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Abstract—We consider multi-antenna cooperative spectrum
sensing in cognitive radio networks, when there may be multiple
primary users. A noise-uncertainty-free detector that is optimal
in the low signal to noise ratio regime is analyzed in such a
scenario. Specifically, we derive the exact moments of the test
statistics involved, which lead to simple and accurate analytical
formulae for the false alarm probability and the decision thresh-
old. Simulations are provided to examine the accuracy of the
derived results, and to compare with other detectors in realis-
tic sensing scenarios. From the considered simulation settings,
performance gain over several known detection algorithms is
observed in scenarios with relatively low signal to noise ratio.

Index Terms—Cognitive radio; multi-antenna spectrum sens-
ing; multiple primary users; locally best invariant test.

I. INTRODUCTION

In Cognitive Radio (CR) networks, dynamic spectrum
access is implemented to mitigate spectrum scarcity. Namely, a
secondary (unlicensed) user is allowed to utilize the spectrum
resources when it does not cause intolerable interference to
the primary (licensed) users. Spectrum sensing is the first key
step towards this dynamic spectrum access scenario.

Prior work on cooperative spectrum sensing predominately
employ the assumption of a single active primary user. Based
on this assumption, several eigenvalue based sensing algo-
rithms have been proposed recently [1–8]. These algorithms
are non-parametric, i.e. they do not require information of the
primary user, in contrast to e.g. feature detection. Moreover,
they achieve optimality under different assumptions on the
knowledge of the parameters. The assumption of a single
primary user is made as the investigations in the literature have
mainly focussed on CR networks, where the primary users are
TV or DVB systems. In these systems the single active primary
user assumption is, to some extent, justifiable. In addition,
assuming a single primary user leads to analytically tractable
problems.

The single primary user assumption may fail to reflect the
situation in forthcoming CR networks, where the primary
system could be a cellular network, and the existence of more
than one primary user would be the prevailing condition. Using
existing single primary user detection algorithms in such a
scenario will induce performance loss. Despite the need to
understand multiple primary user detection, the results in this
direction are rather limited. A heuristic detection algorithm

based on the ratio of the extreme eigenvalues is investigated
in [9, 10], but its detection performance turns out to be sub-
optimal [6]. An optimal detection algorithm in the presence of
multiple primary users, based on the spherical test, has been
proposed in [11] and subsequently studied in [12]. However,
numerical evidence suggests that this detector does not per-
form particularly well when Signal-to-Noise Ratio (SNR) is
relatively low [12]. Spectrum sensing in the low SNR regime
is a practical and challenging issue in cooperative spectrum
sensing. For example, recent FCC regulations require that the
secondary devices must be able to detect signals with SNR as
low as −18 dB [13]. To address this challenge, in this paper
we consider a multiple primary user detector that is optimal in
the low SNR regime. In particular, we investigate its detection
performance by deriving a closed-form moment expression of
the test statistics. Using the derived moments, approximations
to the false alarm probability and the decision threshold are
constructed. The derived approximations are easily computable
and simulations show that they are accurate for the considered
sensor sizes and number of samples.

The rest of this paper is organized as follows. In Section II
we propose the optimal low SNR detector for multiple primary
user sensing after outlining the signal model. Performance
analysis of the proposed detection algorithm is addressed in
Section III. Section IV presents numerical examples to verify
the derived results and to study the detection performance in
diverse scenarios. Finally in Section V we conclude the main
results of this paper.

II. PROBLEM FORMULATION

A. Signal Model

Consider the standard model for K-sensor cooperative de-
tection in the presence of P primary users,

x = Hs + σn (1)

where x ∈ CK is the received data vector. The K sensors
may be e.g. K receive antennas in one secondary terminal
or K secondary devices each with a single antenna, or any
combination of these.1 The K × P matrix H = [h1, . . . ,hP ]

1This collaborative sensing scenario is more relevant when the K sensors
are in one device, since for multiple collaborating devices, accurate time
synchronization between devices are needed and communications to the fusion
center becomes an issue.
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represents the channels between the P primary users and the
K sensors. The P × 1 vector s = [s1, . . . , sP ]′ denotes zero
mean transmitted signals from the primary users. The K ×
1 vector σn is the complex Gaussian noise with zero mean
and covariance matrix σ2IK , where the scalar σ2 is the noise
power.

