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Abstract— This paper proposes novel spectrum sensing al-
gorithm, and examines the sensing throughput tradeoff for
cognitive radio (CR) networks under noise variance uncertainty.
It is assumed that there are one white sub-band, and one
target sub-band which is either white or non-white. Under this
assumption, first we propose a novel generalized energy detector
(GED) for examining the target sub-band by exploiting the
noise information of the white sub-band, then, we study the
tradeoff between the sensing time and achievable throughput
of the CR network. To study this tradeoff, we consider the
sensing time optimization for maximizing the throughput of
the CR network while appropriately protecting the primary
network. The sensing time is optimized by utilizing the derived
detection and false alarm probabilities of the GED. The proposed
GED does not suffer from signal to noise ratio (SNR) wall
(i.e., robust against noise variance uncertainty) and outperforms
the existing signal detectors. Moreover, the relationship between
the proposed GED and conventional energy detector (CED) is
quantified analytically. We show that the optimal sensing times
with perfect and imperfect noise variances are not the same. In
particular, when the frame duration is 2s, SNR= −20dB, and
each of the bandwidths of the white and target sub-bands is
6MHz, the optimal sensing times are 28.5ms and 50.6ms with
perfect and imperfect noise variances, respectively.

Index Terms— Cognitive radio, Spectrum sensing, Noise vari-
ance uncertainty, SNR wall, Sensing Throughput tradeoff.

I. INTRODUCTION

Cognitive radio (CR) is one of the promising approaches

to improve the spectral efficiency of current wireless networks

[1], [2]. One key feature of a CR network is the potential to

learn its surrounding radio environment, which is performed

by the spectrum sensing (signal detection) part of the CR

device. The most widely known signal detectors are matched

filter, energy and cyclostationary based detectors. Among

these, the matched filter is optimal, which, however, requires

perfect synchronization between the primary transmitter and

cognitive device [3]. The energy detector (hereafter referred

as conventional energy detector (CED)) does not require

any information about the primary user and it is simple

to implement. However, the CED is very sensitive to noise

variance uncertainty, and there is a signal to noise ratio (SNR)

wall below which this detector can not guarantee the desired

detection performance [3]–[5]. Cyclostationary based detector

is robust against noise variance uncertainty and it can reject the

effect of external interference, which unfortunately has high

computational complexity and is sensitive to cyclic frequency

mismatch [5]–[7].

In [8], the eigenvalue decomposition (EVD)-based signal

detector is proposed. This detector is robust against noise

variance uncertainty but its computational complexity is high

[9], [10]. Recently in [11], new Max-Min SNR based signal

detector is proposed. This paper employs linear combination

approach of the oversampled received signal. Under noise

variance uncertainty, simulation results demonstrate that this

detector achieves better performance than those of the CED

and EVD-based detectors in additive white Gaussian noise

(AWGN) and Rayleigh fading channels. The detector of [11]

also guarantee the desired probability of detection (false

alarm) Pd(Pf ) in the presence of low (moderate) adjacent

channel interference (ACI) signals. The main drawbacks of

[11], however, are that the cognitive device requires accurate

knowledge of the primary transmitter pulse shaping filter and

rolloff factor. Furthermore, the approach of [11] employs

oversampling of the received signal beyond the Nyquist rate,

which may not be desirable in practice as such operation

requires expensive high-speed analog to digital converter. In

addition, the theoretical Pf and Pd expressions are obtained by

employing numerical methods. Nonetheless, as will be clear

later, the detection algorithm of the current paper achieves

better performance than that of the algorithm of [11] under

similar assumptions. Furthermore, the proposed detector of

the current paper requires neither the transmitter pulse shaping

filter nor oversampling of the received signal.

In [12], throughput maximization problem for CR network

has been considered by employing the CED. However, as we

have explained previously, the CED suffers from SNR wall.

Thus, it may not be possible to utilize the CED to maximize

the throughput of the CR network for practically relevant SNR

of the transmitted signal (i.e., −20dB).

In the current paper we propose novel spectrum sensing

algorithm, and examine the sensing throughput tradeoff for

CR networks under noise variance uncertainty. It is assumed
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that there are one white sub-band, and one target sub-band

which is either white or non-white. In a wide-band scenario,

the white sub-band can be identified by applying the approach

of [13] (see [13] for more details). Under this assumption,

first we propose a novel generalized energy detector (GED)

for examining the target sub-band by exploiting the noise

information of the white sub-band, then, we study the tradeoff

between the sensing time and achievable throughput of the

CR network. To study this tradeoff, we consider the sensing

time optimization for maximizing the throughput of the CR

network while appropriately protecting the primary network.

