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Abstract—In cognitive radio, the secondary users are able
to sense the spectral environment and use this information to
opportunistically access the licensed spectrum in the absence of
the primary users. In this paper, we present an experimental
study that evaluates the performance of two different spec-
trum sensing techniques to detect primary user signals in real
environment. The considered spectrum sensing techniques are:
sequential energy and cyclosationary feature based detectors.
An Universal Software Radio Peripheral platform with GNU-
Radio is employed for implementation purpose. We analyzed the
performances of both spectrum sensing methods by measuring
the detection probabilities as a function of SNR for a given
false alarm probability. As predicted theoretically, experimental
measurements show that the cyclostationnary feature detector
performs better than the sequential energy detector. However
sequential energy detector can be used for reduction of sensing
time in the presence of strong signals.

I. INTRODUCTION

Cognitive Radio (CR) is an emerging concept to increase
spectrum usage efficiency by allowing a secondary user (SU) to
access some licensed spectrum bands temporarily unoccupied
by the primary user (PU). Two basic approaches to spectrum
sharing have been considered: spectrum overlay and spectrum
underlay. According to the spectrum overlay approach, the
secondary users sense and identify unused frequency bands and
use them for communication purposes. Thus, the secondary
users (SU) are responsible for detecting the unused bands
and they should vacate the spectrum as soon as the primary
user begins its [1] activities. The underlay approach imposes
constraints on the secondary users’ transmission power level so
that it operates below the noise floor of primary users. Here, we
focus on the implementation aspects of the overlay spectrum
sharing. To determine the absence or presence of the primary
user signals, several spectrum sensing techniques have been
developed [2], [3], [4]. These techniques can be classified into
three categories: (i) methods requiring both primary user signal
and noise variance information, (ii) methods requiring only
noise variance information (also called semi-blind methods),
and (ii) methods not requiring any information on primary user
signal or noise variance (also called blind methods). Examples
of blind spectrum sensing methods would be wavelet based
detection [5], eigenvalue based detection [6], second order
statistical based detection [7], and symmetry property of cyclic
autocorrelation function based detection [8].
In the practical implementation, the simplest spectrum sensing
method capable of detecting the presence of a PU’s signal

is based on energy detection which is a semi-blind method.
Several papers address experimental results of the energy
detector and outline the impact of noise uncertainty on the
performance of detection [9], [10]. Due to this shortcoming,
there is an signal to noise ratio wall, SNRwall, in which
energy detector can not guarantee a detection performance.
The main aim of the conducted experiment is to sense the
spectrum in a given frequency range and make as reliable
decision as possible on the potential presence of the primary
user (PU) signal in the observed spectrum fragment. In order
to achieve this goal selected algorithms for spectrum sensing
have been implemented in hardware.
This paper is organized as follows. In section II, the sys-
tem model is presented as well as sequential energy and
the cyclostationary feature-based detectors. In section III, we
describe our experimental setup for both detectors using two
different modulations for the PU. Section IV presents the
experimental evaluation results of the considered algorithms.
Finally, conclusions and future works are presented in section
V.

II. SYSTEM MODEL AND SENSING TECHNIQUES

Thus, spectrum sensing and detecting the presence of a
radio in the environment can be treated as a classical detection
problem [11] [12]. Two binary hypotheses H0 and H1 can be
defined to indicate the absence or the presence of the PU in
the environment. The received signal at the SU, r(t), can be
expressed as:

r(t) =

{
n(t) + i(t) = n̂(t) −→ H0

h(t) · s(t) + n(t) + i(t) = s(t) + n̂(t) −→ H1

(1)
where s(t) and h(t) stand for the PU signal and channel im-
pulse response, respectively, n(t) is an additive white Gaussian
noise (AWGN), and i(t) represents other sources of distortions
such as ambient noise or interferences; the equivalent noise
observed at the antenna input can be then represented as n̂(t).
The objective of the spectrum sensing operation is to decide
between H0 et H1 based on the observation of the received
signal r(t); one can find in the literature the papers dealing
with interference mitigation or reduction during the spectrum
sensing process. The detection performance is characterized
by two probabilities: probability of detection, Pd, where the
decision is H1, while H1 is true; and probability of false alarm,
Pfa, which corresponds to the case where the decision is H1

while H0 is true.
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In our experiments, two algorithms have been tested i.e.
sequential version of energy detection, and a method for
cyclostationarity-based detection called Symmetry Property
of Cyclic Autocorrelation Function (SPCAF). Let us briefly
summarize the theoretical basis of these solutions.