We collect N i.i.d observations from model (1) to a K×N
matrix X = [x1, . . . ,xN ]. The problem of interest is to use
the data matrix X to decide whether there are primary users.
For ease of analysis we make the following assumptions

1) The channel H is constant during sensing time.
2) The primary user’s signal follows an i.i.d zero mean

Gaussian distribution and is uncorrelated with the noise.
In the absence of primary users, the sample covariance matrix
R = XX† follows an uncorrelated (white) complex Wishart
distribution WK (N,Σ) with population covariance matrix

Σ := E[XX†]/N = σ2IK . (2)

In the presence of primary users, by assumptions 1) and
2), the sample covariance matrix R follows a correlated
complex Wishart distribution. The correlation is induced by
the presence of the signals, and it is characterized by the
population covariance matrix

Σ = σ2IK +

P∑
i=1

γihih
†
i , (3)

where γi := E[sis
†
i ] defines the transmission power of the i-

th primary user. The received SNR of primary user i across
the K sensors is SNRi := γi||hi||2/σ2. Finally, we denote
the ordered eigenvalues of the sample covariance matrix R by
0 ≤ λK ≤ . . . ≤ λ1 <∞.

B. Test Statistics

The differences between the population covariance ma-
trices (2) and (3) can be explored to detect the primary
users. This detection problem can be formulated as a binary
hypothesis test, where hypothesis H0 denotes the absence of
primary users and hypothesis H1 denotes the presence of
primary users. Declaring wrongly H0, or declaring correctly
H1, defines the false alarm probability Pfa, and the detection
probability Pd, respectively. Since the sample covariance ma-
trix R is a Wishart matrix, it is a sufficient statistics for the
population covariance matrix Σ [14]. This leads to various test
statistics as functions of R with different assumptions on the
number of primary users P , and the knowledge of the noise
power σ2.

In the case of a single primary user, P = 1, the hypothesis
test can be expressed as

H0 : Σ = σ2IK (4)
H1 : Σ = σ2IK + γ1h1h

†
1. (5)

Assuming known noise power σ2, the Largest Eigenvalue
based (LE) detection TLE := λ1 is shown to be optimal under
the Generalized Likelihood Ratio Test (GLRT) criterion [2].
Here we concentrate on unknown noise power. Then the

optimal detector in the GLRT sense is the Scaled Largest
Eigenvalue based (SLE) detection TSLE := λ1/

∑K
i=1 λi. The

SLE detector is first proposed in the context of spectrum
sensing in [4] and analyzed in [5–8].

It can be verified that the matrix
∑P
i=1 γihih

†
i in (3) is

positive definite, i.e.
∑P
i=1 γihih

†
i � 0. Considering this fact,

in the presence of possibly multiple primary users, when P ≥
1 but not known a priori, the hypothesis test is expressed as

H0 : Σ = σ2IK (6)
H1 : Σ � σ2IK , (7)

where the noise power σ2 is assumed to be unknown. Essen-
tially, we are testing a null hypothesis Σ = σ2IK against all
the other possible alternatives of Σ, i.e. the hypothesis test
is blind to P . In the statistics literature, this hypothesis test
is known as the sphericity test. The corresponding optimal
detector under the GLRT criterion is the so-called Spherical

Test based detection TST :=
∏K
i=1 λi

/(∑K
i=1 λi/K

)K
. In

the context of spectrum sensing, the ST detection is first
proposed in [11] and analyzed in [12]. Although in general
the ST detector achieves good performance, it is not the best
one in the low SNR regime. A test statistics that is optimal
in detecting small deviations from H0 is the so-called John’s
detection

TJ :=
tr(R2)(
tr(R)

)2 =

∑K
i=1 λ

2
i(∑K

i=1 λi

)2 , (8)

which is first considered by S. John [15]. A more rigorous
derivation of the test statistics (8) can be found in [16], where
the resulting test procedure is

TJ
H1

≷
H0

ζ, (9)

ζ being a threshold. The optimality property of the TJ detector
in detecting small derivations is known as the locally best
invariant property. Mathematically, it means that for every σ2

and for every other test T (say), there is a neighborhood of
σ2IK such that TJ achieves no worse performance than T
does [16].