The sensing time is optimized by utilizing the derived Pd

and Pf of the GED. The proposed GED does not suffer

from SNR wall (i.e., robust against noise variance uncertainty)

and outperforms the existing signal detectors. To optimize

the sensing time, we consider that the CR network performs

sensing and then transmission periodically over equal frame

intervals. This frame-based sensing and transmission strategy

has been commonly adopted in the literature [12]. This frame

interval can be set equal to the required channel evacuation

time which is 2s in the 802.22 standard for example.

The main contributions of the paper are summarized as

follows.

• We propose novel generalized energy detection algorithm

to detect the target sub-band under noise variance uncer-

tainty. The proposed GED utilizes the noise information

collected from the white sub-band. Furthermore, the GED

is designed to ensure a certain Pd(Pf ) performance

without experiencing any SNR wall.

• We derive the Pd and Pf expressions for the proposed

GED. These derivations reveal that the detection perfor-

mance of the GED depends on the bandwidths of the

white and target sub-bands. The derivations also exploit

the fact that when the noise variance is estimated from

finite sub-band, the theoretical thresholds of the CED

can not be applied directly. Moreover, the relationship

between the proposed GED and CED is quantified ana-

lytically.

• We formulate the sensing time optimization problem for

the CR network as a concave maximization problem

where its solution is obtained by using convex opti-

mization tools. We show that the optimal sensing time

obtained by the proposed GED (ToGED) is different

from that of the CED (ToCED). In other words, the

optimal sensing durations with perfect and imperfect

noise variances are not the same.

• Numerical studies are conducted to investigate the perfor-

mance of the proposed sensing and optimization frame-

work. Specifically, we validate the analytical results by

comparing with computer simulation. We demonstrate

that the proposed detection algorithm is robust against

noise variance uncertainty and outperforms existing spec-

trum sensing algorithms. In an exemplifying setting, when

SNR= −20dB, frame duration is 2s, and the bandwidth

of each of the white and target sub-bands is 6MHz, the

optimal sensing times that maximizes the throughput are

28.5ms and 50.6ms for perfect and imperfect noise vari-
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Fig. 1. The frame structure of a cognitive radio network.

ance scenarios, respectively (i.e., ToGED = 1.78ToCED).

The remaining part of this paper is organized as follows:

Section II discusses the signal model and problem statement.

The proposed generalized energy detection algorithm is dis-

cussed in Section III. The sensing time optimization algorithm

is presented in Section IV. In Sections V and VI, detailed

numerical and simulation results are presented for different

practically relevant parameter settings. Finally, conclusions are

drawn in Section VII.

Notations: The following notations are used: AE(.) de-

notes the average energy and ⌊x⌋ (⌈x⌉) is the nearest integer

less (greater) than or equal to x. The representations s.t,
Pr(.), (.)⋆, E{.} and |.| denote subject to, probability, optimal,

expectation and absolute value, respectively.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a cognitive radio network that operates on the

spectrum of BHz. This BHz has two sub-bands where one of

the sub-band is white and the other sub-band is the target sub-

band which could be either white or non-white (i.e., unknown

sub-band). We assume that the cognitive device attempts to

perform spectrum sensing on the target sub-band and utilizes

this sub-band for communications only when it is white1.

The frame structure of a CR network is illustrated in Fig.

1, which shows consecutive frames. Here, each frame has a

duration of Tf = To+(Tf−To), where To is used to sense the

target sub-band and the remaining time Tf−To is used for CR

transmission. The sensing time To is required to ensure that

the primary network is sufficiently protected. This protection

level is usually expressed in terms of Pd of the target sub-

band. The time Tf − To is usually chosen to ensure that the

target sub-band is efficiently exploited. In this paper, we are

interested in designing the spectrum sensing to maximize the

throughput of the CR network while appropriately protecting

the primary network. This problem is formulated as

max Thf , s.t Pdf (target sub band) ≥ P̃d (1)

where Thf , Pdf (.) and P̃d are the throughput achieved in

the target sub-band, detection probability and required Pd

threshold in frame f , respectively. As we can see from

Fig. 1, when we increase To, the protection level of the

primary network increases (i.e., Pdf (.) increases). However,

doing this will reduce the achievable throughput of the CR

network which is directly related to Tf − To. Therefore, the

tradeoff between sensing time and throughput can be studied

1A CR network is a network that does not have exclusive right to use this
sub-band. It is always termed as a secondary network.



by examining (1). Furthermore, for the appropriately selected

Tf , the optimal solution of (1) will satisfy 0 < To ≤ Tf .

