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ABSTRACT
Determining similarity of two point sequences (strokes) is a
fundamental task in gestural interfaces. Because the length
of each stroke is arbitrary, mapping to a fixed-dimension fea-
ture space is often done to allow for direct comparison. In
this paper, we propose a new feature space based on angle
quantization. For each adjacent pair of points in a stroke,
the vector between them defines an angle relative to a fixed
axis. The sequence of these angles can be mapped to a k-
dimensional feature space by quantizing the unit circle into
k ranges, and taking a normalized count of the number of
stroke angles in each range. The Euclidean distance be-
tween strokes in this feature space gives a measure of stroke
similarity. The measure is scale invariant, and some degree
of rotational invariance can be achieved with slight modi-
fication. Our method is shown to offer efficient and accu-
rate gestural matching performance compared to traditional
signal-processing and image-based methods.

Categories and Subject Descriptors
I.3 [Computer Graphics]: Methodology and Techniques—
Interaction techniques; I.5 [Pattern Recognition]: Clus-
tering—Feature selection, similarity measures

Keywords
Gesture recognition, interaction techniques

1. INTRODUCTION
The ways in which humans interact with computers are
an active and important research topic. Historically, in-
terfaces have been limited by the technology of the day,
leading to functional but unintuitive WIMP-style (Window,
Icon, Menu, Pointer) interfaces. A recent trend in human-
computer interaction is the exploration of intuitive and dis-
coverable interfaces [8]. Stroke-based or gestural interfaces
are an example of such an interface.
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Figure 1: Gestural interfaces forgo menus in favor of
intuitive gestures. Stroke matching is used to map
input to the correct operation, eg. mesh cutting.

A fundamental problem in gestural interfaces is to determine
the operation that corresponds to an input gesture (Fig. 1).
The problem of determining similarity of point sequences
appears in many applications such as trajectory analysis,
character recognition, and motion planning. Because sim-
ilarity is usually not treated as a binary relationship – i.e.
two objects may be exactly the same, completely different,
or anywhere in between the two extremes – similarity mea-
sures are used to quantify the amount of similarity between
two objects in a consistent and intuitive manner. For stroke-
based interfaces, the input is usually an ordered sequence of
points S = {p1, p2, . . . , pn} in window coordinates, acquired
from an input device such as a mouse or tablet. It is difficult
to compare such objects directly. For example, to compare
two strokes one might try to compute the Euclidean dis-
tance between them by summing the point-wise distances.
This approach is poor for several reasons: it is dependent
on the coordinate system, the ordering, and the number of
points. None of these factors play a role in the intuitive no-
tion of similarity. As Sezgin et al. [19] observe, a recognition
system should “respond to how an object looks, not how it
was drawn.”

Thus, similarity measures are commonly defined within a
feature space, which the objects can be transformed to. For
example, to recognize a handwritten character represented
by a pixel grid, we might first extract some high-level infor-
mation about the character – the number of bays and lakes,
the width and height – and then compare these values to
known characters. The tuple 〈bays, lakes, width, height 〉
represents the character in a 4-dimensional feature space.

In this paper, we describe a stroke feature that is based
on quantizing the unit circle into a small number of angle
ranges and counting the number of stroke angles in each

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.IMMERSCOM 2007, October 10-12, Verona, ItalyCopyright © 2007 978-963-9799-06-6DOI 10.4108/ICST.IMMERSCOM2007.2114



range (see Fig. 5). Because the stroke-to-feature transfor-
mation appeals to the geometric nature of a stroke, it is
easy to understand and implement, and the features have
intuitive geometric properties not offered by other methods,
such as rotational and multi-scale invariance.

The paper is organized as follows. Section 2 discusses re-
lated work in the field of stroke and shape similarity. Sec-
tion 3 presents our proposed method of angle quantization.
In Sec. 4, we show that our method can outperform other
methods in stroke recognition tasks. Finally, Sec. 5 offers
some directions for future work.

2. RELATED WORK
Many approaches have been proposed for recognizing sketched
input. An early approach by Rubine [18] uses geometric
properties to distinguish gestures, such as the initial an-
gle and bounding box size. Graph-based techniques try
to judge similarity from the spatial relationships between
strokes, such as crossings and shared endpoints [12]. Other
methods exploit domain-specific knowledge to derive higher-
level understanding of strokes, such as labelling different el-
ements [20] or building a diagrammatic representation [2].

Image-based techniques, such as Kara and Stahovich [9],
operate on strokes rendered to pixel grids rather than point
sequences to allow for missing or overlapping strokes. Area-
based methods, such as [7], try to characterize the area en-
closed by a stroke rather than the stroke itself. These ap-
proaches only use spatial information, ignoring other infor-
mation such as stroke order, direction, and speed.

