set from 22:00 to 23:00.

Figure 1 shows the timeline of these two policies.

N
L

onflict Time Period

Policy 1 Time Period

0:00 22:00

" Policy 2 Time Period

Figure 1. Timeline of Different Policies

To detect conflicts, the logic mechanism has to deal
with time. Temporal logic, for example Event
Calculus, can handle this situation. This situation can
be presented as follow:

Policy I: Initiates (user, t1) /\Clipped (user, t3);
Policy 2: Clipped (user, t2) Alnitiates (user, t4);
(t1=0:00; 12=22:00; t3=23:00; t4=24:00)

In many situations, relations between different
elements (subjects, objects, attributes) are very
complicated. A single formula cannot express all
possible meanings of a behavior. As the example above
users play different roles in different policies.
Although there is no problem if these policies are
enforced separately in different systems, if they are
enforced by Amazon and Alexa, there may be a
problem when users try to request an ALS between
22:00 and 23:00. However we cannot get any
information between user, Alexa and Amazon, which
also plays different roles, from these formulas. To
detect policy conflict, subjects and objects usually are
changed under different contexts or execution
environments. In the above example, the subject in
Policy 2 is the object in Policy 1. (Alexa is also a user
for Amazon) When we analyze these policies, this
element (Alexa) would play different roles in different
policies. When administrators define these two policies
and enforce them, the conflict may affect the reliability
of the entire system.

Ontology defines a set of representations of classes,
instances, attributes, and relationships among them. In
one policy domain, there are relations among policy
elements (subjects and objects). When collaboration
happens, ontology will be built to define elements
among different policy domain, and maintain relations
between these elements. Ontology is used to remove
ambiguity in policy analysis processes. It is a good
support for our proposed Semantic Temporal Logic
(STL).

3.2 Semantic Temporal Logic (STL)

Using temporal logic to process cross-domain or
multi-domain policies, semantic relationships among
different elements are unavoidable, which reduce the
accuracy and efficiency of policy analysis. In different

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8392
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8392

b

domains, an element may have different definitions,
which indicate the role information of this element.
This element may be also involved in different
relationships. Ambiguous definitions and role
information will obviously affect efficiency of policy
analysis. STL provides a bridge over this barrier by
applying an ontology-based knowledge representation
onto temporal logic itself. This representation provides
not only information of individual entities from
specific domains but also the relationships among
these entities, which are key issues for policy analysis.

The ontology-based knowledge representation
stores the information of specific policy domain, which
contains each entity’s information and relationships
among several entities. Back to Policy 1 and Policy 2
described in the previous section, there are some
attributes within these policies:

Attributes : ALS.time={0:00 t023:00};
ALS.available={true};
AWS.time={22:00 t024:00};
AWS.available={false};
User.time={0:00 to 24:00};
User.available= {true};

The relationship between AWS and ALS is that user
can request both ALS and AWS, and there are some
restrictions.

Relation: not_request (user, ALS, t);

To build the representation foundation, we use
ontology to describe the model of policy domain and
track relations within that policy domain. Different
ontology languages provide different facilities. In
OWL-Full, ALS is a class, which has some properties
such as “receive request” and “available from 00:00 to
23:00”. The AWS is another class, which has
properties such as “receive request” and “unavailable
from 22:00 to 24:00”. The relation between ALS and
AWS is “ALS can request to AWS”, and the property
on this relation is a time period (00:00 to 122:00).
These two classes can be express as follows:
class(pp:ALS partial

restriction(pp:isAvailable, pp:time period))
class(pp:AWS complete

restriction(pp:not_respond
someValueFrom(intersectionOf(pp:ALS
restriction(pp:time periord)))))

This express indicates the attributes and relation we

discussed before.

4. Automatic conflict analysis

4.1 Automatic conflict analysis

Automatic policy conflict analysis is then based on
logic reasoning and Boolean function comparison. The
later is an approach to evaluate policy similarity, which
is computationally expensive and does not support on-
demand requests. The complexity of policy rules and
the environment fluent always affect the result of
analysis. And also, the policy conflict analysis needs
lots of manual work to adjust semantic relationships

for accuracy, especially distinguishing subjects and
objects in policy segments. Temporal logic can be used
to perform automatic policy conflict analysis for
dynamic policies, but the accuracy cannot be
guaranteed due to the lack of capability to support
semantic relationships among entities. The proposed
Semantic Temporal Logic (STL) uses ontology as the
knowledge supplier, which improves accuracy and
reduces ambiguity in analysis results. The ontology,
which records the policy model and relationships
within the policy model, helps the logical reasoning
mechanism identify elements and relationships
between elements. For example, Policy 1 and Policy 2
are two access control policies express the relations
between two elements, ALS, AWS and users. Figure 2
shows the properties and relationships between these
three elements.

