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Abstract— The structure of block sparsity in multi-band signals
is prevalent. Performance of recovery algorithms that taking
advantage of the block sparsity structure is promising in the
compressed sensing framework. In this paper, we propose a
binary tree based recovery algorithm for block-sparse signals,
where we exploit the fact that each block may have zero and
nonzero elements both. The proposed algorithm improves the
current algorithms through iteratively separating the recovered
blocks of signals into two smaller blocks. Therefore, greedy
searching based algorithm is possible to obtain more accurate
basis for signal recovery. Simulations are performed and the
results show the improvements over current block-based recovery
algorithms.

I. INTRODUCTION

Compressed sensing is an efficient signal acquisition tech-
nique that enables signals to be sampled below the Nyquist
rate given that the signal can be sparsely represented in
an orthonormal basis. According to the compressed sensing
framework[1], [2], the signal recovery problem is equivalent
to solving an underdetermined linear equations by taking the
sparse structure of the signals into consideration. In summary,
the recovery of an unknown signal is converted to the recovery
problem of a N × 1 vector x from measurements y, where
y = Ax is a vector of M × 1 with M < N and A is a
matrix with M rows and N columns. Throughout the paper,
the vector x is also referred as a signal that has been sampled.

It is well known that the solution of an underdetermined
linear equations is not unique. However, a unique solution is
possible with sparsity constraints of the vector given enough
measurements. Here, the sparsity constraints of a vector mean
that there are only k unknown positioned nonzero elements
with k ≪ N . It has been shown that the unknown vector
can be uniquely recovered with only M ∝ O(k logN/k)
measurements if A is properly chosen[3]. This result has
given rise to a number of various recovery algorithms which
have been proven to recover a sparse vector x under a
variety of different conditions on A [3]-[6]. There are two
kinds of widely studied algorithms, Basis Pursuit (BP) or
ℓ1-minimization approach [3], and greedy searching based
algorithms, such as Orthogonal Matching Pursuit (OMP)[7],
[8] and CoSaMP[9]. In these algorithms, the nonzero elements
are assumed to be randomly positioned in a sparse vector .
However, the signals may have block-sparsity structure with

clustered nonzero elements in dealing with multi-band signals
or in measurements of gene expression levels[10][11][12].

In this paper, we consider efficient methods for the recovery
of sparse signals that exhibit block sparse structure. The
related works have been shown in [13]-[17]. In [14], [15],
a ℓ2/ℓ1-norm algorithm has been proposed to recover the
block-sparse signals. It has been shown in [15] that such
mixed norm algorithm is guaranteed to recover any block-
sparse signal if matrix A satisfies the condition of small
block-restricted isometry constant. In [13], an extension of the
CoSaMP algorithm [9] with iterative hard thresholding [16] is
proposed and shown to exhibit provably recovery guarantees
and robustness properties to the block-sparsity signals. In
[17], a block orthonormal matching pursuit algorithm (BOMP)
is proposed by extending the OMP algorithm to solve the
block sparsity problem and the performance dominates other
algorithms.

However, in [13], [17], it’s assumed that the block is
idealized where the elements of a block are all zeros or non-
zeros. Actually, in many practical system, the block-sparsity
exhibits imperfection. For example, multi-band signals with
different bandwidth. In other words, a block may contain both
zero and nonzero elements. Although such imperfection is
mentioned in [14], [15], the sparse vector x is divided into
blocks of different sizes and the proposed recovery method is
based on the hypothesis that the location and the number of
nonzero element have been known as a priori information.

In this paper, we consider the recovery method for the
generalized block-sparsity signals such that the blocks may
have both zero and nonzero elements. We extend the BOMP
algorithm proposed in [17] through iteratively separating the
detected non-zero block into two smaller blocks and take
advantage of the information for the next recovery process.
As such, a multi-step recovery algorithm is proposed for the
generalized block-sparsity signals without knowing the block
structure. Simulation results under noisy measurements show
a significant better performance than the current proposed
algorithms.

The remainder of the paper is as follows. In section II,
necessary background and current algorithms for the block-
sparsity signals are reviewed. The proposed algorithm is
depicted in Section III. Simulation results and performance
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comparison are shown in section IV. In section V, we conclude
the results.