Besides the ST and John’s detectors, another detector in the
presence of multiple primary users is the Eigenvalue Ratio
based (ER) detection TER = λ1/λK [9, 10]. The ER detector
is not constructed from any optimality considerations, thus its
performance is substantially worse than those of the ST and
John’s detectors [6, 12]. Finally, we note that no eigenvalue
decomposition is needed in implementing John’s detector as
opposed to most of other eigenvalue based detectors.

III. PERFORMANCE ANALYSIS

In this section we first derive an exact expression for
the moment of TJ. Based on this result, we construct an
approximation to the distribution of TJ, which leads to closed-
form formulae for the false alarm probability and the decision
threshold.



A. Exact Moment Expression

Under H0, by following the similar argument for the real
Wishart case [17] it can be easily verified that the random

variable
(∑K

i=1 λi

)2
is independent of the random variable

of interest

TJ =

∑K
i=1 λ

2
i(∑K

i=1 λi

)2 ∈ [1/K, 1]. (10)

By this independence, the m-th moment of
∑K
i=1 λ

2
i equals

E

[(
K∑
i=1

λ2i

)m ]
= E[TmJ ]E

[(
K∑
i=1

λi

)2m ]
, (11)

and thus

E[TmJ ] = E

[(
K∑
i=1

λ2i

)m ]/
E

[(
K∑
i=1

λi

)2m ]
. (12)

The random variable 2 tr(R) = 2
∑K
i=1 λi follows a Chi-

square distribution with 2KN degrees of freedom. By using
the moment expression for Chi-square distribution [18] (Eq.
(2.35)), the 2m-th moment of

∑K
i=1 λi is obtained as

E

[(
K∑
i=1

λi

)2m ]
=

Γ(2m+KN)

Γ(KN)
. (13)

The next step is to calculate the moment of
∑K
i=1 λ

2
i , which

is given by the following result.

Proposition 1. The m-th non-negative integer moment of the
random variable

∑K
i=1 λ

2
i equals

E

[(
K∑
i=1

λ2i

)m ]
=

∑
a1+···+aK=m

m!C

a1! · · · aK !
×

∏
1≤i<j≤K

(2aj − 2ai + j − i)
K∏
i=1

Γ(2ai +N −K + i), (14)

where the sum is over all the non-negative integer solu-
tions of a1 + · · · + aK = m and the constant C =(∏K

i=1 Γ(N − i+ 1)Γ(K − i+ 1)
)−1

.

The proof of Proposition 1 is in Appendix A. Inserting (14)
and (13) into (12), the m-th moment of random variable TJ,
denoted by Mm, equals

Mm :=
C Γ(KN)

Γ(2m+KN)

∑
a1+···+aK=m

m!

a1! · · · aK !
×

∏
1≤i<j≤K

(2aj − 2ai + j − i)
K∏
i=1

Γ(2ai +N −K + i). (15)

The sum over the partition a1 + · · · + aK =
m can be implemented by normal sums as∑m
a1=0

∑m−a1
a2=0 · · ·

∑m−a1−···−aK−2

aK−1=0 with aK replaced
by m−

∑K−1
i=1 ai in the summand. Note that for real Wishart

matrix, up to the second, fourth and sixth moment of TJ

under H0 can be found in [17], [21] and [22], respectively.
To the best of our knowledge, the derived moment expression
of TJ (15) for complex Wishart matrix, which is valid for
arbitrary non-negative moment, is new.

B. Moment Based Approximation

It is a standard technique in statistics to approximate
some unknown distribution by a known one having the
same support and moments. Motivated by the results for
real Wishart case [22], in this work we choose a gener-
alized Beta distribution with the same support as that of
TJ to approximate the distribution of TJ. Specifically, the
linear transform x = (K−1)z+1

K on a standard Beta density2

zα−1(1 − z)β−1/B(α, β), z ∈ [0, 1] leads to a generalized
Beta density

C ′
(
x− 1

K

)α−1
(1− x)β−1, (16)

with the support x ∈ [1/K, 1] and the constant C ′ =
Kα+β−1/

(
B(α, β)(K − 1)α+β−1

)
. Since the m-th moment

of a standard Beta random variable equals E[zm] =
(α)m/(α + β)m, where (α)m = Γ(α + m)/Γ(α) defines
the Pochhammer symbol, the m-th moment of the generalized
Beta random variable is obtained by binomial expansion as

E[xm] = E
[(

(K − 1)z + 1

K

)m]
(17)

=
1

Km

m∑
i=0

(
m

i

)
(K − 1)iE[zi] (18)