ALS Request User
time= 00:00- 23:00; Value=true time= 00:00-24:00; Value= true
R"l‘;\ Mst
AWS

time= 22:00-24:00; Value= false

Figure 2. Properties of Policy 1, 2

Logical expressions for this example are:
HoldsAt(user,ALS,request(),t1);
Terminate (ALS,t2);
00:00 < t1 <23:00;
22:00 < 12<24.:00;
Relation: not_request(user, ALS,t2) ;

In this example, elements are easy to indentify. But
if we introduce another policy, elements and their
relationships are so clear.

Policy 3: user can request AWS from 00:00 to 22:00;
Policy 3:
< user>
<from = user>
<Timeperiod start ="0000" Expires="2200" />
</ user>
The logical expressions become:
HoldsAt(user, AWS, request(),t3);
0:00<t3<22:00
Relation:request(user, AWS,13);

User can request AWS from Amazon.com to process
its task. And this task needs service both from AWS
and ALS. When using temporal logic to perform
reasoning among these policies, the role or identity of
each element is needed. So the STL rules for this
example become:

HoldsAt(user, ALS,request(), t1) /

Terminate(user, t2) A

HoldsAt(user, AWS, request(),t3)
—Conflict(request(user, AWS)& &use(user,ALS),t)

Relation: not_request(user,ALS,t2);

request(user,AWS,13);

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8392
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8392

So in a rule of STL, semantic relationships are
combined with logic predicates to represent policies
from multiple domains with dynamic elements. This
rule in the above example uses the relationships
between different entities to detect dynamic conflicts
among different policies.

4.2 Web Service Policy Modeling

Web services become a practical data and
information exchange platform among security
domains for collaboration activities. The Web Service
Policy (WS-Policy) provides a general purpose model
and syntax to describe and communicate the policies of
a Web service. The Web Service Security policy and
Web Service Trust policy present a set of requirements
that have to meet to consume a web service.

We use the general policy model illustrated in table
1 to model Web Service Policy and exemplify the
model in WS-Security Policy and WS-Trust Policy.
The WS-Policy specifies a set of requirements that a
service requester has to meet in order to consume a
web service. These requirements could be generally
applicable for any web services, or they could be
domain specific for certain applications. WS-Policy
has a concise model to convey conditions on an
interaction between entities in web service based
systems from general to specific purposes.

WS-Policy is a collection of policy alternatives, and
single policy alternative is a set of policy assertion
(segment). The policy assertion is the smallest
functional unit. It represents an individual requirement,
capability, or other property of a behavior [10]. We can
select subject, object, action and other information for
assertions. Certain assertions in WS-Security policy
include behaviors, but some assertions are just
additional descriptions for other assertions.
Independent assertions, which indicate complete
behaviors, constitute the main body of this security
policy model. There are some components in these
independent assertions: subject, object, action, and
context. The subject and object are the action’s source
and target; they both are represented by sets of
attributes. The action is an association of a subject and
an object. The context is a set of attributes related to a
subject, object, and action. The attribute is the
information that restricts the assertion. So that a policy
can be expressed as follows:

A: attribute A: the attribute within the
assertion

s={A} s: the subject of an assertion

o={A} 0: the object of an assertion

A(c)= {sxo0} A(c): the action of an assertion

Context: the information that
hide in network or environment

Context: information

Assertion: a set of action and
requirement

Assertion={ sx0xA(c)x
Context}

Alternative= { Assertions } | Alternative: a set of assertions

P= {Alternatives;} P: policy, a set of alternatives

Table 4. WS-Policy Model

The WS-Security Policy and WS-Trust Policy are
under the Web Service Policy framework. Within this
framework, to support a policy, an entity needs to
satisfy at least one of the policy alternatives contained
in the policy under the current context. To satisfy a
policy alternative, the entity needs to support all the
policy assertions contained in that policy alternative.
And to support a policy assertion, the entity needs to
meet all the requirements described in that policy
assertion. So we can represent our basic policy
enforcement rules for WS-Policy using STL.

The Web Service Security policies define several
authentication secret bindings to an identity. The
dynamic environment could affect the enforceability of
policies. This dynamic environment could be expressed
by ontology. The ontology contains relations, attributes
and other restrictions. The information within this
ontology supports the temporal logic evaluations.

