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Abstract: Automatic Modulation Classifier (AMC) is an 
important component of a Cognitive Radio (CR) architecture 
that helps in better utilization of the spectrum. The successful 
implementation and employment of various cognitive radio 
services are largely dependent on the modulation classification 
performance of the cognitive radio terminals. AMC in literature 
is mostly developed for classifying the signal transmitted by a 
single user. Multiuser AMC, as the name suggests, 
simultaneously classifies signals transmitted by multiple users, 
while existing approaches rely on centralized processing. In this 
paper, we propose a fourth order cumulant based multiuser 
distributed AMC that can perform well even in a multipath 
fading environment. The proposed algorithm uses spatially 
distributed CRs cooperating with each other, which results in 
improved classification performance. Simulation results are 
provided to illustrate the promising results yielded by the 
proposed algorithm. 

Keywords: Cognitive radio, multiuser AMC, distributed 
classification, higher order cumulants, multipath fading 

I.  INTRODUCTION  
Cognitive radio, originally introduced by Mitola [1], has 

emerged as a key enabling technology which provides licensed 
users with the ability to share the wireless channel in an 
opportunistic way [2]. AMC is the automatic recognition of 
modulated signals present in a particular frequency band. 
AMC is an important component of cognitive radio that 
improves spectral efficiency by adapting transmission and 
reception according to the spectral environment. CRs are 
basically intended to form an ad-hoc network known as a 
Cognitive Radio Network (CRN) [3], which has potential 
military and commercial applications. In military and public 
safety applications, the CRs must be capable of performing 
fixed and on-the-move communications between highly 
diverse elements in a harsh environment which may also be 
susceptible to jamming attacks and malicious interference [4]. 
For the secure and reliable operation of a CRN, CRs must be 
able to identify all users in the frequency band simultaneously. 

AMC can be broadly classified into two categories: Likelihood 
based and Feature based [5]. Feature based AMCs are widely 
used because of easy implementation and better performance. 
Some of the widely used features are higher order statistics, 
cyclostationary features, wavelet features, and signal 
constellation. A lot of work has been reported in the literature 
on classifying signals from a single user, but multiuser AMC 
has not yet been investigated to a reasonable extent. The idea 
of multiuser AMC using a fourth order cumulant based 
approach has been recently proposed in [6]. However, it 
assumes that the number of transmitting users is known and all 
the users transmit at the same power over an AWGN channel, 
which is not true in a normal cognitive radio setup. Also, the 
method in [6] does not identify the exact modulation schemes 
used by the transmitting users but rather identifies the possible 
family of modulation schemes that might be present in the 
frequency band.  
 

In this paper, we propose a novel multiuser distributed 
AMC based on normalized fourth order cumulants that can 
identify the exact modulation schemes used by multiple 
transmitting users in a frequency band. The proposed AMC is 
developed for actual multipath fading environments and no 
assumption on the transmission power of the users is made. In 
the proposed multiuser AMC, we use multiple antennas for 
reception, whereas only a single receiving antenna is used in 
[6]. By using multiple antennas at the receiver, the CR can 
identify the number of transmitting users, which is generally 
not possible while using a single antenna receiver. Also, by 
using multiple antennas, the CR can harness the flexibility 
offered by traditional multi-input multi-output (MIMO) 
communication schemes separately from classifying the 
signals from multiple users.  
 

The normalized cumulant value based single user AMC was 
first proposed in [7]. The multipath channel drives the 
cumulant value of the transmitted signal to zero [7] and hence 
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severely affects the performance of the cumulants based 
AMC. In [8], [9] a robust cumulant based single user AMC 
was developed for multipath fading channels. The approach in 
[8] involves estimating the multipath channel and using the 
estimated channel information to improve the performance of 
the AMC. However, channel knowledge or a pilot sequence 
for estimating the channel is not available in a CR scenario. 
Therefore, one needs to estimate the channel blindly. Most of 
the blind multiuser channel identification algorithms reported 
in the literature are batch processing algorithms. The high 
computational overhead involved in computing the inverses of 
a large correlation matrix as a part of these algorithms is not 
suited for CRs in rapidly varying channel conditions. In this 
paper, we will use a recursive channel estimation scheme that 
can track rapidly changing channel conditions for the single 
receiver AMC scheme proposed in our previous work [10, 11]. 
The proposed multiuser AMC consists of two major blocks: a 
signal processing block and a classifier block. In the signal 
processing block, the normalized fourth order cumulant of the 
received signal and the multiuser channel impulse response are 
estimated and used to determine the normalized cumulant 
value of each transmitting user. These estimated cumulant 
values are finally fed to the classification unit to identify the 
modulation schemes employed by users.  