A. Traditional Energy-based spectrum sensing

One of the simplest way for primary user detection is
to calculate the amount of received power in the considered
frequency subband and compare this value with the noise
variance. In the case that the received power is greater than
the previously approximated power of noise the algorithm will
make a decision on the spectrum occupancy by the primary
user signal. In turn, the channel will be assumed to be vacant if
the computed noise power will be close to the noise variance at
the certain level of certainty. There are several parameters that
influences the reliability of any spectrum sensing algorithm. In
case of traditional energy detection, the crucial role is played
by properly defined decision threshold, and in consequence,
by the correctness of noise variance, and the duration of
sensing time (expressed in seconds or - for discrete signals
- in terms of number of gathered samples). Following [12],
for the given values of probability of false alarm, Pfa, number
of collected samples N , and the (equivalent-)noise variance
σ̂2
n, the decision threshold can be defined as following:

γthr = σ̂2
n ·Q−1(Pfa) ·

(√
2N +N

)
, (2)

where Q() represents the Q-function. Having in mind that the
total power of N collected samples in the given frequency
band can be represented as the random variable PN =∑N−1
k=0 |r[n]|2, then based on (1) the generic decision rule DN

can be then modified to the considered case:

DN =

{
PN ≤ γthr −→ H0

PN > γthr −→ H1
(3)

It is worth noticing that the reliability of energy-detectors
strongly depends on the received power and on the accuracy of
approximated variance noise σ̂2

n. The latter can be improved
by increasing the number of collected samples N . In practice,
however, the sensing time will be fixed, thus it is feasible
that for low signal-to-noise ratios the performance of the
traditional energy detection algorithms will be relatively low
(i.e. SNRwall) [13] [14].

B. Sequential Energy detector

The behaviour of the traditional energy detector can be
improved in various ways, e.g. by application of the adaptively
modified threshold. In our experiment we have selected the
double-threshold, sequential energy detector which possess the
same reliability as the traditional one, but its application could
reduce the sensing time. The main concept is based on the
assumption that for very strong PU signal, or - contrarily -
in the presence of noise only, the number of samples that
should be collected for decision making can be reduced. If
this is a case, the sensing time is minimized which increases
the time devoted for data transmission and reduces the energy
consumption of the observation phase. In order to achieve
this goal two decision thresholds have to be applied, γHI and
γLO, which will be used for decision making if the signal is
or is not present in the observed frequency fragment. In a

nutshell, the procedure can be realized in the iterative way.
The energy detector collects the signal samples in the shorter
period Ns < N and tries to made the decision. If the amount
of power is greater than γHI, the decision of the PU signal
presence can be made; if the received power is lower than
γLO one can state that the considered channel is vacant. If the
calculated value falls between these thresholds, the sequential
energy detector collects next block of samples and repeats the
procedure. When the total number of gathered samples reaches
the maximally allowed value (i.e. the maximum sensing time
will be finished), the decision will be made as for traditional
algorithms. The decision rule for i-th iteration can be written
as follows:

Di
N =

 P iN ≤ γLO −→ H0

P iN ∈ (γLO, γHI) continue
P iN ≥ γHI −→ H1

(4)

C. Cyclostationary feature based spectrum sensing

In wireless communications, the transmitted signals show
very strong cyclostationary features [15]. Therefore, identify-
ing a unique set a features of a particular radio signal can
be used to detect its presence based on its cyclostationary
features. In the context of spectrum sensing many works
have been conducted in using the cyclostationary features
to detect the presence of PU in the radio environement [4].
In general, this method can perform better than the energy
based detector. However its main drawbacks are the complexity
associated with the detection technique and needs of some a-
priori knowledge of the PU signal.
The cyclostationary detector can be realized by analyzing the
Cyclic Autocorrelation Function (CAF) of a received signal
r(k). The CAF of a received signal r(k) at the SU can be
expressed as illustrated in (5).