We assume that Tf is selected appropriately and the sampling

frequency of the cognitive device is set to B (i.e., Nyquist

sampling). Given these assumptions, problem (1) can be solved

by addressing the following two objectives for each frame.

Obj 1: Detecting the target sub-band using the noise

information of the white sub-band by the proposed

GED2.

Obj 2: Optimizing the sensing time to maximize the

throughput of the CR network by employing the Pd and

Pf expressions of the GED.

III. GENERALIZED ENERGY DETECTOR

This section presents the proposed GED, and provides

detailed performance analysis. As mentioned in the above

section, we have two sub-bands where one of them is the

white sub-band and the other is the target sub-band. For

convenience, let us represent the target sub-band as sub-band

k with bandwidth Bk (i.e., from 0 to BkHz) and the white

sub-band as sub-band i with bandwidth Bi (i.e., from Bk to

BHz), and we assume that the cognitive device employs Tts
sensing time to ensure the target P̃d.

The base-band received signal of each frame r(t) can thus

be expressed as

r(t) = s(t) + w(t), 0 ≤ t ≤ Tts (2)

where s(t) and w(t) are the signal and noise components,

respectively. By sampling this signal with period 1
B (i.e.,

Nyquist sampling rate), the sampled version of r(t), with slight

abuse of notation, can be expressed as

r[n] =s[n] + w[n], n = 1, · · · , Ns (3)

where Ns = TtsB is the number of received samples in

Tts duration. It is assumed that w[n], ∀n are independent and

identically distributed (i.i.d) zero mean circularly symmetric

complex Gaussian (ZMCSCG) random variables all with vari-

ance σ2 which is unknown or known imperfectly.

The discrete time Fourier transform (DFT) of r[n] is given

as [14]

r̃[m] =

Ns
∑

n=1

r[n] exp
−i2π(m−1)(n−1)

Ns√
Ns

, m = 1, · · · , Ns.

The average energies of the frequency regions [0 : Bk] and

[Bk : B] are given by

AE([0 : Bk]) =

Ndk
∑

m=1

|r̃[m]|2
Ndk

,

Ndk
∑

j=1

|dk[j]|2
Ndk

,M̂dk

AE([Bk : B]) =

Nz
∑

m=1

|r̃[Nk +m]|2
Nz

,

Nz
∑

j=1

|z[j]|2
Nz

,M̂z (4)

2As will be detailed later, our GED is not a straightforward extension of
the CED.

where Ndk = ⌊Bk

B Ns⌋, Nz = Ns − Ndk, {dk[j] =

r̃[m]}Ndk

j=m=1 and {z[j] = r̃[Nk +m]}Nz

j=m=1.

As the ith white sub-band contains noise only signal,

z[j], ∀j can be modeled as i.i.d ZMCSCG random variables

all with variance σ2 whereas, the kth sub-band contains either

noise only (H0k) or signal plus noise (H1k). Thus, dk[j], k 6= i

can be modeled as

dk[j] =

{

˜̃sk[j] + ˜̃wk[j], Under H1k

˜̃wk[j], j = 1, · · · , Ndk Under H0k
(5)

where ˜̃wk[j], ∀j are i.i.d ZMCSCG random variables all with

variance σ2, ˜̃sk[j], ∀j are i.i.d zero mean random variables

with E{|˜̃sk[j]|2} = γkσ
2 and γk denotes the SNR of the kth

sub-band under H1k hypothesis.

