A Usage Control Policy Specification with Petri Nets

Basel Katt and Michael Hafner
University of Innsbruck
Innsbruck, Austria
{basel.katt, m.hafner} @uibk.ac.at

Abstract

In this paper we propose a novel usage control policy
specification based on Coloured Petri Nets formalism. Re-
cently, usage control has been proposed in order to overcome
the shortcomings of transitional access control that fails to
meet new security requirements of today’s highly dynamic
and distributed systems. These new environments require for
example (i) a continuity of control, (ii) fulfillment checks
of obligatory tasks, during or after the usage end, (iii)
an integration between functional behavior and security
policy, and (iv) the management and control of concurrent
and parallel usages by different subjects. Taking all these
requirements into consideration, our usage control policy
includes three main rule types: behavioral, security and con-
currency rules. Security rules, can be further classified either
into instant-, -ongoing, and post rules or into authorization
and obligation rules. Instant rules must be checked before
the execution of an action is granted, ongoing rules are
checked during the execution of an action, and finally post
rules are checked after the execution is finished. Therefore,
post rules are only of type obligation. Coloured Petri nets
are used because of their powerful modeling capabilities of
distributed and concurrent systems and their efficiency for
specification of systems by embodying the support of ML
functional programming language.

1. Introduction

Recently, the need for collaboration and secure resource
sharing between companies, institutions and/or citizens has
increased in different application domains, including dis-
tributed eHealth networks, distributed DRM system, so-
cial networks, merging, outsourcing and offshoring envi-
ronments, and others. These dynamic and distributed en-
vironments raise new questions that need to be considered
and answered by security solutions. For example, behav-
ioral rules and restrictions, obligatory tasks that need to
be fulfilled by certain subjects, rules that must be fulfilled
after resources are accessed (post rules) and their associated
compensation actions, and finally, concurrency control that
has been always considered from a functional perspective.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8394
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8394

Xinwen Zhang
Samsung Information Systems, America
San Jose, CA, USA
xinwen.z@samsung.com

While access control aims at restricting access to resources
instantly, it fails to meet these new requirements.

Usage control has been proposed to overcome the draw-
backs of access control. Usage control goes beyond the
capabilities of access control to cover continuity of control,
integration of security and functional aspects, obligations
and post usage rules, and finally concurrency management.
From the discussion above, we define usage control as the
ability to continuously control the usage of shared resources
in a distributed environment. Continuously means that the
control must be ongoing and continuous for the whole period
of a resource usage. Control means that permissions must be
checked, obligatory tasks must be enforced, and environmen-
tal conditions must be considered. Furthermore, control can
be applied before, during, or even after the resource usage.
Shared indicates that resources can be accessed by different
users at the same time. Finally, distributed environment
allows the assumption that resources can be located on
clients and/or servers.

The main approaches in the literature dealing with usage
control are UCON model [13] and its specifications like
in [17], [6], [11] and OSL [4]. UCON is a general model
to capture the major security requirements of usage control.
The policy specifications of UCON recognize the importance
of a continuous and ongoing control, provide (pre- and on-
)authorization and obligation rules, and supports (attribute)
mutability. However, the current UCON model and its policy
specifications lack post-obligation and concurrency support.
Later, the authors of [5] considered the concurrent usages.
They propose a static analysis method by creating the depen-
dency graph between different controllers/users, however fail
to define concurrency rules for users within one controller.
In previous work [9] we proposed an extension of UCON
specification to enhance its obligation expressiveness, how-
ever our approach lacked the ability to express periodic
obligations, application behavior was not considered, and
it was done in an ad-hoc manner that makes the resulted
policy difficult to analyze. OSL, on the other hand, proposes
an expressive policy language for usage control considering
temporal, cardinal and permit rules. However, the continuity
aspect of control beyond one action, the integration with the
application behavior, mutability, and concurrency issues tend
to be overlooked.

To overcome the drawbacks we identify in the current
approaches, we propose in this paper a usage control policy
specification that embodies the following features. First,
we emphasize the concept that controlling the usage of a
resource must be continuous and ongoing at the action level
and during the entire usage period. This requires the support
of behavioral rules and restrictions to identify how resources
can be accessed during the usage session. The second issue
is concurrency control. When dealing with stateful usage
control policies and shared resources, concurrency becomes
a relevant issue. In real-world distributed and collaborative
environments, resources are shared. This fact requires plac-
ing constraints on how concurrent usages of resources must
be regulated. Finally, our usage control policy considers au-
thorization, including context and environmental conditions,
and obligations. Our novel contribution in this regard is the
specification of post obligation rules and their compensation
actions. For example, students registering for an online
course are obliged to pay certain amount of fee within six
months, otherwise, the registration is canceled. Paying the
tution fees is the obligation that must be fulfilled by the
subject, and canceling the registration is the compensation
action in case of a violation. In general, we call actions
that a reference monitor can execute enforcement actions.
These actions updating attribute update, fulfillment check,
and compensation actions.