 
In this paper, signal detection and modulation classification 

is performed in a distributed manner to take advantage of radio 
signal variability [12]. There has been a relatively rich history 
of research in the area of distributed detection and estimation 
theory [13, 14]. A number of papers have proposed, and 
addressed, distributed signal detection in the context of 
cognitive radios [15-17]. Recently, some works have focused 
on distributed signal classification in sensor networks. An 
optimized solution is proposed in [18] that incorporates 
distributed detection to the framework of LRT-based 
modulation classification. In [12], a distributed cyclic 
spectrum feature based modulation classification algorithm is 
proposed where a centralized fusion center makes a final 
decision based on locally estimated classifications using the 
Gauss-Seidel iteration. In [19], distributed feature based 
modulation classification in the context of wireless sensor 
networks is presented where classification performance is 
improved by exchanging suitable information among the 
single hop neighbors. 

 
All of the above works either consider a single transmitting 

user or a single receiving node to analyze the classification 
performance. In this paper, we try to analyze the classification 
performance assuming multiple transmitting users and a 
spatially distributed CRN where all the CRs operate in a 
cooperative manner. The distributed setup comes into play as 
the cumulants are estimated from the received samples. CRs 
exchange their local version of the sample average estimation 
with their neighbors. Individual sensors update their cumulant 
estimation using information from their neighbors in an 
iterative fashion. 

  

The paper is organized as follows. In Section II we present 
the theory behind multiuser AMC. The channel model and the 
assumptions made are also presented in this section. Section 
III presents a discussion of distributed feature based AMC. In 
Section IV, we present the multiuser distributed modulation 
classification algorithm. Simulation results are presented in 
Section V followed by the conclusion. 

 
Notation: (.)T denotes the usual transpose operation; (.)* or 

(.)H denotes the complex conjugate transpose; Im denotes the 
identity matrix of dimension m×m; Om×n denotes the zero 
matrix of dimension m×n; |(.)| denotes the absolute value of 
the variable; E(.) denotes the statistical expectation. Whenever 
it is clear from the context, the dimensions of I or O will be 
omitted for simplicity of presentation and can be inferred from 
the context.  

 

II. CHANNEL MODEL AND PRELIMINARIES 
In this section, the underlying theory behind the proposed 

cumulant based multiuser AMC is provided. We begin our 
discussion by presenting the channel model and the 
assumptions in the channel model 

 

A. Channel model and assumptions 
In order to classify the signal from multiple users 

simultaneously, a receiver should have multiple antennas. Let l 
be the number of transmitting users and m be the number of 
receiving antennas; it is required that m > l. The above 
condition is required for the blind estimation of the multiuser 
channel. Usually in a CR scenario, l is not known, but there are 
methods available in the literature for estimating l using 
multiple receiving antennas (see example in [20]). The 
multipath channel between the jth user and the ith receiving 
antenna is denoted as hij(z-1) and is given by 

hij(z-1) = hij(0) + hij(1) z-1 + . . . + hij (L) z-L,  (1) 

 

where L is the number of multipath components, z-1 is the unit 
delay operator, and hij(k) (for k = 1, . . . , L) is the fading 
coefficients of the corresponding multipaths. The overall 
system can now be represented by the following model 

𝑦(𝑖)  =  𝑥(𝑖)  +  𝑤(𝑖),  𝑖 =  0, 1, 2, . ..  (2) 

𝑥(𝑖)  =  𝐻(𝑧−1)𝑠(𝑖)  

 

where s(i) is the l × 1 transmission vector whose elements sk(i) 
(k = 1, 2 . . . l) denote the kth transmitting user, y(i) is the m × 1 
reception vector whose elements yk(i) (k =1, 2 . . .m) denote the 
received signal at the kth receiving antenna, w(i) denotes the m 
× 1 noise vector, and H(z-1) is given by 

𝐻(𝑧−1) = �
ℎ11(𝑧−1) ⋯ ℎ1𝑙(𝑧−1)

⋮ ⋱ ⋮
ℎ𝑚1(𝑧−1) ⋯ ℎ𝑚𝑙(𝑧−1)

� (3) 



We make the following assumptions regarding the system 
model (2). 

Assumption A1: rank [H(z-1)] = l, for all complex 𝑧 ≠ 0, i.e. 
H(z-1) is irreducible. 