To detect the kth sub-band, we propose the following test

statistics

Rk =

√

Ndkβk

βk + 1

(

M̂dk

M̂z

− 1

)

, k 6= i (6)

where βk = Nz

Ndk
= Bi

Bk
. By applying Theorem 1 of [11] (see

also [13] for more details), it can be shown that

Rk ∼N (0, 1), Under H0k

Rk ∼N (µk, σ̃
2
H1k

), Under H1k

where µk =
√

Ndkβk

βk+1 γk and σ̃H1k
= 1 + γk. The Pf and Pd

of the test statistics (6) are thus given as [11]

Pfk(λk) =Pr{Rk > λk|H0k} =
1

2
erfc

(

λk√
2

)

(7)

Pdk(λk) =Pr{Rk > λk|H1k} =
1

2
erfc

(

λk − µk√
2σ̃H1k

)

(8)

where λk is the threshold and erfc(.) is the complementary

error function [15]. As we can see from (8), for the given γk >

0 and λk, increasing Ndk increases Pdk. This is due to the

fact that erfc(.) is a decreasing function. Thus, the proposed

detection algorithm is consistent and does not suffer from any

SNR wall (i.e., for any given Pfk > 0 and γk > 0, Pdk → 1
as Ndk → ∞). One can also notice that the detector (6) is not

very sensitive to small to medium interference signal. This is

because, the ratio M̂dk

M̂z

will not be changed significantly in

the presence of small to medium interference signals. Hence,

the proposed detector is robust against small to medium ACI

which will occur frequently in practice.

In the following, we address the relation between the

detector (6) and the CED. As can be seen from (6), when

βk → ∞, M̂z becomes the true noise variance and the test

statistics (6) will be

Rkβk→∞ =
√

Ndk

(

M̂dk

M̂z

− 1

)

=
√

Ndk

(

M̂dk

σ2
− 1

)

. (9)

Indeed this is shifted and scaled version of the CED which

is optimal. From this observation, we can understand that the

role of M̂z is just to estimate the noise variance from finite

sub-band. Hence, the test statistics (6) can be considered as a

GED.

Next we examine the following interesting question. For

the given βk, how much is the performance loss of (6)



compared to that of the CED? As can be seen from (7), Pfk

does not depend on βk. Thus, the test statistics (6) and (9)

will employ the same threshold λk to ensure a certain Pfk.

This threshold is given by

λ⋆k =
√
2erfc−1(2Pfk), k 6= i.

Thus, the detection performance loss is given as

ηk = 1− Pdk(Rk)

Pdk(Rkβk→∞)
= 1−

erfc

(

λ⋆
k−

√

Ndkβk
βk+1 γk

√
2(1+γk)

)

erfc

(

λ⋆
k
−
√
Ndkγk√

2(1+γk)

) .

From these explanations, the following key points can be

highlighted:

1) If the noise variance is estimated from finite sub-band,

the theoretical thresholds of the CED can not be applied

directly.

2) When the bandwidth of the white sub-band is very small

(i.e., βk is very small), the threshold value to ensure a

certain Pfk(Pdk) of (6) is significantly different from

that of the CED.

3) Increasing βk increases the detection performance of (6).

Hence, the detection performance of the proposed GED

is upper bounded by that of the CED.

IV. SENSING TIME OPTIMIZATION

In this section, we compute the optimal Tts of (3) to

maximize the throughput of the CR network (i.e., Obj 2). The

CR network performs transmission in the kth sub-band when

the GED (6) declares this sub-band as white. The proposed

GED has a certain missed detection (i.e., the detector (6) may

declare a non-white sub-band as white). Thus, in the kth sub-

band, the CR network can have the following two SNRs [12]:

γc|H0k =γc, Correct sensing decision

γc|H1k =
γc

1 + γpk
, Incorrect sensing decision (10)

where γc is the SNR of the CR network and γpk, k 6= i are the

SNR of the primary signal experienced at the receiver of the

CR network3. If we denote the probability of the occurrences

of H0k and H1k by P (H0k) and P (H1k)
4, respectively, in

the transmission time duration Tf −To (recall Fig. 1), we will

achieve the following two throughputs:

ThH0k
=
Tf − To

Tf
R0kP (H0k)(1− Pfk(λ̃k, To))

ThH1k
=
Tf − To

Tf
R1kP (H1k)(1− Pdk(λ̃k, To))

where R0k = log2 (1 + γc|H0k) and R1k =
log2 (1 + γc|H1k)

5. Our objective will now be to get

the optimal To for maximizing the throughput of the kth

3In practice, we do not have any information about γpk, k 6= i. Due to this
fact, we employ γpk = γk, k 6= i.

4These probabilities can be computed by employing the decision statistics
of the previously sensed frames (i.e., the decision statistics of (6)).