For the purpose of specifying the usage control policy
we utilize Colured Petri Nets. CPN embodies the Petri
Nets’ powerful modeling capabilities for concurrent sys-
tem behaviors and the powerful specification support of
the ML functional language. Furthermore, its mathematical
foundation and the tool support enable and ease analysis
and verification of the usage control policy. We define
Usage Control Coloured Petri Nets (UCPN) that extends
CPN with the concepts of rule label function (R) and end
arcs (EA). A rule label function associates each transition
with approperiate security and concurrency rules, which are
defined based on ML functional programing language. End
arcs, on the other hand, represent the behavior of a transition
when its rules are violated.

Contributions: In this paper we propose a novel policy
specification for usage control based on Colored Petri Nets.
The main and unique features of our usage control policy
are the support of (1) behavioral rules and restrictions (2)
post obligation rules and their compensation actions, and
(3) concurrency control for shared resources. Usage Control
Coloured Petri Net (UCPN) is defined to specify our policy.
It is a CPN augmented by a rule label function and end
arcs. Behavioral rules are modeled as a CPN and security
and concurrency rules are modeled as tuples using ML and
mapped to different transitions of the behavioral rule’s net
using the rule label function.

Outline: In next section we give an overview of Coloured
Petri Nets. Section 3 introduces our usage control policy and

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8394
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8394

its specification. Related work is discussed in section 4, and
finally, we conclude this paper and discuss the future work
in Section 5.

2. Colored Petri Nets Overview

A Colored Petri Net (CP-net) [7] can be defined as a tuple
CPN = (X,PTA,N,C,G,EI,SC), where ¥ is a set of color
sets, P, T and A are sets of places/states, transitions and arcs,
respectively. A transition has incoming and outgoing arc(s).
Incoming arcs indicate that a transition may remove one
or more tokens from the corresponding input places while
outgoing arcs indicate that the transition may add tokens
to the output places. The exact number of tokens and their
values are determined by the arc expression, defined by the
function E. N is a node function that determines the source
and destination of an arc. C is a color function that associates
a color set C(p) or a type with each place p. G is a guard
function that maps each transition ¢ to a boolean expression
G(t). For a transition to be enabled, a binding of the variables
that appear in the arc expressions must be found, and for this
“binding element” the guard function must evaluate to true.
This binding makes the arc expression of each input arc
evaluates to a multi-set of token colors. [is an initialization
function that maps each place to a multiset /(p). The last
element is SC, which is the segmentation code function of
a transition, mapping a transition to a set of actions that are
executed when the transition occurs.

A token element is a pair (p,c) such that p € P and
¢ € C(p). For a color set s € 3, the base color sets of .S
are the color sets from which S was constructed using some
structuring mechanisms such as cartesian products, records,
or unions. The set of all token elements is denoted by T'E.
For z,z1,22 € PUT,ze = {y € PUT |Ja € A: N(a) =
(z,y)} is the postset of x; and ex = {y € PUT | Ja €
A : N(a) = (y,z)} is the preset of x. A(x1l,z2) is the
set of arcs from z; to x5, and the expression of (z1,x2) is
E(x1,22) = z:aEA(acl,x2)E(a)'

TRAN((cpn) is a function that maps each CPN net or
subnet to a set of all transitions contained in that net.
A: X — A; maps each node, x € PxTUT x P,
to its surrounding arcs. Var(t) is the set of variables of
a transition t. Type(v) € T denotes the type of the variable
v. A binding element (t,b) is a pair consisting of a transition
t and a binding b of data values to its variables such that
G(t) < b > evaluates to true. expr < b > in general
denotes the value obtained by evaluating the expression
expr in the binding b. By B(t) we denote the set of all
bindings for a transition ¢. The Binding element is written
in the form (t,< vi = c¢1,v2 = C2,..0yUp = Cp >),
where v1,vg,...,vp, € Var(t) are the variables of ¢ and
c1,Ca, ..., Cy, are the data values such that ¢; € T'ype(v;) for
1 < % < n. For a binding element (¢,b) and a variable v

of t, b(v) denotes the value assigned to v in the binding b.
B(t) denotes the set of all binding elements is denoted BE.