Security policy conflict situations discussed in
section 3.2 are also suitable for WS-Security Policy.
Here is an STL formula example that can be applied to
detect security policy conflict in WS-Security Policy
environment:

» HoldsAt(permit(Rolel (sub),0bj,Al(c)),t) A
HoldsAt(permit(Role2(sub),obj,A2(c)),t) N AI<>A2 —~
HoldsAt(overlapConflict(conflictOfDifsubject,overlaps(
permit(Rolel(sub),obj,Al(c)),permit(Role2(sub),o0bj,A2
).y -
Trajectory(permit(Rolel (sub),obj,A1(c)),t,deny(Role2(s
ub),obj,A2(c)),d) Vv
Trajectory(permit(Role2(sub),0bj,A2(c)),t,deny(Rolel (s
ub),0bj,A1(c)),d)

Relation: sub.attribute.role] =sub.attribute.role2;
begin<t<finial;

[The situation a: the subject (sub) can have different two

roles (Rolel(sub) and Role2(sub)). When different roles

perform different actions (Al(c) and A2(c)) toward the same
object (obj) at time t, then an overlap conflict may occur.

Only one action will be permitted.]

Web service trust policies describe the way two or
more potential partners can use to construct and verify
online trust relationships. The dynamicity in web
service trust policies may cause different types of
conflicts too.

WS-Trust Policy conflicts can also be detected by
using trust policy conflict rules, which are built on the
trust policy conflict situations we discussed in section
3.2. Here is an STL formula example that can be
applied to detect security policy conflict in WS-Trust
Policy environment:

» HoldsAt(doAction(sub,attributel, A(c)),t1) /\
HoldsAt(doAction (sub,attribute2,A(c)),t2)) /\
(Clipped(claim,t) N
doAction(Claim,sub,change(Authority),t)) /
t1<t<t2—HoldsAt(OverlapConflict(conflictofInerest,O
verlaps(doAction(sub,attributel,A(c),t1),doAction(sub,
attribute2,A(c),t2),Clipped(claim,t)),t)—Trajectory(per
mit(sub,obj,doAction(sub,attribute],A(c)),t),d) /
deny(sub, obj, doAction(sub, attribute2,

A(c)),1),t) \/'Trajectory(deny(sub,obj,doAction(sub,attri

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8392
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8392

butel, A(c)),t),d) N

permit(sub,obj,doAction(sub,attribute2,A(c)),1),t)

Relation: at time t, object.attributel #

object.attribute2;

t<t<t2;

[The situation a: after time t1, a claim with changing
attributes (attributel and attribute2) is checked against
polices. Between time t1 and t2, the subject (sub) requests to
performance a serial of actions toward different attributes and
the claim is clipped in this period, then an overlap conflict
(conflict of interest) may occur. Only some requests will be
accepted and others will be denied.]

5. Implementation and Experiments
5.1 WS-Security Policy & WS-Trust Policy

Conflict Analysis

We design a prototype system that can automatically
analyze Web Service policy to detect potential
conflicts within WS-Security Policy and WS-Trust
Policy from multiple domains. The system is
implemented in Microsoft .NET platform with a main
interface for displaying analysis results and a user
interface to input relationships between policy
elements. We choose Event Calculus (EC) [11] as an
example temporal logic tool for representing policy
models and as the reasoning tool for conflict analysis.
EC is a type of temporal logic to represent dynamic
actions, contexts, and their effects. Web Ontology
Language (OWL) is a language for defining and
instantiating Web ontology [4]. OWL is stored in a
XML file, which is used to store policy files. The XML
format is convenient to process. We have a XML read-
write module to deal with it. We use its subset OWL-
Full to store and retrieve our ontology-based temporal
logic STL.

This prototype is designed to analyze cross-domain
WS-Policies and indicate whether there is any conflict
when a cross-domain activity happens. The prototype
contains two parts, one is temporal logic evaluation,
which is the logic mechanism, and the other one is
ontology model, which contains relations within policy
model.

5.2 Experiments

The policy set used in the experiment contains 9
pairs of WS-Policy segments; include 5 pair of WS-
Security Policy and 4 pairs of WS-Trust Policy. Each
pair of policy segments is designed to protect the same
service, but the constraints are conflict. And these
policies indicate 9 types of conflicts we mentioned
before. There are total 10 security policy instances. It
could be 45 different combinations, if randomly chose
two policies, to be analyzed. The conflicts within these
policy pairs are not as much as the number of pairs.
The number of conflicts of these 45 pairs is 21. And
there are total 8 trust policy instances, which can be
randomly combined into 28 combinations. The
prototype analyzes these policy pairs based on different
types of conflicts, which we discussed before. If use

temporal logic to analyze these policy pairs without
ontology part, the accuracy will decrease. Table 5 and
6 show a comparison of the accuracy when using STL
and using general temporal logic analysis result.