While such approaches offer robust performance, their com-
plexity is too much for recognizing simple gestures that are
usually constrained to single strokes and designed to be
distinct and discoverable. On the other hand, while non-
interactive applications might have loose constraints on effi-
ciency, a gestural input system must recognize and perform
the requested operation quickly. Therefore, simple and fast
approaches are preferred.

Methods based on Fourier analysis are quite common, par-
ticularly in trajectory analysis [1, 15]. Its adoption is not
surprising given the strong theoretical basis and broad li-
brary support, but the transform loses locality of features
due to signal-sized waves. Wavelet methods [3] attempt to
address this issue by using smaller waves in the transforma-
tion, but suffer from signal length restrictions.

Direction-based methods use feature spaces based on the
vectors defined by adjacent elements of a point sequence.
Kato et al. [10] consider directional element features for
image-based character recognition, building a feature based
on 4 possible directions that can be associated with each
contour pixel (up, down, and diagonals). Li et al. [13] use
compass directions (North, Northwest, etc.) to represent
a trajectory as a series of direction-distance-interval tuples;
similarity is determined by examining trajectory directions
in corresponding intervals. Shim and Chang [21] explore a
similar construction, but allow for arbitrary angles and alter
the similarity measure to account for displacement as well.

Our angle quantization method is direction-based, but is

unique in that it produces fixed-dimensional features that
can be compared easily. A similar method – for image-
based hand gesture recognition – has been proposed by Free-
man and Roth [6]. Their method computes a feature from
the histogram of gradient directions in an image. However,
the dimensionality of their features are high, and they must
be smoothed to achieve good results. Although some sys-
tems, such as [19], consider stroke speed for recognition,
our method works best with regularly sampled (i.e. speed-
invariant) strokes.

Below we discuss three existing methods in stroke or trajec-
tory analysis, which will be used in Sec. 4 to evaluate our
proposed method. They were chosen because they represent
a variety of approaches – wave- and wavelet-based, image-
based – and produce fixed-dimensional features with effi-
cient Euclidean distance measures, suitable for interactivity.
Because other direction-based methods produce variable-
length features, we do not consider them in our evaluation.

Fourier Transform (FT)

For a discrete signal f(x) sampled n times, the Fourier
transform F (f(x)) decomposes f into n complex-valued fre-
quency components [16]. The complexity of a signal is re-
duced by retaining only the first m < n coefficients.

Following the method of Naftel and Khalid [15], a stroke
S is converted to a feature in Fourier space by splitting it
into x and y signals, Sx and Sy, and applying the Fourier
transform to them independently: X = F (Sx) and Y =
F (Sy). Retaining the first m coefficients of X and Y (real
and imaginary) results in a 4m-element feature. Because
the “power” of a signal is typically concentrated in lower
frequencies, m can be chosen to be quite small (m ≈ 5) [1].
Figure 2 depicts the Fourier feature of a 5-point star (inset).

Figure 2: The FT feature of a star shape: (left) the
x and y signals; (right) the corresponding feature,
with m = 5.

According to a theorem of Parseval, the Euclidean distance
between signals in the frequency domain is equal to their
distance in the time domain [16]. Similarity of two strokes
is therefore approximated by the Euclidean distance between
their Fourier features.

Wavelet Decomposition (WD)

Wavelet decomposition of an n-sample signal f(x) produces
a coarse signal c(x) with roughly half as many samples, and
high-frequency details d(ω) in a wavelet basis, such that f(x)
can be reconstructed fully from c(x) and d(ω). The com-
plexity of a signal can be reduced by iteratively decompos-



Figure 3: The WD feature of a star shape after 10
levels of decomposition, where nc = 1, nd = 31.

ing until c(x) contains very few samples, and retaining only
some elements of d(ω). For example, decomposing a sig-
nal with n samples j times produces an approximation with
nc =

�
n
2j

�
samples, and (n − nc) details. A k-dimensional

feature is produced by retaining the nc coarse samples and
the nd = k − nc most significant details.

For strokes, the x and y signals can be decomposed sep-
arately and then appended to form a single feature with
2(nc + nd) samples. However, for meaningful comparisons
between strokes nc must be the same for each, which re-
quires that the original strokes are equal-length. Often this
condition is assumed to be satisfied, eg. [3], but it is difficult
to satisfy in gestural interfaces. Therefore, we resample each
stroke to a fixed length prior to feature construction.

Characteristic Loci

The characteristic loci method of Glucksman [7] is an area-
based method for character recognition. For a binary image
I, each pixel is assigned a code based on how many lines are
intersected by rays cast from the pixel in four directions:
up, down, left, and right (Fig. 4). Variations of this method
are still used in image-based character recognition [14]. For
stroke comparisons, each stroke must be rasterized to a bi-
nary image, or acquired from the frame buffer rather than
the pointing device.