M (p) denotes the marking of a place p in the marking M.
M is the initial marking. If a binding element (¢, b) is en-
abled in a marking M, denoted M [(t,b)), then (t,b) may
occur in M; yielding some marking M». This is written as
M;[(t,b)) Ms. Accordingly, a finite occurrence sequence is
a sequence consisting of markings)M; and binding elements
(ti, b;) denoted Ml[(tl, b1)>M2...Mn_1 [(t'n—l’ bn_1)>Mn
and satisfying M;[(t;,b;)) M1 for 1 <14 < n. M is called
start marking, M, ,; is called end marking, and n is called
the length of the occurrence sequence. If the length is infinite
we call the occurrence sequence infinite occurrence se-
quence. The set of all finite occurrence sequences is denoted
by OSF, while the set of all infinite occurrence sequences
is denoted by OSI, and finally OS = OSF U OS] is the
set of all occurrence sequences. time : OSF — N: defines
the duration of a finite occurrence sequence 0 € OSF. A
reachable marking is a marking which can be obtained by
an occurrence sequence starting in the initial marking. [Mp)
denotes the set of reachable markings. Finally, The sets of all
markings and steps is denoted by M and Y, respectively .

Let X C BE be a set of binding elements and 0 € OSF
is a finite occurrence sequence, we can also consider an
infinite one, of the from: 0 = M;[Y1)Ma ... M,[Y,) Mp41.
For each i € Ny, ENx ;(o) is the number of elements from
X which are enabled in the marking M; and OCx ;(0)
is the number of elements from X which occur in the
step Y;. Furthermore, ENx(0) = > ;cn, ENx,i(0) and
OCx(0) = > ien, OCx,i(0) are the total number of
enabling and occurrences in o, respectively.

3. Usage Control Policy Specification

3.1. Usage Control Policy Elements

Subjects: are active principals that can perform actions
on resources, which are identified by an ID and a set of
attributes. We define for this reason a new type (coloset)
called SUB. A general definition of the SUB type is a product
of an ID, of a type string, and a list of attributes. Each subject
is represented as one token of type SUB. We assume also a
Subjects place that contains all subject tokens in the system.
Additionally, we define the type TSUB which represents
subject tokens with time stamps, it is used for the temporal
related mechanisms.

Objects: represent resources that must be protected. They
are identified by a unique ID and attributes. We define a new
colset called OBJ. Similar to subjects, OBJ is also defined as
the product of ID and a set of attributes. Each resource in the
system is represented as on token of type OBJ, furthermore,
we assume the Objects place that contains all objects.

1. We only coonsider steps that consist of one binding elements.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8394
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8394

Contexts: represent environmental entities that play a role in
authorization decisions. For example, the entity that provides
the IP address of an accessing machine is a context entity.
We define a new coloset called CON. Each context entity
in the system is represented as a token of a type CON. The
Contexts place, on the other hand, contains tokens of all
context entities.

Actions: Beside these basic elements, actions (ACT) are
essential elements. Actions in a usage control system can
be classified into the following types: (i) subject actions
(SAct C ACT) are actions that a subject can exe-
cute/request on a resources and they are included in the sys-
tem behavior. Subject actions are represented as transitions
in the policy view. (i1) enforcement actions (EAct C ACT)
are those that a reference monitor or an enfrcement engine
can execute, like updating subject/object attributes or log-
ging access information. Due to the fact enforcement mech-
anisms are modeled as a CP-net, these actions as represented
as ML functions and positioned as segmentation code of a
transition. Finally (¢ii) obliged action (OAct C ACT) are
actions that a subject must execute (obligatory tasks). Each
obliged action is represented by a unique ID and is used to
define obligation rules.

3.2. Behavioral Rules

One of the main features of our usage control policy,
which distinguishs it from traditional access control, is the
continuity of control. This means that making authorization
decisions, following obligatory tasks, executing compensa-
tion and enforcement actions, and managing concurrent and
parallel usages must be done and controlled continuously
during the time period, in which resources are being used.
Therefore, our usage control policy is session based.

Definition 1 (Usage Session). A usage session of a resource
or a set of resources is defined as a finite occurrence
sequence 0 = My[Y1..Yn)M,, where My is the initial
marking of the usage and the M, is the finial marking in
which the usage is finished.

Furthermore, to ensure a correct and safe behavior of
the system, behavioral rules must be defined. These rules
indicate how (security related) actions are composed and
their relationship. For example an action must be executed
after another action, or in parallel with other action(s). For
this purpose, we utilize Coloured Petri Nets by defying a
CP-net containing all actions and their relationships?. We
call the resulting CP-net that embodies the behavioral rules
and conditions a Safe Behavior.