II. BLOCK-SPARSE SIGNAL RECOVERY

We consider the problem of recovering a vector x from
noisy measurements y given by

y = Ax+ z, (1)

where x ∈ CN×1 is the unknown signal, A ∈ CM×N is the
measurement matrix of size M ×N with M < N , z ∈ CM×1

are the noises added to the measurements y ∈ CM×1 with i.i.d
Gaussian distribution of zero mean and variance σ2 for each
entry. We assume that x is k-sparse, where the number k of
non-zero entries is far less than N . Let us define a block in x
is a cluster of continuous zero or non-zero elements, where the
run length of the cluster is defined as the block size. Denoting
the number of the non-zeros blocks is m and the total number
of blocks is L. Thus, the block-m-sparse signal is defined as a
sparse signal with m≪ L. However, such definition of block-
sparse signal is not helpful in practice since the block size may
be different, which leads to the difficulty in the recovery from
the measurements. In this paper, we assume that the sparse
vector x is separated into blocks with equal block size and
refer the block wise vector as the block-sparse signal. An
example of a block-sparse signal is shown in Fig.1(b), where
the sparse vector is separated into blocks with equal block
size d. Throughout the paper, we refer such blocked signal
as block-sparse signal with size d. As shown in the Fig.1,
each block may have all-zero elements or a part of non-zero
elements.

A block-sparse signal with d can be formed as

x(d) = (x[1],x[2], . . . ,x[n])T , (2)

where x[p] = (xpd+1, . . . , xpd+d) denotes the pth block with
1 ≤ p ≤ n and N = nd. Assume that N/d is an integer, the
measure matrix A is represented as the following block form

A = (A[1], . . . ,A[n]), (3)

where A[p] = (apd, . . . ,apd+d) and al is the lth column
vector of A. Note that the block-sparse signal degenerates
to a conventional sparse signal with d = 1. Thus, the recovery
method for the block wise signal is a more general problem.

A. The mixed ℓ2/ℓ1-norm recovery algorithm

In [14], [15], a mixed ℓ2/ℓ1-norm algorithm was proposed
to recover the block-sparse signal. The sparse signal x is
recovered by solving the following convex second order cone
programming problem

min
x
∥x∥2,I

s.t.∥y −Ax∥22 ≤ σ2,
(4)

Recovered vector with Block size d=4

Recovered vector with Block size d=2

Recovered vector with Block size d=1

Unknown sparse vector

d=4

d=2

d=1

(a)

(b)

(c)

(d)

Fig. 1. A block-sparse vector recovered by BOMP with block size d=4,2,1.
Here, the dark elements are non-zero and the white elements are zeros.

where the mixed norm of x is defined as

∥x∥2,I =
n∑

p=1

∥x[p]∥2

∥x[p]∥2 =
√
x[p]Hx[p].

The problem in Eq.(4) can be efficiently solved by the current
optimization packages, such as CVX [18].

B. The BOMP algorithm

In [17], a block wise OMP algorithm (BOMP) is proposed
by extending the OMP algorithm. In such greedy searching al-
gorithm, the sparse vector is recovered by iteratively searching
the optimal “matching basis”, which is a sub-block of matrix
A in BOMP algorithm or a column vector of A in OMP
algorithm. The BOMP algorithm is as follows.

Algorithm 1 Block-Orthogonal Matching Pursuit
Input: y,A, d, ϵ
Initialization: k ← 0, r0 ← y, C ← ∅,∆←∞, x̃← 0;
Repeat until ∆ < ϵ
j = argmax

{i=1,2,...,n}

∥∥AH [i]rk
∥∥
2
;

k ← k + 1;
C ← C

∩
{j};

x̃k ← min
x̃[i],i∈C

∥∥∥∥y − ∑
i∈C

A[i]x̃k−1[i]

∥∥∥∥
2

rk ← y −
∑
i∈C

AH [i]x̃k[i]

∆← ∥rk∥2
Output: x̃k.

In [17], it is shown that the BOMP algorithm is much better
than the traditional OMP algorithm in the successful recovery
rate. In the BOMP algorithm, a correct block is picked every
step and the energy of the residual decays exponentially[17].