Designed Random
Security Policy | Security
pair Policy pair
Number of pairs 5 45
Number of conflicts 5 21
Number of conflicts | 5 21
reported by STL
Number of conflicts | 4 36
reported by TL

Table 5. Analysis Results of STL and TL

Designed Trust | Random Trust
Policy pair Policy pair

Number of pairs 4 28

Number of conflicts 4 9

Number of conflicts | 4 9

reported by STL

Number of conflicts | 4 12

reported by TL

Table 6. Analysis Results of STL and TL

There are 5 pairs of designed security policy pairs
and 4 pairs of trust policy, which are designed in
conflict, and 45 random security policy pairs and 28
random trust policy pairs, which are the random
combinations of designed policy instances. The STL
could easily analyze both designed policy pairs and
random policy pairs. However, the general temporal
logic mechanism reports fewer conflict alarms in
conjugated policy pair test and more conflict alarms in
random policy pair test. The result indicates that STL
has higher accuracy by using ontology-based
knowledge representation. The ontology part of STL
provides a good reference to logic mechanism parts
through filter unuseful relations with policy pairs.

6. Related Work

If there are positive and negative authorization or
obligation policies applied on the same subjects,
targets and actions, modality conflicts may arise [12].
Modality conflicts can be detected through static
analysis of the policy specifications. Once all policy-
driven actions of a system have been analyzed and
these different types of conflicts that can arise have
been identified, it is possible to define rules that can be
used to recognize conflict situations in a policy set.
Then these rules can be invoked during a conflict
detection process prior to policy deployment and
enforcement to identify potential inconsistencies. This
is known as static conflict detection and takes place at
specification time. Most existing work in detecting
conflicts is related to modality conflicts. But
sometimes application-specific conflicts cannot be
detected directly from policy specifications without
additional information. Conflicts may arise from the

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8392
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8392

semantics of the policies as well. Thus, a metapolicy
[13] concept is introduced to represent this additional
information, which is a constraint or context associated
with related policies. Yet there is still a possibility of
conflicts even when there is not any shared subject,
targets or actions between two policies. There may be
implicit relationships between subjects, targets and
actions when policies are applied to them. Thus a
metapolicy-based approach cannot resolve all conflicts,
because an administrator would have to specify
metapolicies for all possible runtime conflict situations.
It is almost impossible to predict all implicit
relationships that may cause conflicts in the system by
an administrator.

Temporal logic has been used to analyze required
properties in trust policies, such as the FTPL
mechanism [14], which is a first order temporal logic
being used to check if a SPKI policy state satisfies a
property specified in FTPL. But this properties check
is for static policies and static properties, which is not
sufficient for federation activities. In 2003, Event
Calculus was proposed to analyze a combination of
authorization and management policies [15]. But the
authors do not identify the special capability of Event
Calculus for transient properties in various activities.
We apply Event Calculus in STL for analyzing
transient properties and associations (relationships) in
collaboration activities among web-service-based
systems, and find its capability to detect and resolve
dynamic conflicts.

Meanwhile, static and dynamic conflict detection
and resolution in policy-based management for large
open distributed systems are discussed in [15]. The
model used in that paper does not differentiate static
and dynamic policy conflicts. Although that model can
be used to find some dynamic conflicts, if the specific
start and finish time points of an event cannot be
identified, the conflicts involving that event cannot be
detected or resolved.

A general model of security policies has been
discussed in [16]. Detection and reconciliation of
security policy conflicts following that model are
restrained by the complexity of the policy set to be
reconciled. And only two-party conflict reconciliation
can be tractable. Applications of the two-party conflict
detection and reconciliation method to KeyNote [17]
and GAA-API [18] systems are also described. But the
capability of dynamic conflict detection and
reconciliation is still unclear. Table 7 illustrates these
comparisons.

Although the general problem of provisioning
policy reconciliation is intractable [16], the ontology
provides an information foundation for policy analysis,
which makes the two parties policy analysis tractable
and the time complexity is O(n) by using STL
algorithm.