2. Encoding the informal behavioral requirements in the form of CP-
net requires a Petri Net modeling skills. The modeling issue itself is out
of scope of this paper but is assumed to be able to define the behavioral
rules” CP-net.

start/join usage session l 0BJ | CON close/leave usage session
| |
Y A/ M
Safe Behavior

SuB

|

Figure 1: Usage Pattern.

Definition 2 (Safe Behavior). A safe behavior is defined as
a Coloured Petri Net that embodies the behavioral rules and
conditions. Transitions in a safe behavior represent subject
actions; and places, which are of SUB type, indicate the
state of each subject using a resource. Finally, a safe behav-
ior contains one source and one sink transitions, str and
end, respectively, where estr = {} Aende = {}. We denote
the finite set of all safe behaviors with (SB C CPN).

str and end transition/actions are the transitions that are
used by subjects to initiate/Join a usage session or end/leave
a usage session. By considering a usage session from a
global perspective, and augmenting the behavioral CPN with
Subjects, Objects, and Contexts places, the concept of a
Usage Pattern emerges.

Definition 3 (Usage Pattern). A usage pattern is defined
as a tuple UP = (sb, Pl) C UP, where sb € SB is a safe
behavior that represents the behavioral rules. Pl' is a sets of
pre-defined places representing the basic elements of a usage
control system: Pl' = {Subjects, Objects, Contexts}. The
basic elements’ places are connected to the safe behavior
according to the following rules:

(i) vt € TRAN(sb) {Objects, Contexts} C ot A

{Objects, Contexts} C et.

(1) estr = {Subjects} A ende = {Subjects}.

(#%) 3 0 € OBJ,c € CON,s € SUB : [Va € A(Contexts) =
(E(a) = ¢)] A [Va € A(Objects) = (E(a) = 0)] A [Va €
A\ {A(Objects) U A(Contexts)} = (E(a) = s)].

Figure 1 shows how to construct the usage pattern from
the safe behavior and the basic elements’ places. Objects
and Contexts places are connected to all transitions of the
safe behavior by double headed arcs. Subjects place is con-
nected to the source and end transitions of the safe behavior.
Finally, we define variables s, o, and ¢, of SUB,OBJ, and
CON types, respectively. Variables o and c¢ are used as an
arc expression for all arcs that are connected to Objects
and Contexts places, and the variable s is used as an arc
expression for the rest of the arcs.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8394
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8394

3.3. Authorization and Obligation Rules

An authorization defines the right to use a resource and
an obligation rule determines the tasks/actions that a subject
must perform when a resource is used. These rules can
be furthere classified into instant, temporal and cardinal
for auhtorizatin and instant, temporal, and periodic for
obligations. Finally we can define a concurrecny rule that
defines who and how many subjects are allowed to execute
an action at the same time.

3.3.1. Single Instant Access Right.

Definition 4. A single instant access right is defined as
7-tuple ir=(s,o0,c,sa,eal,ea2,authCheck)c IR. This right in-
dicates that a subject s € S is allowed to perform an
action sa € SA on an object o € O in the context
defined by ¢ € C, where eal and eal are enforcement
actions that must be executed by the reference monitor if
the action is allowed or denied, respectively. The function
authCheck : Attr(S) x Attr(O) x Attr(C) — Bool
indicates an enforcement action (a predicate) that takes as
parameters subject, object and context attributes and returns
a Boolean value indicating whether the subject is authorized
or not. It defines the constraints or conditions that must be
fulfilled to authorize the subject.

3.3.2. Single Temporal Access Right.

Definition 5. A single temporal access right is defined as a
4-tuple tr=(s,sa,d,ea) € TR. It indicates the maximum time
period, d € N, allowed for executing a subject action, sa,
by a subject s. An enforcement action ea € EAct must be
executed in case the execution is revoked.

3.3.3. Single Cardinal Access Right.

Definition 6. A single cardinal access right is defined as
a tuple cr=(CSet,t,n,ea)c CR. It indicates the maximum
number of times, n € N, allowed for executing t € T
by subjects belonging to the cardinal set CSet C SUB.
An enforcement action ea must be executed if the action is
denied.

3.3.4. Single Instant Obligation.

Definition 7. A single instant obligation is defined as 6-
tuple iobl=(s,sa,0a,eal,ea2,0blCheck) € IO. It indicates that
a subject s € S is allowed to perform an action sa € SA if
the obliged action oa € OA has been fulfilled by s, where
eal and ea2 are optional enforcement actions that must be
executed by the reference monitor if the action is allowed
or denied, respectively. The function oblCheck : Sx OA —
Bool indicates an enforcement action (a predicate) that
takes an obliged action and a subject as input parameters
and returns a boolean value indicating whether the subject
has fulfilled the obliged action.