(a) (b)

(c)

Figure 4: The Loci feature of a star shape: (a) each
pixel is assigned a code based on four ray-line in-
tersections; (b) a visualization of the codes; (c) a
normalized count of each code produces a feature.

To construct a feature, the number of occurrences of each
code are summed. Consider an image with 2 bits allotted
for each ray (for a maximum of 3 intersections): in this

case, there are 2(4·2) = 256 possible codes, corresponding to
a 256-dimensional feature. For b bits per direction, a 16b-
dimensional feature space results. Knoll [11] notes, however,
that some codes occur very infrequently in practice, so the
feature complexity could be heuristically reduced.

3. ANGLE QUANTIZATION
We now describe the details of our stroke feature based on
angle quantization (AQ), which has the following properties:

• translation, scale, and multi-scale invariant;

• rotationally invariant under suitable distance measure;

• efficient to compute and compare; and,

• descriptive even with low-dimension features.

The construction is based on a directional stroke representa-
tion: every pair of points {pi, pi+1} is replaced with a vector
vi = pi+1 − pi. We then quantize the unit circle [0, 2π] into
k equal-size bins, and count the number of vectors in each
bin. If bin i contains σi vectors, then the sequence of these
sums forms a feature Q̂:

Q̂ = 〈σ1, . . . , σk〉 .

Figure 5 illustrates this construction for a simple stroke.

(a) (b) (c)

(d) 〈2, 0, 0, 0, 0, 5, 1, 0〉 (e)
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Figure 5: Angle quantization of a stroke: (a) origi-
nal stroke; (b) directional representation; (c) count
of vectors in each angle range; (d) corresponding

feature, Q̂; (e) normalized feature, Q.

Because the directional representation depends only on rel-
ative point locations, AQ features are invariant under trans-
lation. To provide invariance to the sampling rate and scale,
Q̂ should be normalized to unit length, Q = Q̂/‖Q‖ so that
each coefficient in Q represents a percentage of stroke activ-
ity in an angle range (Fig. 5e).

The optimal number of bins, k, is application-dependent,
but in our experiments k = 16 works well. (For reasons dis-
cussed below, multiples of two are preferred.) Larger values
can make the quantization too sensitive to noise.

To compare two AQ features, we use the Euclidean, or norm-
2, distance measure, | · |2:

d(Q1, Q2) = |Q1 − Q2|2 =
p

Q1 · Q2 .



Multi-Scale Invariance

For regularly sampled strokes, the normalized AQ features
are scale invariant. This is an important property in typical
stroke recognition applications. A more interesting quality
of the AQ feature space is multi-scale invariance. For an
illustration, consider the strokes in Fig. 6. Based on Fourier
features, S1 and S3 are more similar, but intuitively S1 and
S2 are more similar because S1 consists of several smaller
copies of S2.

S1 S2

S3 S4

Figure 6: The AQ features are similar for multi-scale
patterns.

Suppose S2’s feature is Q̂2 = 〈σ1, . . . , σk〉. If S1 contains m

copies of S2, each scaled by 1
n
, then Q̂1 = m·
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or Q̂1 = m
n

Q̂2. After normalization, Q1 = Q2. Thus, AQ
features match our intuition that S1 and S2 are similar.

Rotational (In)variance

(a) (b)

Figure 7: (a) The AQ feature of a star; (b) when the
shape is rotated, the feature is shifted.

Scale and translational invariance are necessary properties,
but the desirability of rotational invariance is application-
dependent. For pure shape recognition it would be sensible,
but orientation may be important in gestural interfaces (eg.
different orientations of a stroke may specify variations of a
single operation or even different operations entirely).

AQ features are not rotationally invariant. Consider Fig. 7:
the feature after rotation is different than the original, be-
cause potentially every stroke vector falls into a different
angle range. The effect of rotation is predictable, though: a
rotation of ±2π/k corresponds to a shift of ±1 element in Q.
A rotation by a non-integral multiple of 2π/k could result

in an “impure” shift due to only some vectors changing bins,
so k should not be chosen too small. To have rotational
invariance, then, the similarity measure can be modified to

dθ(Q1, Q2) = min
i∈[1,k]

{|Q1 − shift(Q2, i)|2 + p(i)} ,

where shift performs an integral shift-with-wraparound and
p(i) is an optional function to penalize the rotation.