=
1

Km

m∑
i=0

(
m

i

)
(K − 1)i(α)i

(α+ β)i
, (19)

where
(
m
i

)
denotes the binomial coefficient. In particular, the

first two moments are
αK + β

(α+ β)K
,

(αK + β)2 + αK2 + β

(α+ β)(α+ β + 1)K2
, (20)

by matching them to the first two moments of TJ (15), the
parameters α and β of the generalized Beta density (16) can
be obtained

α =
(KM1 − 1)(KM1 −KM2 +M1 − 1)

(K − 1)K(M2 −M2
1)

, (21)

β =
(M1 − 1)(KM1 −KM2 +M1 − 1)

(K − 1)(M2
1 −M2)

. (22)

As a result, the two-moment-based approximation to the CDF
of TJ under H0 is

FJ(y) ≈ C ′
∫ y

1/K

(
x− 1

K

)α−1
(1− x)β−1dx (23)

= 1−
B
(
K(1−y)
K−1 ;β, α

)
B(α, β)

, (24)

where y ∈ [1/K,∞) and B(x; a, b) =
∫ x
0
za−1(1 − z)b−1dz

is the lower incomplete Beta function.

2B(α, β) = Γ(α)Γ(β)/Γ(α+ β) defines the Beta function.



By (9), for a given threshold ζ the two-moment-based
approximation to the false alarm probability equals

Pfa(ζ) = 1− FJ(ζ) ≈
B
(
K(1−ζ)
K−1 ;β, α

)
B(α, β)

. (25)

To implement the proposed spectrum sensing algorithm, a
decision threshold needs to be determined for a given detection
requirement in a computationally affordable manner. Using
the derived approximation to Pfa, an approximative decision
threshold can be obtained by numerically inverting (25). Note
that both α and β are elementary functions of the sensor size
K and sample size N through (14). Moreover, if we further
approximate α and β to their respective nearest integers,
(25) reduces to a finite sum of polynomials in ζ. Thus the
computational complexity of threshold calculation becomes
quite affordable for on-line implementations.

Here we note that the proposed two-moment-based Beta
approximation corresponds to the simplest form of a general
Jacobi polynomials based approximation. In the general frame-
work, up to any n-th degree of Jacobi polynomials matching
the corresponding n moments of TJ would be used. Since the
random variable TJ is of a finite support, the Jacobi polyno-
mials expansion for the distribution of TJ is exact according
to Weierstrass approximation theorem [23]. Namely, when n
goes to infinity the Jacobi polynomials based approximation
represents the exact distribution of TJ. In practise, the choice of
n reflects a trade-off between the approximation accuracy and
the implementation complexity. In light of the good accuracy
as shown in the next section, we consider n = 2 in this
paper. The general n-moment-based approximation, including
the error analysis, can be easily obtained by following the
procedures in [22, 24].

IV. NUMERICAL RESULTS

In this section we first investigate the accuracy of the derived
approximative false alarm probability by simulations. Then
we compare the performance of John’s detector with those of
several detectors in realistic scenarios. The considered values
of the parameters K and N in this section reflect practical
spectrum sensing situations. The sample size N can be as
large as a couple of hundred whereas the number of sensors
K is at most eight due to physical constraints of the device
size.

A. Accuracy of the Approximative False Alarm Probability

In Figure 1 we plot the approximative Pfa using (25) and
the simulated Pfa as a function of the threshold. To quantita-
tively show the approximation accuracy, we also calculate the
average approximation error3 of the proposed Pfa with respect
to the exact Pfa as resulting from simulations. The results,
summarized in the caption of Figure 1, show that the derived
analytical Pfa matches the simulations well.

3Defined as
(∑n

i=1 |Pfa(ζi)− P̃fa(ζi)|
)
/n, where P̃fa denotes the ap-

proximative false alarm probability, i.e. the RHS of (25), and n is the sampling
size. In Figure 1 we assume uniform sampling in ζ ∈ [0.125, 0.3] with
n = 107.
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Fig. 1. False alarm probability: analytical versus simulations. For K =
8, N = 50, 100 and 200, the average approximation error on false alarm
probability is respectively 5.94× 10−8, 5.03× 10−8 and 5.07× 10−8.
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Fig. 2. ROCs for P = 3. Subplot (a): SNR1 = −6 dB, SNR2 = −5 dB,
SNR3 = −4 dB with K = 4, N = 400; subplot (b): SNR1 = 1 dB,
SNR2 = 2 dB, SNR3 = 3 dB with K = 4, N = 50.