However, as illustrated by the Fig.1, the recovered vector
is different with different block size d. From the above
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Fig. 2. A Conceptual Diagram of the Proposed BT-BOMP

mentioned BOMP algorithm, we observe that there are d basis
(block size) of matrix A been added at each step for the
recovery of the sparse vector x. The selected basis are used to
determine the corresponding positions’ values of the unknown
vector x̃ through (ÃHÃ)−1ÃHy, which is well known that
is not sparse. In other words, the recovered values of the
corresponding positions in each step of the BOMP algorithm
are almost non-zeros. Therefore, the BOMP algorithm is
suitable for the regular structure block-sparse signal, where
the run length of the non-zero elements are same. However,
in certain situations, such as multi-band signals with different
bandwidth, there may have both non-zero and zero elements
in a block, which will lead to inaccurate recovery of vector
x. Another issue is that the block size d is not easy to
determined without a prior information of the signal. Thus,
we propose a binary tree based BOMP algorithm (BT-BOMP)
for the recovery of sparse vector x without knowing its block
structure.

III. THE BINARY TREE BASED BOMP ALGORITHM

The key innovation of the binary tree based BOMP algorith-
m (BT-BOMP) lies in that we start a BOMP algorithm with
block size 2m and separate each recovered non-zero block
into two half blocks with block size 2m−1. The BT-BOMP
algorithm takes advantage of the recovered non-zero blocks
and obtains a finer supporting set of basis by searching their
half blocks. As such, a more accurate recovered vector can be
obtained. The searching procedure continues until the block
size with d = 1.

The conceptual diagram of the BT-BOMP algorithm of the
qth step is shown in Fig.2. Comparing to the BOMP algorithm,
the difference of BT-BOMP algorithm lies in the multi-step
process and filtering the set of chosen indices for next step,
which enables more robustness against the noise. The multi-
step process can be expressed as a binary sort tree. As shown in
the Fig.2, assume that the block is of size d in the (q−1)th step,
the block OMP algorithm is used to recover all the non-zero
blocks with Cq−1 being the set of these blocks. In the binary
tree decomposition, each non-zero block in Cq−1 is separated
into two sub-blocks with half block size. In the filtering stage,
the BT-BOMP algorithm searches the matching basis within
the set of half blocks and filters the corresponding zero sub-
blocks. The residual vector is updated after filtering stage.

The pseudo code of the BT-BOMP algorithm at qth step
is given in the Algorithm 2, where the halting parameter ξ is
the variance of the noise. Such process runs until the block
size decreases to 1. The BT-BOMP algorithm starts from a

suitable block size d = 2m, where the BOMP algorithm in
section II is used as a warm-start. It’s noteworthy that in
the Filtering stage, the BT-BOMP algorithm selects the best
matching blocks among the estimated set, while the BOMP
algorithm only selects the best block among A once.

Algorithm 2 Binary Tree based Block-Orthogonal Matching
Pursuit

Input: priori knowledge Cq−1, y,A
Initialization: k ← 0, rq0 ← y, Cq ← ∅
1:Binary tree decomposition:

⌢

C
q

= {2 ∗ Cq−1 − 1} ∪ {2 ∗ Cq−1}
where

⌢

C
q

serves as an initial estimate.
Repeat
2:Filtering:

ik = argmax
⌢
C

q

∥∥AH [i]rk−1

∥∥2
3:Updating :

add the coordinate ik to Cq: Cq = {ik} ∪ Cq

update the residual

x̂q = argmin
{x̃k[i]}i∈C

q

∥∥∥∥y − ∑
i∈Cq

A[i]x̃k[i]

∥∥∥∥2;

rqk = y −Ax̂q

4:Halting:
if ∥rqk∥2 ≤ ξ then

return Cq , x̂q;
else

quit the iteration, q ← q + 1;
end if

Until halting condition true;
Output: Cq , x̂q .

Since the BT-BOMP algorithm allows to start with a large
block size d, the BOMP algorithm can find the true supporting
block basis in matrix A with high probability. Therefore, part
of noises are suppressed at the filtering stage. As such, the BT-
BOMP algorithm with multi-step process may obtain more
accurate supporting basis and robustness against noise. The
simulation results given in the next section testify our idea.