Assumption A2: s(k) is zero mean, spatially independent, 
and temporally white. 

Nonidentity correlation matrices are absorbed into H(z-1), 
i.e., the transmission power of the users can be different.  

Assumption A3: w(k) is zero mean Gaussian with variance 
𝜎𝑤2 . 

Assumption A1 is verified with probability one for any 
practical MIMO wireless channel with reasonable spatial 
diversity and hence for our CR scenario this assumption is 
valid. Assumption A2 implies that signals transmitted by two 
different users are uncorrelated. Assumption A3 implies that 
that the noise vector is uncorrelated and variance 𝜎𝑤2  is known. 
In general, 𝜎𝑤2  is not known, but there are several methods in 
the literature for estimating it. 

 

B. Cumulant based multiuser AMC 
In this section, we provide the basic theory behind the 

proposed cumulants based multiuser AMC. Cumulant features 
were first considered for the AMC in [7].  

 
In a multiuser scenario, the received signal at an antenna 

array is a superposition of signals from many users. Cumulant 
features are considered in this case because of the following 
additive property 

 𝐶40𝑢+𝑣 = 𝐶40𝑢 +  𝐶40𝑣   (5) 
 

where u and v are independent sequences. The normalized 
fourth order cumulant of a received signal is defined as 

 �̃�40𝑣 =  𝐶40𝑣
(𝐶21𝑣)2

    (6) 

where 𝐶21𝑣 = 𝐸(|𝑣|2)    (7) 
 
The value of 𝐶40𝑣 can be estimated from the sample 

estimates of the corresponding moments [7] and we denote it 
as �̃�40𝑣. The 𝐶40𝑣 value for most modulation schemes is 
unique and hence can be used as a feature for classification. 
The theoretical values of cumulants for different modulation 
schemes are tabulated in [7]. Since multiple receiving 
antennas are used, the received signal at the ith receiving 
antenna due to multiple transmitting users is given by  

 
𝑦𝑖(𝑛) =  ℎ𝑖1(𝑧−1)𝑠1(𝑛) + ⋯+ ℎ𝑖𝑙(𝑧−1)𝑠𝑙(𝑛) +𝑤𝑖(𝑛)   (8)  

 
Using the relationship in (5), the value of the fourth order 

cumulant for 𝑦𝑖  is given by 
 𝐶40𝑦𝑖 =  𝐶40𝑠1𝛾𝑖1 + ⋯+  𝐶40𝑠𝑙𝛾𝑖𝑙  (9) 

where 𝛾𝑖𝑗  =  ∑ |ℎ𝑖𝑗(𝑘)|4  𝐿−1
𝑘=0    (10) 

 
Similarly, the second order cumulant for 𝑦𝑖  is given by 
 

 𝐶21𝑦𝑖 =  𝐶21𝑠1𝜌𝑖1 + ⋯+ 𝐶21𝑠𝑙𝜌𝑖𝑙 +  𝜎𝑤2  (11) 
where 𝜌𝑖𝑗  =  ∑ |ℎ𝑖𝑗(𝑘)|2  𝐿−1

𝑘=0    (12) 
Assumption A2 implies 𝐶21𝑠𝑖 = 1 (𝑓𝑜𝑟 𝑖 = 1, … , 𝑙), i.e., 

transmitted signals are of unit energy. It should be noted that 
non unit energy signals are converted to unit energy by 
absorbing the scaling factor into the channel matrix 𝐻(𝑧−1). 
Thus (11) can be written as  

 𝐶21𝑦𝑖 = 𝜌𝑖1 + ⋯+ 𝜌𝑖𝑙 +  𝜎𝑤2 =  ∆𝑖 + 𝜎𝑤2  (13) 
  
Then the normalized 4th order cumulant for 𝑦𝑖  is given by 

�̃�40𝑦𝑖 =  
𝐶40𝑦𝑖

𝐶21𝑦𝑖
− 𝜎𝑤2

=  ∑
𝛾𝑖𝑗
∆𝑖
2

𝑙
𝑗=1 �̃�40𝑠𝑖   (14) 

 
Extending the above equation to all receiving antennas 

�
�̃�40𝑦1
⋮

�̃�40𝑦𝑚

� =  �

𝛾11
∆12

⋯ 𝛾1𝑙
∆12

⋮ ⋱ ⋮
𝛾𝑚1
∆𝑚2 ⋯ 𝛾𝑚𝑙

∆𝑚2

�  �
�̃�40𝑥1
⋮

�̃�40𝑥𝑙

� (15) 

 
or 𝐶40𝑦 = 𝐵 𝐶40𝑥    (16) 