B. Detection Performance

We compare the detection performance of John’s detector
with those of other known detectors by means of ROC curve.
Since a ROC curve shows the achieved detection probability as
a function of the false alarm probability, it reflects the overall
detection performance for a given detector. Our focus here is
detection in the presence of multiple primary users, thus we
consider for comparison the ST detector. In addition the SLE
detector, which is optimal for single primary user detection,
is considered for comparison as well. Comparisons with the
non-optimal ER detector and detectors that are sensitive to
noise uncertainty [25], such as the LE detector and the energy
detector [26], are excluded in this paper. For results in this
direction, the readers are referred to [6, 7, 12].

In Figure 2 we consider a scenario of three simultane-



ously transmitting primary users with relatively low SNRs
(SNR1 = −6 dB, SNR2 = −5 dB, SNR3 = −4 dB using
K = 4, N = 400) in subplot (a) and relatively high SNRs
(SNR1 = 1 dB, SNR2 = 2 dB, SNR3 = 3 dB using K = 4,
N = 50) in subplot (b). Without loss of generality, we assume
unit powers for the zero mean Gaussian signal and noise.
The entries of the channel matrix H, which are fixed during
sensing, are independently drawn from a standard complex
Gaussian distribution. The same channel matrix is used in
both subplots. The channel vector for each primary user is
normalized as ui = hi/||hi||. As a result, the population
covariance matrix Σ now equals Σ = IK +

∑P
i=1 SNRiuiu

†
i .

For the specific channel realizations considered in Figure 2, the
eigenvalues4 of Σ in subplot (a) are [1.6225, 1.2217, 1.1213, 1]
in subplot (b) are [4.0417, 2.2375, 1.56, 1]. From Figure 2 (a)
we observe that John’s detector achieves the best detection
performance in the low SNR case considered. However, when
the SNRs increase we see from Figure 2 (b) that the ST
detector performs better than John’s detector. In both subplots,
it is seen that the ST and John’s detectors outperform the SLE
detector. This is intuitively clear since the SLE detector is
optimized for single primary user detection. Moreover, we see
that as the SNRs increase the performance gap between the
SLE detector and the multiple primary user detectors becomes
larger, as expected.

V. CONCLUSION

In this paper, we investigated the sensing performance of
John’s detector, which a candidate detector in the presence of
multiple primary users. John’s detector is optimal in detecting
small deviations of the covariance matrix from a matrix
proportional to identity. Analytical formulae have been derived
for the false alarm probability and decision threshold of
John’s detector. The derived results are simple to calculate and
yield an almost exact fit to simulations. From the simulation
setting considered, performance gain over several detection
algorithms is observed in the low SNR regime.

Characterizing TJ distribution under H1, which leads to
analytical results for detection probability, is the work in
progress.
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APPENDIX A
THE NON-NEGATIVE INTEGER MOMENT OF

∑K
i=1 λ

2
i

Under H0, the joint density of the unordered eigenvalues
λi ∈ [0,∞) for the sample covariance matrix R reads [19]

Φ(λ1, . . . , λK) :=
C

K!
|∆(λ)|2

K∏
i=1

λN−Ki e−λi , (26)

4For the considered detectors, the test statistics depend on Σ only through
the eigenvalues of Σ.

where |∆(λ)| defines the determinant of Vandermonde matrix
with i, j-th entry (∆(λ))i,j = λj−1i , i, j = 1, . . . ,K and the

constant C =
(∏K

i=1 Γ(N − i+ 1)Γ(K − i+ 1)
)−1

.
Before we prove Proposition 1, we need the following two

lemmas.

Lemma 1. The average value of the function
∏K
i=1 λ

2ai
i ,

where ais are non-negative integers, equals∫
[0,∞)K

(
K∏
i=1

λ2aii

)
Φ(λ1, . . . , λK)dλ1 · · · dλK =

C

K!

∑
ν

|Γ(2aνi +N −K + i+ j − 1)|i,j=1,...,K , (27)

where ν = ν1, . . . , νK defines a permutation of the integers
1, . . . ,K and the sum is over all the K! permutations.