3.3.5. Single Temporal Obligation.

Definition 8. A single temporal obligation is defined as 6-
tuple tobl = (s, sa,oa,d, ea,oblCheck) € TO. A temporal
obligation indicates that upon executing the subject action,
sa, the obliged action oa must be fulfilled by the subject
s within a period of d € N time units. ea € EAct is the
compensation action in case of violation. OblCheck is the
fulfillment predicate.

3.3.6. Single Periodic Obligation.

Definition 9. A single periodic obligation is defined as
7-tuple pobl = (s, sa,oa,d,n,oblCheck,ea) € PO. A
periodic obligation indicates that the obliged action must
be fulfilled periodically, n times within a period of d time
units. s, sa, oa, ea represent the subject, object, subject ac-
tion, obliged action, and enforcement compensation action,
respectively.

3.4. Concurrecny

A concurrency rule expresses the way multiple users are
allowed to use a resource at the same time, which can be
categorized into cardinal and type. Cardinal indicates how
many subjects are allowed to execute an action on a resource
at the same time, while type indicates whether the concurrent
execution is true or interleaved.

Definition 10. A concurrency rule is defined as a triple
conc = (sa, Par_Set,n) € CONC, where sa € SA is
a subject action, Par_Set C S is a set of subjects that
are allowed to execute the action sa in a true concurrent
way, and n € N is the maximum number of subject that
are allowed to execute the subject at the same time. We call
Par_Set the true concurrent set.

Based on the time instance in which security rules must be
applied or checked, we classify rules into three categories:
Instant Rules (IRu) , Execution Rules (ERu), and Post Rules
(PRu), Figure 2 shows the different types of security rules
applied on usage control actions. Instant rules are applied
instantly when the action request is received and the action
is only allowed if the instant rule is fulfilled. Execution rules
are rules that are applied during the exection of an action
and Post rules are rules that applied after the execution of an
action is finished. It can be noticed that post rules do not re-
strict the access of resources, however they require that some
actions/tasks (obligations) must be executed afterwords. In
order to enforce post obligation rules we have to impose
compenstation actions upon the violation of these rules. For
example, the student is allowed to register at the university
if he has been accepted, but he must pay the fees within
six months, otherwise her registration will be canceled. The
rule that checks that the student is accepted is an instant
rule to authorize the student to register. After registering,

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8394
http:/ldx.doi.org/10.4108/ICST. COLLABORATECOM2009.8394

R

Usagé Ses;lm
Figure 2: Different types of security rules.

Instant EA Execution EA Post EA Normal arc

Figure 3: Different types of end arcs.

the student must pay the fees within six months (the post
obligation task), otherwise her registration is canceled (the
compensation action).

Based on this discussion we can conclude that instant
right, instant obligation and cardinal right are of type
IRu, temporal right is of type ERu, and temporal and
periodic obligation rules are of type PRu. Thus we can
writt JRu = {IRU CR U IO}, ERu = {TR}, and
PRu = {TOUPOY}. The set of all security rules is denoted
as Ru = {IRuU ERuU PRu}. Furthermore, we define for
each secuirty rule a predicate fulfill : Ru — Bool that
indicates whether the rule is fulfilled or not.

3.5. Usage Control Coloured Petri Nets (UCPN)

Based on the different rules discussed before, a usage
control policy can be defined as a new type of Coloured
Petri Net called Usage Control Coloured Petri Nets (UCPN).
First we introduce UCPN and then show how this Petri Net
can be used to construct a usage control policy.

Definition 11 (UCPN). A Usage Control CPN is defined as
a tuple UCPN = (X, P,T,AA,N,C,G,E,R,I), where

e X, Pand T, N, C, G, E and I are colour sets, places
transitions, a node function,a colour function,a guard
function,an arc expression function and an initialization
function, respectively. They represent the same elements
of a standard CPN [7];

e AA = AU EA is a finite set of arcs, where A is
the finite set of “normal” arcs as defined in [7] and
EA is the finite set of end arcs such that [ANEA =
g) AVt € TNa € EA: (Jp € P : N(a) = (p,t))]
(for any transition, end arcs are always output arcs).
Similar to the rule types, end arcs also have three types,
instant(IE A), execution(EEA), and post (PEA) end
arcs: EFA = IEAU EEA U PEA, and they are
drawn as dashed arcs with one, two or three heads,
respectively(cf. Figure 3); and

¢« R: T — P(RuUCNC) is a rule label function that
maps each transition with a set of rules where P(RuU
CNC) denotes the powerset of RulUCNC.