 
The cumulant values of the signal transmitted by different 

users can be obtained by solving (15). The extracted cumulant 
features are then used for classification. Assumption A1 
implies that the entries of 𝐻(𝑧−1) do not have any common 
factors, i.e., each entry of 𝐻(𝑧−1) is a unique polynomial. 
Under this assumption, the matrix 𝐵 always has full column 
rank with probability 1. Hence the solution to (15) is given by 

𝐶40𝑥 = (𝐵𝐻𝐵)−1𝐵𝐻  𝐶40𝑦   (17) 
 

In order to compute the B matrix, we require knowledge of 
the channel matrix 𝐻(𝑧−1). In a CR scenario, 𝐻(𝑧−1) is not 
known and needs to be estimated blindly. In our earlier work 
[11], we proposed a recursive multiuser channel estimation 
algorithm in the cognitive radio context. We will use that blind 
recursive estimation to acquire the required knowledge of the 
channel matrix 𝐻(𝑧−1). The estimated 𝐻(𝑧−1) will be used 
calculate the 4th order cumulants. 

 

III. DISTRIBUTED FEATURE BASED AMC 
The local cumulants are the expected values of different 

powers of the received sequence. In practice, these expectations 
are replaced by sample averages over the received symbols. 
Sample estimates of the 4th and 2nd order cumulants are given 
by 

𝐶40𝑠𝑗 =  1
𝑁

 ∑ 𝑟𝑗4𝑁
𝑛=1 (𝑛) − 3 (𝐶20𝑠𝑗)2  (18) 

where 𝐶20𝑠𝑗 =  1
𝑁

 ∑ 𝑟𝑗2(𝑛)𝑁
𝑛=1    (19) 

and 𝐶21𝑠𝑗 =  1
𝑁

 ∑ �𝑟𝑗(𝑛)�2𝑁
𝑛=1    (20) 

 



Here 𝑟𝑗(𝑛)is the received signal and 𝑁 is the total number 
of samples under consideration. While calculating the sample 
estimates of the second order cumulants, we need to consider 
the effect of the noise process. A local estimate of  𝑁0

2
 is 

obtained and subtracted from the second order cumulant 
estimates. 

The classification performance depends on how accurately 
the cumulants can be estimated. This involves reducing the 
variance of cumulant estimates by acquiring longer sequences 
of symbols. The strong law of large numbers guarantees that 
𝐶21𝑠𝑗  →  𝐶21 𝑎𝑛𝑑 𝐶40𝑠𝑗  →  𝐶40 𝑎𝑠 𝑁 →  ∞ with probability 
one. However, CRs can typically observe only a short part of 
the transmitted sequence. To reduce the resultant high-variance 
of local cumulant estimates it is thus critical for sensors to 
share information when computing averages in (19) and (20). 

 

Let,   𝑝40𝑠𝑗 =  1
𝑁

 ∑ 𝑟𝑗4𝑁
𝑛=1 (𝑛),   

𝑝20𝑠𝑗 =  
1
𝑁

 �𝑟𝑗2
𝑁

𝑛=1

(𝑛),  

and   𝑝21𝑠𝑗 =  1
𝑁

 ∑ �𝑟𝑗(𝑛)�2𝑁
𝑛=1 .  

 

The central limit theorem implies that for large values of 
samples the distribution of the sample averages approximates a 
Gaussian distribution. Also, an estimate of the sample average 
that combines all received symbols across CRs has a variance 
smaller than that of a local estimate. The local averages can be 
expressed as  

𝑝21𝑠𝑗 =  �̂�21 + 𝑔21𝑠𝑗 , 𝑗 = 1, 2, … , 𝐽  (21) 

 

where 𝑔21𝑠𝑗  is a complex white zero mean Gaussian random 
variable (similarly we can estimate 𝑝40𝑠𝑗). The maximum 
likelihood estimator of �̂�21 can be found in closed form as 
given by 

 �̂�21𝑀𝐿 =  1
𝐽

 ∑ 𝑝21𝑠𝑗
𝐽
𝑗=1    (22) 

 

Finding �̂�21𝑀𝐿 involves computing an average of the local 
estimates 𝑝21𝑠𝑗 . For the computation of the averages 
distributively using a Cognitive Radio Network (CRN), we 
consider the approach taken by [19]. Here, an approach based 
on the method of multipliers (MoM) is used because of its 
added resilience to noise and its fast convergence [21]. The 
average of the local estimates �̂�21𝑀𝐿 is, in fact, the solution of 
the following relation 