Proof: Using the fact that a product of determinants
equals the determinant of the matrix product and the fact that
the determinant remains unchanged under transpose operation,
we have

|∆(λ)|2 = |∆(λ)∆′(λ)| =

∣∣∣∣∣
K∑
l=1

λi+j−2l

∣∣∣∣∣
i,j=1,...,K

. (28)

By invoking the multi-linearity property of determinants, the
Hankel determinant (28) above can be written as a sum of
two determinants, where the first rows are [1, · · · , λK−11 ] and
[K − 1, · · · ,

∑K−1
i=2 λK−1i ] with the respect second to the last

rows remain unchanged. By repeated use of the multi-linearity
property, (28) can be written as sum of KK determinants, out
of which K! determinants with non-identical λ index in rows
give non-zero contribution, namely,∣∣∣∣∣

K∑
l=1

λi+j−2l

∣∣∣∣∣
i,j=1,...,K

=
∑
ν

∣∣λi+j−2νi

∣∣
i,j=1,...,K

, (29)

where ν = ν1, . . . , νK defines a permutation of the integers
1, . . . ,K and the sum is over all the K! permutations. Inserting
(29) into LHS of (27) and disregarding the constant C/K!
which will be re-installed, we have∫

[0,∞)K

∑
ν

∣∣λi+j−2νi

∣∣
i,j=1,...,K

K∏
i=1

λ2ai+N−Ki e−λidλi

=
∑
ν

∫
[0,∞)K

∣∣∣λ2aνi+N−K+i+j−2
νi e−λνi

∣∣∣
i,j=1,...,K

K∏
i=1

dλi

=
∑
ν

|Γ(2aνi +N −K + i+ j − 1)|i,j=1,...,K ,

where in the first equality we multipled each λ2ai+N−Ki e−λi

with the row of
∣∣λi+j−2νi

∣∣
i,j=1,...,K

having the same λ index
and the second equality is achieved by first expanding the
determinant using Leibniz formula, integrating term-wise and
rewriting the integration results as a determinant. This com-
pletes the proof.



Note that Lemma 1 can be considered as an extension to
the Selberg type integral considered in [20] (Eq. (17.6.5) and
Eq. (17.8.1)).

Lemma 2. The following determinant can be simplified to

|Γ(bi + j − 1)|i,j=1,...,K =
∏

1≤i<j≤K

(bj − bi)
K∏
i=1

Γ(bi), (30)

where bi is a positive integer.

Proof: We first realize that from each row the term Γ(bi)
can be factored out, namely,

|Γ(bi + j − 1)|i,j=1,...,K = |(bi)j−1|i,j=1,...,K

K∏
i=1

Γ(bi),

(31)
where (b)j =

∏j−1
k=0(b+k). By extracting from the i-th column

a suitable linear combination of previous i − 1 columns, the
determinant

|(bi)j−1|i,j=1,...,K =
∣∣∣bj−1i

∣∣∣
i,j=1,...,K

, (32)

which is a Vandermonde determinant
∏

1≤i<j≤K(bj−bi). This
completes the proof.

We are now in a position to prove Proposition 1. By using
the multinomial expansion(

K∑
i=1

λ2i

)m
=

∑
a1+···+aK=m

m!

a1! · · · aK !

K∏
i=1

λ2aii (33)

and Lemma 1, we have

E

[(
K∑
i=1

λ2i

)m ]
=

∑
a1+···+aK=m

m!

a1! · · · aK !

C

K!
×∑

ν

|Γ(2aνi +N −K + i+ j − 1)|i,j=1,...,K . (34)

For any given permutation ν, it is observed that the sum over
a1 + · · · + aK = m is symmetric in the sense that one can
arbitrarily permute the index of a without changing the value
of this sum, in particular the following permutation of a holds,∑

a1+···+aK=m

m! |Γ(2aνi +N −K + i+ j − 1)|i,j=1,...,K

a1! · · · aK !

=
∑

a1+···+aK=m

m! |Γ(2ai +N −K + i+ j − 1)|i,j=1,...,K

a1! · · · aK !
.

Since the number of possible permutations is K!, (34) now
equals∑
a1+···+aK=m

m!C |Γ(2ai +N −K + i+ j − 1)|i,j=1,...,K

a1! · · · aK !
.

(35)
Using Lemma 2 with bi = 2ai + N − K + i completes the
proof of Proposition 1.
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