The FTPL and the model in [15] can only analyze
single domain policy. It is in collaboration
environment. The Ismene in[16] can analyze multiple

policies, but it will be intractable if more than two
parties. The STL can analyze both dynamic and static
policies crossing multiple domains using ontology

Dynamic | Policy Conflict Time
ity domain detection and | complexity
resolution
STL Dynamic | Multiple | Detection and | O(n)
and resolution
Static suggestion
FTPL Static Single Detection N/A
Conflict Static Single Detection and | N/A
detection | and resolution
in [15] Partial suggestion
dynamici
ty
Ismene in | N/A Multiple | Detection and | NP
[16] resolution
suggestion

Table 7. Comparison of Different Policy Analysis

7. Conclusions

In this paper, we propose a Semantic Temporal
Logic for automatic conflict analysis in cross-domain
collaborations. Ontology-based knowledge
representation provides a function that can reduce
ambiguity. Through user-defined ontology, policy
analysis has become more adaptable. Through the
experiments on our prototype system, the improvement
on capability and accuracy by Semantic Temporal
Logic for automatic policy analysis is confirmed. A
comparison of different policy analysis mechanisms
shows that this ontology-augmented policy analysis
system is more flexible, accurate, and applicable.

8. References
[1] A. Westerinen, J. Schnizlein, “RFC3198 - Terminology
for Policy-Based Management,” 2002.

http://www.fags.org/rfcs/rfc3198.html

[2] David Booth, Hugo Haas,”Web Services Architecture,”
2004. http://www.w3.org/TR/ws-arch/

[3] Liang Chen, Jason Crampton, “Inter-domain role
mapping and least privilege,” Proceedings of the 12th ACM
symposium on Access control models and technologies, pp.
157-162, 2007.

[4] B. Orgun, M. Dras, A. Nayak, G. James, “Approaches for
semantic interoperability between domain ontologies,”
Proceedings of the second Australasian workshop on
Advances in ontologies, Vol. 72, PP: 41-50, 2006.

[5] P. Bellini, R. Mattolini, and P. Nesi, *Temporal logics for
real-time system specification,” ACM Comput. Surv., vol. 32,
no. 1, pp. 12-42, March 2000.

[6] Nir Friedman, Joseph Y. Halpern, Daphne Koller, “First-
order conditional logic for default reasoning revisited,” 4ACM

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8392
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8392

Transactions on Computational Logic (TOCL), Vol. 1, Issue
2, PP. 175 — 207, 2000.

[7] Andrews P.B., “An Introduction to Mathematical Logic
and Type Theory: To Truth Through Proof, 2nd ed.” Kluwer
Academic Publishers, PP: 201-203, 2002.

[8] Murray Shanahan, “The Event Calculus Explained,”
Lecture Notes in Computer Science, Springer, 1999.

[9] Edward N. Zalta, "Temporal Logic", the Stanford
Encyclopedia of Philosophy, Fall 2008 Edition.
http://plato.stanford.edu/archives/fall2008/entries/logic-
temporal/

[10] Siddharth Bajaj “Web Services Policyl.5 Framework
(WS-Policy),” September 2007. http://specs.xmlsoap.org/ws/

2004/09/policy/ws-policy0904.pdf

[11] AK. Bandara, E.C. Lupu, and A. Russo, “Using event
calculus to formalise policy specification and analysis,”
Proceedings of IEEE 4th International Workshop on Policies
Jor Distributed Systems and Networks, pp. 26- 39, 2003.

[12] M.Sloman, “Policy Specification for Programmable
Networks,” Proceedings of the First International Working
Conference on Active Networks, pp. 73 — 84, 1999.

[13] M. Sloman, E. Lupu, “Security and Management Policy
Specification,” IEEE Network, vol. 16, no. 2, pp. 10-19,
March/April 2002.

[14] Arun K. Eamani, A. Prasad Sistla, “Language based
policy analysis in a SPKI Trust Management System,”
Journal of Computer Security, Vol. 14, No. 4, pp. 327-357,
2006.

[15] Nicole Dunlop, Jadwiga Indulska, Kerry Raymond,
“Methods for Conflict Resolution in Policy-Based
Management Systems,” Proceedings of 7th International
Conference on Enterprise Distributed Object Computing, pp.
98-109, 2003.

[16] Patrick McDaniel and Atul Prakash, “Methods and
limitations of security policy reconciliation,” ACM
Transactions on Information and System Security, Vol. 9, No.
3, pp. 259-291, 2006.

[17] M. Blaze, J. Feigenbaum, and Jack Lacy, “Decentralized
Trust Management,” Proceedings of 1996 IEEE Symposium
on Security and Privacy, pp. 164 -173, 1996.

[18] Tatyana Ryutov, Clifford Neuman, “The Specification
and Enforcement of Advanced security Policies,”
Proceedings of the 2002 Conference on Policies for
Distributed Systems and Networks (POLICY 2002), pp.128,
2002.