Similar to the function that maps each node to its sur-
rounding arcs A (cf. section 2), we define also the functions:
EFEA : PUT — FEA,, IEA : PuUuT — IFEA,,
EFEA: PUT — EEA,, PEA: PUT — PEA,, that
maps each node to the surrounding- end arcs, -instant end
arc, -execution end arcs, and -post end arcs, respectively.

Informally, semantics of end arcs indicate that the oc-
currence of transitions is three step process: First, instant
rules are checked before the occurrence is allowed, upon
a violation of any of these rules, instant end arcs are the
only output arcs that will be “activated”. Second, during
the occurrence of a transition, execution rules are checked
and any violation of these any of these rules will revoke
the execution and execution end arcs are the only end arcs
“activated. Finally, after the occurrence is allowed and the
execution is ended, the post obligation rules are triggered.
Formally, we can define the behavior of a transition occur-
rence in UCP-net, similar to the original definition 2.9 of
CP-net in [7], as follows:

Definition 12 (Occurrence Rule). When a binding element
(t,b) is enabled in a marking M it may occur changing the
marking M to anther marking My defined as follows:
(%) If (3r € R(t) : r € IRu A —~fulfill(r)) then Vp € P : Ma(p) =
(M1(p) = E(p,t)) + Xorcrpan(a)=(p E@) .

(it) Else if (3r € R(t) : » € ERu A ~fulfill(r)) then Vp € P :

Ma(p) = (M1(p) — E(p,t)) + X cpEA:N(a)=(t,p) E(@) <
b>.

(ii3) Else if (3r € R(t) r € PRu A —fulfill(r)) then
Vp € P Mx(p) = (Mi(p) — E(pt) < b >) +
Y a’ePEAUA:N(a")=(t,p) B(a’) .

() Eie ¥ € P 1 M) = (i) = Ept) < b >)+
YareaiN(a)=(t,p) E(@') .

Briefly, end arcs are activated according to which rules
are (not) fulfilled starting from the time instant of requesting
the action till post-obligations are checked. That is why the
order in which rules are checked should be respected.

3.6. Usage Control Policy

A usage control policy is a UCPN that can be built based
on the usage pattern up = (sb, Pl") € UP, and the different
rules defined for each subject action, and two set of pre-
defined places and transitions, Pl C P,Tr C T, as follows
(cf. Figure 4):

1) Define the rule label function, R(t), for each tran-
sition, t, of the safe behavior sb . We call the safe
behavior in which rules are defined for each transition
a Secure Safe Behavior. All variables in R(t), must
have a type that belongs to Y. Subject, object, and
context variables appears in R(t) must be bound to

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8394
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8394

G5

~ Secure Safe Behavior ‘

suB 17 sus suB

cut

e
e @ e
SuB

Figure 4: Usage control policy general form.

the expression variables of these types in the incoming
and outgoing arcs of ¢.

2) Add the following places: Pl =
{Denied, Revoked, Violated}, where

e V¢t € TRAN(up) Ir € R(t) Ar € IRu =
(a1, az,a3) € IEA3 : N(a1) = (t, Denied) A N(a2) =
(t,Objects) A N(az) = (t,Contexts) A E(a1) = s €
SUB A E(a2) =0 € OBJ A E(a3) =c€ CON.

e Vt € TRAN(up) : Ir € R(t) Ar € ERu =
(ay1,az,a3) € EEA% : N(ay) = (t, Revoked) A
N(a2) = (t,Objects)AN(a3) = (t, Contexts)AE(a1) =
s € SUB A E(az) = 0 € OBJ A E(az) = c € CON.

e Vt € TRAN(up) : 3r € R(t)Ar € PRu=-3la € PEA:
N(a) = (t,Violated) A E(a) = s € SUB.

These places contain subjects whose request was
denied, execution was revoked or obligation was
violated, respectively.

3) Add the following transitions: Tr = {dny, cut,cmp},
where

e eodny = {Denied} A dnye = {Subjects}.

o eocut = {Revoked} A cute = {Subjects}.

o ocmp = {Violated, Subjects} A cmpe = {Subjects}.
Figure 4 shows how to build a usage control policy based on
usage pattern and the rules defined for each transition in the
safe behavior. End arcs connected to a transition, t € T, for
which security rules are defined, ensure that the violation of
these rules results in (i) denying or cutting the execution by
preventing the tokens to flow normally to the next places, (ii)
moving these tokens to the appropriate places, like Violated,
Revoked, or Denied, and (iii) imposing compensation actions
to violating subjects afterwords.