Rr(k, τ) =
∑
α

Rαr (τ)e
2πjαk (5)

where τ is lag associated to the autocorrelation function, α the
cyclic frequency and Rαr (τ) is given by (6).

Rαr (τ) = lim
N→∞

1

N

N−1∑
k=0

Rr(k, τ)e
−2πjαk (6)

1) Classical Cyclostationary feature based detector: The
classical approach to realize the cyclostationary detector is
based on the Cyclic Spectrum Density (CSD) or the spectral
correlation function of the received signal r(k).

Sαr (f) =
1

N

N−1∑
k=0

Rαr (τ)e
−2jπfτ (7)

The CSD function presented in (7), exhibits peaks when the
cyclic frequency α equals the the fundamental frequencies of
s(k) the transmitted signal. Under the H0 hypothesis, the CSD
function does not have peaks since the noise is generally non-
cyclostationary.
Using this technique, it is possible to distinguish even weak
PU signals from the noise at very low SNR, where the energy
detector is not applicable.



2) SPCAF detector: The discrete-time consistent and un-
biased estimation of the CAF of a random process is given
as:

R̃αrr∗(τ) =
1

M

M−1∑
k=0

r(k)r∗(k + τ)e−2jπαk (8)

For a given lag parameter τ ∈ {1, 2, . . . , L}, the cyclic au-
tocorrelation function (CAF) can be seen as Fourier transform
of V = [r(0)r∗(0+τ), r(1)r∗(1+τ), . . . , r(M−1)r∗(M−1+
τ)], where M is FFT size. As shown in the work of Khalaf et
al. [8], the CAF is an M-dimensional sparse vector in cyclic
frequency domain for a fixed lag parameter τ . Moreover, it
presents a symmetry property as illustrated in (9).

||R̃αrr∗(τ)||2 = ||R̃−αrr∗(τ)||2 (9)

Using a compressed sensing (CS) recovery technique like
the Orthogonal Matching Pursuit (OMP) algorithm [16], we
can accurately estimate the CAF using a limited and small
number of received samples N << M . If the obtained CAF
verifies the property (9) then H1 is true otherwise H0 is true.
Its important to note that even under H0 the obtained CAF
verifies the symmetry property. However, when using a small
number of samples, the probability to obtain a symmetrical
CAF under H0 is very small [8]. This SPCAF technique, can
perform with a limited number of samples and consequently
with lower complexity and shorter observation time compared
to the classical cyclostationary feature detector.

III. SPECTRUM SENSING EXPERIMENTAL SETUP

A. Hardware/Software overview

The performance of the selected spectrum sensing algo-
rithms has been verified in conducted experiments realized
by means of Universal Software Radio Peripheral (USRP)
boards by Ettus Research. USRP platforms, as the low-cost and
high-quality realization of the software-defined-radio (SDR)
concept, delivers to the users various functionalities allowing
for efficient, real-time realization of even very complicated
wireless systems that operate in the radio-frequency (RF) band.
The main role of the URSP platform is to convert the digital
base-band signal delivered from the computer to analogue
signal in the RF band. This process is realized in two-steps.
In the first step the digital signal is converted to the digital
intermediate-frequency (IF) domain; this phase is realized
in the so-called mother-board, being the basis of the USRP
platform. After that the signal is processed in the dedicated
daughter-board, which is responsible for transforming of the
digital IF signal to its analogue form in RF band. Finally, the
signal is radiated by means of the mounted RF aerial. The
variety of available daughter-boards creates big opportunities
to the user, since these are designed to convert the IF signal
to different part of the RF spectrum. Being the realization of
the SDR concept, USRP are steered from the software level,
i.e. the whole data processing in the base-band is realized
on the computer side. Various software platforms can be
applied for that purposes, including commercial and open-
source solutions.