Directional independence can also be realized by shifting, as
a stroke reversal is equivalent to each stroke vector being
rotated by π. For example, if the stroke of Fig. 5a were
reversed, the feature in Fig. 5d would be shifted by 4 ele-
ments, i.e. Q̂ = 〈0, 5, 1, 0, 2, 0, 0, 0〉. In general, a reversal is
equivalent to a shift by k/2 elements (for even k).

4. EVALUATION
To evaluate the utility of AQ features in gesture recognition,
we compare it against the FT, WD, and Loci methods in a
typical usage scenario: matching an input stroke against a
set of known set of gestures. For the set of gestural in-
puts shown in Fig. 8, we acquired a training set R with 204
gestures, and a query set U of 49 strokes. The sets were
acquired from 3 users and exhibit common input variations,
such as scale, speed, and starting point (eg. a circle is not
always drawn from the top).

For each gesture type, we construct a template by averag-
ing the features of all training examples from that type.
Methods such as Hidden Markov Models [17] or Bayesian
statistics [4] are often used to isolate outliers in the train-
ing data, but we were able to achieve good results without
them. Figure 8 illustrates the templates for each method.

Recognition success is measured by finding the nearest tem-
plate to each query stroke and comparing the result to the
ground truth; the success rate is the number of correctly
recognized strokes, NC , divided by the total, |U |. The time
required to recognize all strokes in the query set is also re-
ported for each method. Table 1 summarizes the results of
these experiments.

Method FT WD Loci AQ
Success (%) 75.5 79.6 95.9 100
Time (s) 1.49 2.58 6.65 1.28

Table 1: Gesture recognition success rate and tim-
ing for all strokes in the query set U . The feature
dimensions are as indicated in Fig. 8.

The AQ method is able to recognize all query strokes suc-
cessfully, and does so in the least amount of time. Looking
at the templates, we can see that each gesture produces a
very unique template: for example, the square’s feature has
four peaks, while the circle’s has none. This diminishes the
chance of misclassification, as even a poor example of a ges-
ture should be closer to its template than any other.

The Loci method is able to achieve a high recognition rate
as well although we notice that it has difficulty distinguish-
ing between closed convex objects, such as the circle and the
square. Each interior point in these objects has a single in-
tersection in every direction, and so the corresponding code
tends to dominate the features.



Gesture FT template WD template Loci template AQ template

Figure 8: A set of gestures (left) and their corresponding feature templates for the FT, WD, Loci, and AQ
methods. Feature dimensions are 20 (m = 5), 64 (nc = 1,nd = 31), 256 (b = 2), and 16 (k = 16), respectively.



The FT method is quite efficient, but provided relatively
poor recognition. Observation reveals that most templates
are dominated by the zero-th frequency components, which
makes the method prone to misclassification because the
templates for each gesture type are too close to reliably dis-
tinguish between them. The WD method achieves a recog-
nition rate close to FT. Like the Loci method, closed objects
produce similar features in the WD method, and are likely
to be confused. The FT and WD methods are both sensitive
to the initial position of a stroke.

The efficiency of the Loci method is hindered by two as-
pects: stroke rasterization, and high-dimensional features.
The WD method also requires high-dimensional features,
and though wavelet decomposition is more efficient than
Fourier analysis (O(n) versus O(n log n)), this gain is offset
by the resampling step. FT and AQ are fast because there
is an efficient mapping from stroke to feature, and because
they can use low-dimensional features.

(a) (b)

Figure 9: Loss of locality in the AQ method: the
features of (a) and (b) are almost the same.

These experiments indicate that our AQ method is well-
suited to simple gesture recognition tasks. There are some
drawbacks to the method that could hinder its usefulness in
other applications, though. First, the locality of stroke fea-
tures is lost, allowing possible ambiguities in unconstrained
input (Fig. 9) that can be avoided in gesture recognition.
Second, the transform’s coordinate independence may be
undesirable in domains such as trajectory analysis.

5. CONCLUSION & FUTURE WORK
In this paper, we have presented a method for extracting
low-dimensional features from arbitrary-length point sequences
based on angle quantization. The feature is efficient, descrip-
tive, and offers useful geometric properties such as multi-
scale and rotational invariance.

In a gesture recognition experiment, low-dimensional AQ
features were shown to offer high recognition rates and fast
operation, outperforming Fourier, wavelet, and area-based
techniques.

For unconstrained recognition tasks, the angle quantization
technique may suffer from ambiguities. A future direction of
this work is investigating possible disambiguations, such as
augmenting the AQ feature with speed information. Adding
spatial information, eg. start and end points, to the fea-
ture could also make the feature suitable for coordinate-
dependent applications like trajectory analysis.

Finally, more sophisticated classification tools could be used
within our feature space to achieve better performance. Im-
provements could be made in both the template construction
(eg. [4, 17]) and in the distance metric (eg. [5, 22]).
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