3.7. Running Example
In order to illustrate the steps of defining a usage control

policy, we consider the following example about the usage
of sockets in Grid systems (Securing sockets in Grid

systems was discussed in [10]). We assume a reference
monitor that controls the usage of local sockets performed
by applications executed on behalf of remote GRID users.
We assume that one behavioral, two security, and one
concurrecny requirements must be fulfilled when using the
socket resources:

BR1: sockets must be opened before data is sent 3.

SR1: only registered users are allowed to open connection
on socket ports with numbers between 1000 and 2000,
from within the local network of the organization.

SR2: each user is only allowed to send packets for a
maximum time of 10 minutes.

SR3: each user wants to send a message must send a
report about the purpose of her usage to the administrator
within one week, otherwise the she will not be allowed to
use sockets in the future.

CR2: only administrators are allowed to open ports at the
same time.

‘Contexts‘ v Objects

CON . ;ooa.l
\(r1; r2) ~_(r3,r4)
@%‘—@
SUB
o &S . » r
‘Eny;<s Denied) \’ciut*‘ Revoked) Vlolated Hfbimpq
— T sus = T s
77,5,,,,%777 ‘4 B 7

. o Subjects)« -

SuB

Figure 5: The usage control policy of the socket example (double
headed arcs between Objects and Contexts places and the transi-
tions of the safe behavior are omitted for clarity).

It can be seen from these requirements that subjects
in this case are grid users, objects are sockets, and the
needed context entity is a system locator, that returns the IP
address of connecting machins. Subject attributes are, ID,
of type string, registered of type boolean, and role of
type string. Object’s attributes are I.D and ports of type
integer. Contexts attribut is I P of type integer.

After determining the basic elements of the policy, we
start defining the different rules according to the require-
ments. Behavioral rule (BR1) can be encoded in a CPN,
the shadowed sub-net of Figure 5, that starts with str
transition and ends with end transition. We can identify
three security rules, SR1 is represented by an instant access
right on the action open, as it must be fulfilled before the
usage is granted; SR2 is represented by a temporal access
right on the action send; and SR3 is represented by a

3. Please note that this is just a hypothetical example to show the
feasibility of the approach.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8394
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8394

temporal obligation rule (post rule) as it must be fulfilled
after the usage is finished. Finally, CR1 is represented by a
concurrency rule on the action open. For example, we can
specify the first rule in ML as follows:

colset SUB = record id:String*registered:Bool;
colset OBJ = record id:String*ports:Integer;
colset CON = record id:String+IP:String;
colset PRO = product SUBxOBJ*CON;

type IR = PRO* (PRO->Bool); //specification of an instant right

var s:PHY, o:REC, c:CON;

fun authCheck (s,o,c) = if #2 s=true andalso

#2 o > 1000 ansalso #2 o <2000 andalso

#2 ¢ IP = "x.w.y.z" 2000 then true else false;
var rl = (s,o0,c,authCheck); //the instant right rl

4. Related Work

The closest to our work is the specification [18], [6], [11]
of UCON usage control model [13]. The main problem of
UCON is the lack of post obligation support, the integration
between functional and security aspects, and concurrency
control. Our approach tries to have a clear integration
between the safe behavior of the application and the security
policy. We have tried in previous work [9] to enhance the
obligation expressiveness of UCON, however we overlooked
the concurrency issue and the approach was done in an ad-
hoc manner that makes the analysis of the resulted policy
difficult. Finally, concurrency was not consider by UCON.

Hilty et al. [4] proposed OSL (Obligation Specification
Language) as a policy language for distributed usage control.
OSL proposes an expressive policy language for usage
control considering temporal, cardinal and permit rules.
However, the continuity aspect of control beyond one action,
and concurrency issues were overlooked.

A plethora of work in the literature to specify obligation
and access control policies, not in the context of usage
control, can be found. Some concentrate on the area of
privacy like in [12], others proposed general security and
system management policies [3], [15]. The closest among
these policy languages is the work done by Bandara et
al. [2] which uses event calculus or in [1] which is based
on first-order logic formulas. The major distinct and novel
contribution in this work comparing to these policy lan-
guages are the continuity of control and the integration of
functional (system behavior) and non-functional (security
rules) requirements, which we believe is an essential issue
when dealing with usage control. Furthermore, concurrency
tends to be overlooked. To our knowledge the only work
that tackles concurrency in the context of usage control is
done by Janicke et al. [5]. They propose a static analysis
method by creating the dependency graph between different
controllers/users, however fail to define concurrency rules
for users within one controller.

Few work have used CP-nets for analyzing and modeling
existing access control policy models like chinese wall
policy [19], integrity policy (Biba Model) [20], mandatory
access control [8], and role-based access control policy [14],

[16]. The main difference to our work is that we are
proposing a new security model aiming at meeting the
new security requirement in collaboration and distributed
environments. Thus ours is an attempt to tackle fundamental
questions of security policies. on the other hand, the other
work takes one existing model and analyze some security
properties of it. Furthermore, Concurrency and integration
between functional and security aspects are unique in our
treatise.