𝑚𝑖𝑛
�̂�21𝑀𝐿

1
2

 ∑ ��̂�21 −  𝑝21𝑠𝑗�
2𝐽

𝑗=1   (23) 

 

Problem (23) cannot be solved in a distributed fashion 
because of the communication constraints imposed by the 
topology of the CRN. For this reason, local variables �̂�21𝑠𝑗are 
introduced together with equality constraint to rewrite (23) as 

𝑚𝑖𝑛
�̂�21𝑗

1
2

 ∑ ��̂�21𝑗 −  𝑝21𝑠𝑗�
2𝐽

𝑗=1   (24) 

𝑠. 𝑡. �̂�21𝑗 =  �̂�21𝑖    𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝐽, ∀𝑖∈ 𝑁 

 

The equality constraints force all CRs to consent on the 
solution of (21). The MoM uses the augmented Lagrangian to 
construct an iterative algorithm solving (24). A Lagrange 
multiplier vector 𝛾𝑗𝑖 ∈ 𝑹2is introduced for each of the equality 
constraints in (24). When ∪∶= {𝛾𝑗𝑖, 𝑗 = 1, 2, … , 𝐽, 𝑖 ∈ 𝑁𝑗} 
denotes the set of all multipliers, the augmented Lagrangian is 
given by 

 𝐿 �{𝑝� 21𝑗}𝑗=1
𝐽 ,∪� =  1

2
∑ ��̂�21𝑗 −  𝑝21𝑠𝑗�

2𝐽
𝑗=1 +

 ∑ ∑ 𝛾𝑗𝑖𝑇(𝑖∈𝑁𝑗
𝐽
𝑗=1 �̂�21𝑗 −  �̂�21𝑖) + ∑ ∑ 𝜉

2
��̂�21𝑗 −  �̂�21𝑖�

2
𝑖∈𝑁𝑗

𝐽
𝑗=1  

      (25) 

where 𝜉 > 0 is a weight introduced to penalize the quadratic 
term and to trade off convergence rate for accuracy. The Mom 
based algorithm solves (24) by minimizing (25) one variable at 
a time. Per iteration l, each CR updates its local summary 
statistics 

�̂�21𝑗
(𝑙+1) =  

𝑝21𝑠𝑗
+∑ (𝛾𝑖

𝑗(𝑙)−𝛾𝑗
𝑖(𝑙)+2𝜉𝑝�21𝑗

(𝑙))𝑖∈𝑁𝑗

1+2𝜉�𝑁𝑗�
 (26) 

 

and updates its Lagrange multipliers 

      𝛾𝑗
𝑖(𝑙+1) = 𝛾𝑗

𝑖(𝑙) + 𝜉(�̂�21𝑗
(𝑙+1) − �̂�21𝑖

(𝑙+1))  (27) 

 

The MoM based algorithm for computing the average of 
the local estimates is given bellow: 

1. All CRs randomly initialize their Lagrange multipliers 
∪(0) and local estimates �̂�21𝑗

(0), 𝑗 = 1, 2, … , 𝐽; 

2. Per iteration l, each CR broadcasts its multipliers 𝛾𝑗
𝑖(𝑙) 

and local estimates �̂�21𝑗
(𝑙) to its neighboring nodes 

𝑖 ∈ 𝑁𝑗; 

3. Then all CRs update their estimates  �̂�21𝑗
(𝑙) via (26); 

4. Each CR broadcasts its new estimates �̂�21𝑗
(𝑙+1) to its 

neighbors 𝑖 ∈ 𝑁𝑗; 

5. Finally, each CR updates its multipliers 𝛾𝑗
𝑖(𝑙) via (27). 

 

The vector of normalized cumulants is used in (9) to 
calculate the normalized cumulant of that particular CR. These 



cumulant values are used to classify the unknown modulation 
format. Note that each CR is now able to make a decision about 
the modulation format on its own.  

 

IV. CLASSIFICATION ALGORITHM 
In this section, we present the step-by-step procedure for 

performing multiuser distributed AMC. The multiuser 
distributed AMC is obtained by applying the estimated channel 
from our previous work [11] and the estimated sample average 
through cooperation in a distributed setup on the classification 
algorithm developed in Section II. 

 

Step 1. Estimate the channel 𝐻(𝑧−1) using the blind 
recursive channel estimation algorithm proposed in [11]. 