5Here we assume that the CR network transmits a Gaussian signal and the
channel between the CR transmitter and receiver is assumed to be AWGN.

sub-band under the constraint that the primary network (i.e.,

the kth sub-band) is sufficiently protected. This problem is

mathematically formulated as

max
To

ThH0k
+ ThH1k

,

s.t Pdk(λ̃k, To) ≥ P̃d, k 6= i (11)

where Pdk(.) is the detection probability given in (8) and P̃d

is the required detection probability. As can be seen from this

expression, Pdk depends on λ̃k and To. Furthermore, for the

given To, the optimal λ̃k of the above problem can be obtained

by setting [12]

Pdk(λ̃k, To) = P̃d, k 6= i. (12)

From (8), we will have

Pdk(λ̃k) =
1

2
erfc

(

λ̃k − µk√
2σ̃H1k

)

. (13)

By combining (12) and (13), the optimal λ̃k becomes

λ̃⋆k = ak
√

To + bk, k 6= i (14)

where ak =
√

βkBk

βk+1γk and bk =
√
2σ̃H1kerfc

−1(2P̃d).

Substituting λ̃⋆k, k 6= i into (7) and after some straightforward

steps, problem (11) can be reformulated as

max
To

Tf − To

Tf

(

ψkerf

(

ak
√
To + bk√
2

)

+ ψ̃k

)

,f̃(To) (15)

where ψk = 0.5P (H0k) log2 (1 + γc|H0k) and ψ̃k = ψk +
P (H1k) log2 (1 + γc|H1k)(1−P̃d) are constants, and erf(.) =
1− erfc(.).

It can be shown that this problem is a concave maximiza-

tion problem where its optimal To can be obtained numerically

by simple bisection search method (see Appendix B of [13]

for more details).

Similar optimization problem has been considered in [12]

by employing CED. However, the authors of [12] examine

their problem by ignoring ThH1
(see equation (21) of [12]).

The proposed generalized energy detection and sensing time

optimization algorithms are summarized as follows.

Algorithm I: Generalized Energy Detection and Sensing Time

Optimization

Inputs: B, Bi and Bk, k 6= i and γk.

1) Obj 4: Optimal sensing time computation

a) From Bi and Bk, k 6= i, determine the optimal T ⋆
o

that maximizes the throughput by solving (15).

b) Get the samples T ⋆
oB and denote the total received

samples as {r[j]}Ns

j=1 of (3), where Ns = TtsB

with Tts = T ⋆
o .

2) Obj 3: Generalized energy detection

a) Using these Ns samples {r[j]}Ns

j=1 and the white

sub-band Bi, compute Rk, k 6= i with (6).

b) Compute λ⋆k using (14) and

if Rk < λ⋆k then

Label the kth sub-band as white.
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Fig. 2. Normalized f̃(To) of (15) for different frame duration Tf

else

Label the kth sub-band as non-white.

end if

3) Transmission: If the kth sub-band is white, transmit

information over the CR network in the remaining Tf −
To seconds.

Note that since we assume that Bi is white, the CR can

use both the ith and kth sub-band when the kth sub-

band is white, otherwise the CR will use only the white

sub-band Bi.

V. NUMERICAL EXAMPLES

In this section we provide numerical examples on the sens-

ing time optimization. Currently, the Federal Communications

Commission (FCC) in USA has proposed TV bands for CR

network application [12]. The bandwidth of each TV band

is 6MHz and P̃d = 0.9 at γk = −20dB. Suppose that we

have a cognitive device with bandwidth 12MHz (i.e., 2 TV

bands) where the first 6MHz is the target sub-band (i.e., sub-

band k) and the remaining 6MHz is the white sub-band (i.e.,

sub-band i), γc = 20dB, P (H0k) = 0.8 and P (H1k) =
0.2, k 6= i. Under these settings, we plot the sensing time

versus normalized throughput for different frame durations as

shown in Fig. 2. As we can see when the frame duration

increases, the optimal sensing time also increases. However,

this increment is not linear. For example, the optimal sensing

times with Tf = 100ms and Tf = 1200ms (i.e., 12 times

increment) are 20ms and 45ms (i.e., 2.25 times increment),

respectively. Thus, for practical application it is desirable to

choose the maximum possible frame duration. For 802.22

system, we suggest to set Tf = 2 seconds.