In our experiments two USRP boards have been utilized:
the PU signal has been generated by means of the first board,

PU Tx SU Rx

Sequential 
Energy 
detector

SPCAF 
detector

USRP+GNU Radio #2USRP+GNU Radio #1

OFDM

FM

2m

Fig. 1. Schematic system diagram

Fig. 2. PU transmitter and SU receivers realized by means of USRP board
and personal computers

whereas the second one has been used for spectrum sensing
purposes and acted as the secondary user. The whole software
processing has been realized in the open-source GNU-Radio
environment [17]. This set of libraries together with the appro-
priate drivers for manipulating the USRP boards and graphical
programming environment allowed for efficient and accurate
implementation of the selected spectrum sensing algorithms. In
our experiment two sensing scenarios have been considered:
first, where the narrow-band frequency-modulated radio signal,
and second, where the multicarrier signal should be detected.
The schematic diagram and the dedicated photographs of the
experimentation setup are shown in Fig. 1 and 2, respectively.
Finally, the whole system is presented in Fig. 3.

B. Transmitter side

At the transmitter side two types of signals were generated,
the narrowband FM signal, and wideband mutlicarrier signal
based on orthogonal frequency division multiplexing. In the
former case the composite radio signal has been created and
frequency modulated before sending to the USRP board via

Fig. 3. The whole experimentation setup



Fig. 4. Diagram of the PU OFDM transmitter realized in the GNU radio
(Screenshot from GRC)

Ethernet cable. It means that assumed frequency deviation
(± 75 kHz deviation from the assisted center frequency)
the bandwidth of the spectrum occupied by the FM signal
is narrow (144 kHz). On the contrary, the spectrum of the
multicarrier signal is assumed to be wider - the OFDM symbol
with NOFDM = 512 subcarriers of the width 1.2 MHz has
been used. As it has already been mentioned, the whole
baseband processing has been realized on the PC computer
in the GNU Radio environment, and in particular in the
graphical tool called GNU Radio Companion (GRC), where
the whole system is built from blocks. The screen-shot from
the GRC illustrating the OFDM transmitter side is shown in
Fig. 4. One can observe the presence of the signal source
block (Random Source) that generates repeatedly random data,
which are mapped to QPSK symbols and then are subject
to OFDM modulation (realized in OFDM Mod block). Only
300 subcarriers from 512 available has been occupied, and the
cyclic prefix of the size equal to one-quarter of that of IFFT
was used. Finally, after proper power adjustment, the signal
was sent to the local spectrum analyzer (FFT plot) and to the
USRP block (USRP Sink), responsible for sending data to the
USRP platform. It can be noticed that the complex sampling
frequency has been set to 2 MHz, and the center frequency
was set to 560 MHz. This frequency band has been chosen
intentionally - it is within the TV band and is not occupied
in the physical location where the experiment was conducted
(i.e. no interference from the distance digital-television station
could be observed).

C. Receiver side

As indicated in Fig. 1, two spectrum sensing algorithms
have been implemented: the one based on energy detection,
and the second that analyzes the cyclostationarity features of
the received data. Analogously to the transmitter side, the
whole base-band processing - that will be performed by the
SU wireless terminal - has been realized in the computer side
using the GNU Radio environment. The schematic diagram of
the receiver is shown in Fig. 5. One can observe the presence
of the USRP Source block responsible for delivering data
from RF spectrum to the computer; it operates at the center

frequency equal to 560 MHz and covers the band of 1MHz
(what corresponds to complex sampling frequency equal to
1 Msps, as well). In order to evaluate the influence of noise
on the performance of selected spectrum sensing algorithms,
additional block for noise generation has been used and the
noise-signal of appropriate power has been added to the signal
produced by the USRP Source block. After, the signal is split
into parallel chains: one dedicated for energy detection, and
one for cyclostationariy feature-based algorithm. In such a
configuration both algorithms operates on the same received
samples making the comparison fair. One can also observe
the presence of the FFT plot block used for displaying the
received signal on the computer screen. Let us focus on the
sequential energy detection algorithm (lower processing chain
in the analyzed figure). The signal disturbed by the additive
white Gaussian noise is then transformed to the frequency
domain by means of FFT block. The algorithm for sequential
energy detection, implemented in C language and assigned to
the DTED block, make the decision on the occupancy of each
frequency bin separately. In other words for the presented case
256 decisions will be made. The decisions are then transferred
to the graphical sink. In the upper processing chain, devoted for
cyclostationary feature spectrum sensing algorithm, the signal
is converted from complex to real type and such modified
signals are subject to processing in the SPCAF v1 block,
realizing the functionality of the SPCAF algorithm described
in the previous sections. All of the decisions are stored into
the files.