5. Conclusion and Future Work

In this paper we present a novel approach for the speci-
fication of a usage control policy based on Coloured Petri
Nets. Our usage control policy provides (i) continuity of
control and integration of functional and security aspects
by supporting behavioral rules, (i:) post obligations and the
compensation actions they require, and finally (4i7) concur-
rency control. For the purpose of the specification we in-
troduce Usage Control Coloured Petri Nets (UCPN). UCPN
extends traditional CPN with security aspects, namely with
the concepts of rule label functions and end arcs. The
full enforcement semantics of the defined UCPN and their
analysis are planned for future work. Our final goal is
close the gap between our usage control policy and the
enforcement mechanisms of its reference monitor.

References

[1] A. Bandara, J. Lobo, S. Calo, E. Lupu, A. Russo, and
M. Sloman. Toward a formal characterization of policy
specification analysis. In Annual Conference of ITA (ACITA),
University of Maryland, USA, August 2007.

[2] A. Bandara, E. Lupu, and A. Russo. Using event calculus
to formalise policy specification and analysis. In POLICY
’03: Proceedings of the 4th IEEE International Workshop
on Policies for Distributed Systems and Networks, page 26,
Washington, DC, USA, 2003. IEEE Computer Society.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder
policy specification language. Lecture Notes in Computer
Science, 2001.

[4] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter.
A policy language for distributed usage control. volume 4734,
page 531. Springer, 2007.

[5]1 H Janicke, A Cau, F Siewe, and H. Zedan. Concurrent
enforcement of usage control policies. Policy 2008, 2008.

[6] H.Janicke, A. Cau, and H. Zedan. A note on the formalization
of ucon. SACMAT’ 07, June 20-22, 2007, Sophia Antipolis,
France, 2007.

[7]1 K. Jensen. Coloured Petri Nets, volume 1. Springer-Verlag,
1992.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8394
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8394

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

K. Juszczyszyn. Verifying enterprise ’s mandatory access
control policies with coloured petri nets. In WETICE ’03:
Proceedings of the Twelfth International Workshop on En-
abling Technologies.

B. Katt, X. Zhang, R. Breu, M. Hafner, and J.-P. Seifert.
A general obligation model and continuity enhanced policy
enforcement engine for usage control. In Indrakshi Ray and
Ninghui Li, editors, SACMAT °08: Proceedings of the 13th
ACM Symposium on Access Control Models and Technolo-
gies..

H. Koshutanski, F. Martinelli, P. Mori, and A. Vaccarelli.
Fine-grained and history-based access control with trust
management for autonomic grid services. In ICAS ’06:
Proceedings of the International Conference on Autonomic
and Autonomous Systems.

F. Martinelli and P. Mori. A Model for Usage Control in
GRID systems. In Security and Privacy in Communications
Networks and the Workshops, 2007. SecureComm 2007. Third
International Conference on, pages 169-175, 2007.

Q. Nj, E. Bertino, and J. Lobo. An obligation model bridging
access control policies and privacy policies. In SACMAT ’08:
Proceedings of the 13th ACM symposium on Access control
models and technologies.

J. Park and R. Sandhu. The ucon_abc usage control
model. ACM Transactions of Information and System Se-
curity, 7(1):128-174, 2004.

H. Rakkay and H. Boucheneb. Security analysis of role based
access control models using colored petri nets and cpntools.
pages 149-176, 2009.

C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guede. Spl: An
access control language for security policies with complex
constraints. In Proc. of the Network and Distributed System
Security Symposium, 2001.

B. Shafigq, A. Masood, J. Joshi, and A. Ghafoor. A role-
based access control policy verification framework for real-
time systems. In WORDS ’05: Proceedings of the 10th
IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems.

X. Zhang, FE Parisi-Presicce, R. Sandhu, and J. Park. Formal
model and policy specification of usage control. ACM
Transactions on Information and System Security, 8(4):351-
387, 2005.

X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A logical
specification for usage control. SACMAT04, 2004.

Z.-L. Zhang, F. Hong, and J. Liao. Modeling chinese wall
policy using colored petri nets. In CIT ’06: Proceedings of
the Sixth IEEE International Conference on Computer and
Information Technology.

Z.-L. Zhang, Fan H., and H. Xiao. Verification of strict
integrity policy via petri nets. Systems and Networks Com-
munication, International Conference on, 0:23, 2006.