In the following, we examine the effect of the bandwidths

Bk and Bi on the optimal sensing time. To this end we

take Bk = Bi = 10MHz, and Bk = 10MHz and Bi =
6MHz cases. Fig. 3 shows the sensing time versus normalized

throughput for these two cases with frame duration Tf = 1.2s.

From this figure, one can observe that the optimal sensing

time with Bk = Bi = 10MHz setting (i.e., around 20ms) is
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Fig. 3. Optimal sensing time for fixed Bk and different Bi and Tf = 1.2s.
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Fig. 4. Comparison of the sensing time of the CED and GED with Bi =
Bk = 6MHz and frame duration Tf = 2s.

less than that of the setting Bk = 10MHz, Bi = 6MHz (i.e.,

around 25ms). This figure also reveals the fact that increasing

Bi (i.e., βk) will help to decrease the optimal sensing time.

Also, from this figure and Fig. 2 we can notice that, for the

given Bi, increasing Bk will decrease the optimal sensing time

which is expected.

Next we compare the sensing time of the GED of (6) and

that of the CED for the target sub-band with Tf = 2s which

is shown in Fig. 4. As can be seen from this figure, the CED

(ToCED = 28.5ms) requires less sensing time compared to

that of the proposed GED (ToGED = 50.6ms) (i.e., ToGED ≈
1.78ToCED). This is expected since the CED assumes perfect

noise variance (i.e., βk → ∞). This result validates that the

maximum throughput is achieved when the noise variance is

known perfectly.

VI. SIMULATION RESULTS

This section provides simulation results which are obtained

by averaging 20000 experiments. Under H1k hypothesis, the



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
f

P
d

Theory

Simulation

Fig. 5. Comparison of theoretical and simulated Pf versus Pd of GED in
AWGN channel at SNR= −20dB.

signal samples are taken from the quadrature phase shift

keying (QPSK) constellation with σ2
s = 1mW. Furthermore, in

the kth sub-band (i.e., target sub-band), the channel between

the primary transmitter and cognitive device is either AWGN

or Rayleigh fading. The SNR is defined as SNR ,
σ2
s

σ2 .

A. Verification of Pf versus Pd Expressions of GED (6)

In this subsection, we verify the theoretical Pfk and Pdk

expressions of the GED (6) by computer simulations. To this

end, we set Bi = 4.28MHz, Bk = 6MHz (i.e., βk = 0.71),

Tts = 30.3ms, SNR= −20dB and the channel between the

primary transmitter and cognitive device is AWGN. Under

these settings, Fig. 5 shows comparison of the theoretical

and simulation Pf (Pd). From this figure, we can see that the

theoretical Pf (Pd) matches exactly that of the simulated one.

B. Effects of βk and Noise Variance Uncertainty on the Pfk

and Pdk of GED

In this subsection, we examine the effects of βk and noise

variance uncertainty on the Pfk and Pdk of GED. To this

end, we consider that Bi = [6, 4.28]MHz, and Bk = 6MHz

(i.e., βk = [βk1, βk2] = [1, 0.71]). Furthermore, the true

noise variance is modeled as a bounded interval of [ 1ǫσ
2 ǫσ2]

for some ǫ = 10∆σ2/10 > 1, where the uncertainty ∆σ2 is

expressed in dB [4]. We assume that this bound follows a

uniform distribution, i.e., U [ 1ǫσ2 ǫσ2]. The noise variance is

the same for one experiment (since it has a short duration) and

follows a uniform distribution during several experiments.

For this simulation, we set Tts = 30.3ms, ∆σ2 = 2dB

and Pfk1 = Pfk2 = 0.1, where Pfk1 and Pfk2 are the false

alarm probabilities obtained by βk1 and βk2, respectively. Fig.

6 shows the achieved Pf and Pd for these βk values. From

this figure, we can understand that the target Pf ≤ 1 is

maintained for both βk values. Thus, the Pf of the detector

(6) does not depend on the value of βk which is inline with

the theoretical result. Furthermore, increasing βk (or SNR)
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Fig. 6. Performance of the proposed GED under noise variance uncertainty.

increases the detection performance of the proposed GED (6)

for both AWGN and Rayleigh fading channels. And, for a

given βk, the AWGN channel will achieve superior detection

performance compared to that of the Rayleigh fading channel

which is expected.