Step 2. Estimate the B matrix of (18) using the estimated 
channel 𝐻(𝑧−1). 

Step 3. Calculate the estimate of the 4th and 2nd order 
cumulants using (18), (20), and the MoM based algorithm 
presented in Section III. 

Step 4. The vector of normalized cumulants estimated in 
Step 3 is used in (9) to calculate the normalized cumulant of 
that particular CR due to the transmission of multiple users. 

Step 5. Use matrix B from Step 3 and the normalized 
cumulants from Step 4 in (17) to estimate the cumulant features 
of all the transmitted sequences. 

Step 6. This is the final step where we classify the signals 
from multiple users using the estimated cumulant feature 
vector 𝐶40𝑥.  

Step 7: Continuously monitor the channel coefficients 
using the blind recursive algorithm. If the channel conditions 
change drastically, then repeat Step 3 to estimate the new 
channel impulse response. 

 

V. SIMULATION RESULTS 
In this section, we present the performance of the proposed 

algorithm to classify signal modulation from multiple users in a 
distributed setup. Our primary interest was to observe the 
improvement achievable by introducing cooperation among CR 
users in a CRN over a single CR user scenario. We also tried to 
observe the impact of an observation period on the 
performance of the proposed multiuser AMC system.  

 

The performance measure used is the probability of correct 
classification 𝑃𝐶 , i.e. the probability that the multiuser AMC 
successfully classifies the set of modulations coming from 
multiple transmitting users. Suppose that there are l 
transmitting users, M modulation schemes which are denoted 
as 𝛼 = {𝛼1,𝛼2, … ,𝛼𝑀}, and k CR receivers cooperating with 
each other. Then there are 𝐿1 =  𝑀𝑙 possible transmission 
scenarios denoted as 𝐷 = {𝑑1,𝑑2, … ,𝑑𝐿1}. The probability of 
correct classification 𝑃𝐶  is defined as  

𝑃𝐶 =  ∑ 𝑃(𝑑𝑖  |
𝐿1
𝑖=1  𝑑𝑖) 𝑃(𝑑𝑖)   (28) 

 

where 𝑃(𝑑𝑖) is the probability that the particular transmission 
scenario occurs and 𝑃(𝑑𝑖|𝑑𝑖) is the correct classification 
probability when scenario 𝑑𝑖 has been transmitted. For the 
simulation, we assume 𝑃(𝑑𝑖) =  1

𝐿1
 ,∀𝑖, where all scenarios 

are equally probable. In all the simulations, the signal-to-noise 
ratio (SNR) is defined as 
 𝑆𝑁𝑅 =  ∑ 𝐸�|𝑥𝑖|2�

𝑚
𝑖=1

∑ 𝐸(|𝑤𝑖|2)𝑚
𝑖=1

   (29) 

 
In this part of the simulation we considered multipath fading 
channels. The blind recursive algorithm from [11] was used to 
estimate the channel. The multiuser distributed AMC 
algorithm was simulated to observe the improvement in 
classification performance over a single CR user scenario. The 
probability of correct classification vs. SNR in dB is presented 
in Fig. 1 for both cases. As can be seen from Fig. 1, 
introducing cooperation among CRs in a spatially distributed 
CRN yields improved performance when making use of the 
available diversity of the distributed setup.  

 
Fig. 1. Performance of the multiuser AMC in a distributed 
setup: Multipath fading channel, {BPSK, QPSK, 8-PSK}, 

T=1000. 

 
Fig. 2. Performance of the multiuser AMC in a distributed 
setup: Multipath fading channel, {BPSK, QPSK, 8-PSK},  

T = 1000, 5000, 10000. 



To observe the impact of the observation period on 
classification performance in the case of multipath fading 
channels, a simulation was run for different numbers of 
samples. The resulting probability of correct classification vs. 
SNR graphs is given in Fig. 2. From Fig. 2, it can be seen that 
the AMC performs well when the number of observations is 
increased.  
 

VI. CONCLUSION 
In this paper, we presented a novel cumulant based 

multiuser distributed AMC for fading channels. The proposed 
AMC does not require any prior knowledge about the channel 
and hence is suitable for CR applications. We presented the 
performance of the proposed algorithm to classify signal 
modulation from multiple users in a distributed setup. Our 
primary interest was to observe the improvement achievable by 
introducing cooperation among CR users in a CRN over a 
single CR user scenario. We also tried to observe the impact of 
an observation period on the performance of the proposed 
multiuser AMC system.  
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