IV. SIMULATION RESULTS

In this section, we compare the simulation results of the
proposed BT-BOMP algorithm with current algorithms for
block-sparse signals. For all the simulations, we generate a
random dictionaries A by drawing i.i.d Gaussian variable for
each element of A. Such random matrix satisfies the block
RIP conditions in [17]. The elements of the sparse vector x
are complex Gaussian variables with mean µ = 1 and variance
0.1 for both real and imagine components.

A. Variant Noise Levels

In this experiment, the length N of the sparse vector x is
960. The block-sparsity k is chosen to be 2, where only 2
blocks are non-zeros. All the algorithms are simulated with
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Fig. 3. Robustness of BOMP, BT-BOMP, L-OPT for a dictionary with M=180,
N=960 and d=16 under variant noise levels

the same noisy measurements. In Fig.3, the mean square
errors(MSE) of the recovery sparse vector are compared with
various noise levels, where the MSE is defined as

MSE =
∥x̃− x∥2

∥x∥2
.

It is seen that the MSE of the BT-BOMP algorithm is much
less than other algorithms for the same noise level, where
the L-OPT algorithm is for the mixed ℓ2/ℓ1-norm algorithm
solved by CVX optimization software[18]. In order to better
understand the performance of the OMP-like algorithms, we
give the optimal performance by assuming that the non-
zero positions of the sparse vector x are known and the
corresponding basis are directly selected from the dictionaries
A for the recovery. It is seen from the Fig.1 that the MSE
performance of the BT-BOMP algorithm in the first step
is exactly the same as the BOMP algorithm since the BT-
BOMP algorithm employs the BOMP algorithm as a warm-
start. However, the BT-BOMP algorithm is significantly better
than the BOMP algorithm with the multi-step process.

B. Various Block-sparsity Levels

We further compare the MSE performances under different
block-sparsity between the proposed BT-BOMP alorithm and
current algorithms. In this experiment, the SNR is all set to
20dB and N = 960. Fig.4 depicts the MSE performance with
block-sparsity k = 2, 3, 4.

It is obvious that the BT-BOMP algorithm is the best. It’s
noteworthy that the performance of the BOMP and BT-BOMP
algorithms is close as the block-sparsity being larger. It is
because that we fixed the dimension of measurements in the
simulations and the BOMP algorithm may not be able to
select all of the correct non-zero blocks in the first step, which
deteriorates the MSE performance. In order to overcome this,
a larger block size can be selected as the first step in the BT-
BOMP recovery procedure.
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Fig. 4. Performance of BOMP, BT-BOMP, L-OPT for a dictionary with
M=180, N=960 and d=16 under various block-sparsity levels
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Fig. 5. Average Recovery Time of BOMP, BT-BOMP, L-OPT for a dictionary
with M=180, N=960 and d=16

C. Complexity Comparison

In Fig.5, the time consumptions of the algorithms are
compared, where we use the same computer and record the
processing time for each algorithm. It is obvious that both the
L-OPT and the OMP algorithms require long recovery time
comparing to the BT-BOMP and BOMP algorithms. The BT-
BOMP algorithm requires a little more time than the BOMP
algorithm since it needs more time for multi-step processing.

D. Discussions

From the practical perspective, the most prominent feature
of the BT-BOMP is that it shows better robustness against
noise. We also want to point out that the BT-BOMP algorithm
provides a generalized framework for all sparse signals. Note
that even the block sparse signal exhibits irregular structure,
the BT-BOMP algorithm still provides an accurate recovery
according to the multi-step process. Besides, it turns out to
the conventional OMP algorithm with d=1. As such, the BT-
BOMP algorithm always provides more accurate solution than
the BOMP algorithm with the cost of a little more complexity.
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Comparing to the ℓ2/ℓ1 algorithm and the conventional OMP
algorithm, it dominates in both performance and complexity.

V. CONCLUSIONS

In this paper, a binary tree-based block orthogonal matching
pursuit algorithm is proposed for block sparse signals under
the compressed sensing framework. The BT-BOMP algorithm
is suitable for the generalized block sparse signals, where the
size of non-zero blocks may be different. By the multi-step
processing, the BT-BOMP algorithm may not need the knowl-
edge of block structure and obtains the robustness against
noise. The simulations show that the BT-BOMP algorithm is
much better than the current state algorithm for block sparse
signals.
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