C. Comparison of the Proposed GED and the detector of [11]

for Pulse Shaped Signals

Recently new linear combination approach signal detection

algorithm is proposed for pulse shaped transmitted signals

with known rolloff factor in [11]. The detector of [11] is

robust against noise variance uncertainty and small to medium

ACI, and it outperforms CED and EVD-based signal detectors.

Furthermore, the detector of [11] is already implemented using

universal software radio peripheral (USRP) in [16] and has

shown consistent result with the theory. Due to this reason,

we compare the proposed GED (6) with the detector of [11]

for pulse shaped signals with known rolloff factor (i.e., one

band with known rolloff). To this end, we consider that the

transmitted signal is pulse shaped by a square root raised

cosine filter (SRRCF) with period Ts and a certain rolloff

factor (i.e., the total bandwidth of the transmitted signal is
(1+rolloff)

Ts
Hz).

For the comparison, we consider the same scenario as

in Fig. 3 of [11] (i.e., Ts = 1
610

−6s, rolloff = 0.2 and

Tts = 4.55ms). From fundamental wireless communication,

it is known that the rolloff frequency regions of any pulse

shaped signal are highly dominated by the noise (i.e., it

contains almost noise only signal). Therefore, one can interpret

that any pulse shaped transmitted signal has two sub-bands,

where the first sub-band of bandwidth 1
Ts

Hz contains signal

plus noise (under H1 hypothesis) and the second sub-band

of bandwidth rolloff
Ts

Hz contains noise only signal. Hence, for

our generalized energy detection algorithm (6), the former

sub-band can be considered as the target sub-band (i.e.,

sub-band Bk = 6MHz=[−3 : 3]MHz) and the latter sub-

band can be considered as the white sub-band (i.e., sub-band

Bi = 1.2MHz=[−3.6 : −3]MHz and [3 : 3.6]MHz). Due
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Fig. 7. Comparison of the proposed generalized energy detection algorithm
and the detection algorithm of [11] for pulse shaped transmitted signals with
Tts = 4.55ms.

to this reason, for the set up of Fig. 3 of [11], (6) utilizes

βk = Bi

Bk
= rolloff = 0.2.

Fig. 7 shows the performances of the proposed GED and

that of the detector in [11]. From this figure, we can see that

the current algorithm achieves the same performance as that of

[11] when the cognitive device is perfectly synchronized with

the primary transmitter (i.e., Sync) which almost never happen

in practice. However, for the practically relevant asynchronous

scenario (i.e., Async), the current GED (which do not assume

any synchronization) outperforms the detector in [11]. From

this result, we can also conclude that the proposed GED out-

performs CED and EVD based detectors under noise variance

uncertainty. On the other hand, the proposed GED requires

neither the pulse shaping filter of the transmitted signal nor

oversampling of the received signal.

Like the detector in [11], the current GED does not depend

on the phase of the received signal, and is not sensitive to

carrier frequency offset and small to medium ACI signal. Thus,

the proposed generalized energy detection algorithm is robust

against frequency and phase offset, and small to medium ACI

signal. The detailed analysis demonstrating this fact can be

performed like that of [11].

VII. CONCLUSIONS

This paper proposes novel spectrum sensing algorithm, and

examines the sensing throughput tradeoff for CR networks

under noise variance uncertainty. It is assumed that there are

one white sub-band, and one target sub-band which is either

white or non-white. Under this assumption, first we propose

a novel GED for examining the target sub-band by exploiting

the noise information of the white sub-band, then, we study the

tradeoff between the sensing time and achievable throughput

of the CR network. To study this tradeoff, we consider the

sensing time optimization for maximizing the throughput of

the CR network while ensuring that the primary network

is sufficiently protected. The sensing time is optimized by

utilizing the derived Pd and Pf expressions of the GED. The

proposed GED does not suffer from SNR wall (i.e., robust

against noise variance uncertainty). Numerical results reveal

that the optimal sensing times with perfect and imperfect

noise variances are not the same. Particularly, when the SNR=
−20dB, frame duration 2s, and each of the bandwidths of

the white and target sub-bands is 6MHz, we have found

that the optimal sensing times are 28.5ms and 50.6ms with

perfect and imperfect noise variance scenarios, respectively.

The derived Pd and Pf expressions of the GED are verified by

computer simulation. Simulation results also demonstrate that

the proposed GED is robust against noise variance uncertainty

and outperforms the existing signal detectors.
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