IV. EXPERIMENTAL RESULTS

In order to compare the performance of the selected spec-
trum sensing algorithms let us analyze the results obtained
during the conducted experiments.

A. FM signal as PU

Here, we compare performance of the SPCAF based blind
detector with the sequential energy detector. A frequency
modulated signal is used as primary user’s signal. In the
experiments, the central carrier frequency is set to 560 MHz.
We compute the good detection probability (Pd) for the two
detectors at different values of estimated SNR. In order to
estimate the SNR, the noise power σ2 is estimated at the
receiver with no transmitted signal. Then, the transmitter is
switched on and its transmission power is varied to obtain
different signal-to-noise ratios (SNRs) at the receiver. Fig. 6
shows the detection probability of the two detectors obtained
through experiments as function of SNRs. As concluded from
the measurements, the probability of false alarm (Pfa) is ap-
proximately equal to 0.08 for both detectors. Furthermore, for
the SPCAF detector, the maximum value of the lag parameter
is L = 5 and the FFT size is M = 2048. It is clear from Fig. 6
that the performance of the SPCAF is better than the sequential
ED. Another important point to note is that the number of
received samples used by SPCAF is N = 256. However, the
sequential ED requires at least N samples for detection.

B. OFDM signal as PU

In this part, the primary user signal is an orthogonal
frequency division multiplexing (OFDM) signal. Fig. 7 shows



Fig. 5. Diagram of the SU receiver realized in the GNU radio (Screenshot from GRC)
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Fig. 6. Probability of detection for both algorithms when using FM signal
as PU (Pfa = 0.08)

the detection probability achieved by the secondary user us-
ing SPCAF and sequential ED, while maintaining the false
alarm probability below 0.08. Based on the Fig. 7, it can be
concluded that the SPCAF gives better results compared to
the sequential Energy detection method at low signal-to-noise
ratios (SNRs).
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SEQ ED N = 256
SPCAF N = 256, M = 2048, L= 5 

Fig. 7. Probability of detection for both algorithms when using OFDM signal
as PU (Pfa = 0.085)

V. CONCLUSIONS AND FUTURE WORK

One can observe that for high SNRs both algorithms behave
similar achieving high detection efficiency. However, it is not
so challenging to detect strong signal, since the influence of
noise in such a case will be minimal. Thus it is more important
to focus on the low-SNR regions for both: narrowband and
wideband signals. As it could be expected, the energy detector



achieves much poorer results comparing to the cyclostationary
feature-based detector. It is due to the fact that the latter are not
so sensitive to the signal imperfections and channel influence.
However, let us remind that the reason for application of se-
quential energy-detection algorithm was to reduce the sensing
time in the case when the reliable decision could be made
before collecting the maximum allowed number of samples for
spectrum sensing. The obtained results confirm that for high
SNRs values the performance of sequential algorithms is as
good as the performance of more advanced ones but the price
paid for it - understood as the computational complexity - is
much less. This bring us to the concept of the hybrid structure
of spectrum sensing algorithm. In such a case, the low-complex
double-threshold algorithm should be applied in the first phase,
followed by the cyclostationarity-based one. When the signal
of the PU will be strong enough or the observed signal
variance will be close to the noise variance, the sequential
energy detection algorithm will made reliable decision in the
very short time, and the application of the more complicated
algorithms will be not necessary. On the other hand, if the
energy-detection procedure will not finish after collecting of
N signal samples, the cyclostationary based algorithm shall be
applied for final decision. Such a scenario will be investigated
in the future. However, beside measurements of the sensing-
time reduction obtained in the hybrid approach as well as of
its overall performance, the whole system will be implemented
on the FPGA chips. It will allow for detailed analysis of the
energy consumed in each phase of the hybrid algorithm. Thus,
the conclusions on the real energy-efficiency of the proposed
hybrid approach could be drawn.
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