
Data Exchange: Query Answering for Incomplete Data
Sources

Foto Afrati
National Technical University

of Athens
afrati@softlab.ntua.gr

Chen Li
University of California, Irvine

chenli@ics.uci.edu

Vassia Pavlaki
National Technical University

of Athens
vpavlaki@softlab.ntua.gr

ABSTRACT
Data exchange is the problem of transforming data struc-
tured under a schema, called the source schema, into data
structured under another schema, called the target schema.
Existing work on data exchange considers settings where the
source instance does not contain incomplete information. In
this paper we study semantics and address algorithmic issues
for data exchange settings where the source instance may
contain incomplete data. We investigate the query answer-
ing problem in such data exchange settings. First we give
two different meaningful semantics to certain answers: One
via the certain answers in the corresponding complete data
exchange problems and the other via the set of all solutions
of the corresponding complete data exchange problems. We
use the chase to compute a universal instance which is ma-
terialized over the target schema and is used to compute the
certain answers to unions of conjunctive queries. We prove
that computing certain answers (under both semantics) for
unions of conjunctive queries can be done in polynomial time
when the schema mapping contains constraints that consist
of a weakly acyclic set of tuple-generating dependencies and
equality-generating dependencies.

1. INTRODUCTION
Data exchange, also known as data translation, is the

problem of transforming data structured under a schema,
called the source schema, into data structured under an-
other schema, called the target schema. Schema mappings
are typically used to define formally such a transformation.
One of the most important goals of data exchange is to ac-
tually materialize a target instance that satisfies the rela-
tionship between the schemas and then use this instance
to answer queries posed on the target schema. Data ex-
change has received considerable attention recently, for re-
lational databases [13, 14, 9, 4, 16, 23, 22, 25, 2, 1] and
XML databases [5]. A schema mapping tool, Clio, was im-
plemented at the IBM Almaden Research Center [28, 29]
which grew over the years [18, 3]. On the other hand, due

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

to new applications (e.g., sensor and scientific data, infor-
mation extraction) a considerable interest has been shown in
issues concerning incomplete data and uncertain data. Sig-
nificant work on querying incomplete data [21] and recently
on querying uncertain data [8, 11, 30] has been done in the
literature.

To the best of our knowledge, all existing work on an-
swering queries in data exchange settings assumes that the
source instance does not contain incomplete or uncertain
data; we refer to this setting as complete data exchange set-
ting. A complete data exchange setting assumes a set of con-
straints, Σ, that consist of source-to-target constraints Σst

and target constraints Σt. In this paper we consider rela-
tional data exchange settings in which the source instance I
may be incomplete. To characterize the worlds represented
by I, incomplete databases may be accompanied by data
dependencies. Therefore, the incomplete data exchange set-
ting that we introduce in this paper assumes also source
constraints denoted Σs. Figure 1 illustrates an incomplete
data exchange setting M where I is the source instance on
schema S and J is the target instance (to be materialized)
on schema T.

���

�

� �

� �

���

�

�

Figure 1: An incomplete data exchange setting.

In this paper, we investigate the following problem: Given
a source instance and a set of constraints (that encompass
schema mappings and integrity constraints), what instance
to materialize on the target so that we can use it to an-
swer unions of conjunctive queries. Work on data exchange
(and data integration in general) has often adopted the no-
tion of certain answers for the semantics of query answering
(see e.g., [13]). The semantics of certain answers are typi-
cally based on the concept of possible worlds. For complete
data exchange settings, we know how to define meaning-
ful semantics for certain answers for unions of conjunctive

fezzardi
Text Box

lacerda
Typewritten Text

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.INFOSCALE 2008, June 4-6, Vico Equense, ItalyCopyright © 2008 978-963-9799-28-8DOI 10.4108/ICST.INFOSCALE2008.3476

queries based on the possible target instances that satisfy
the constraints (called solutions).

In a data exchange setting, the source database instance
and the target database instance are on different schemas.
Thus, even in the cases where the source instance does not
contain incomplete data, the materialized target instance
most probably does. Hence, this target instance actually
is seen as representing a set of possible worlds. Thus, we
define a fact to be in the certain answers of a query q posed
on the target if this fact is in the answer to query q posed
on every target possible world. In this paper, we adopt the
notion of certain answers as the query answering semantics,
i.e., we are interested in obtaining answers to the query that
do not contain nulls and are guaranteed to be answers to
the query on every possible world. However, we need to
revisit the definition of the set of possible worlds because we
have two sources of incompleteness now, a) the incomplete
source instance and b) the incomplete target instance due
to difference of the schemas of the source and the target. A
natural way to attack this problem is to first think how to
exchange data for every possible world represented by the
incomplete source instance in separate, and then integrate.

The set of possible worlds represented by the incomplete
source instance and the source constraints are the complete
databases that are derived from it by replacing the nulls with
constants and adding missing facts and for which the source
constraints are satisfied. This gives rise to two natural se-
mantics of certain answers: The first semantics is based on
deriving first the certain answers for every possible world of
the source instance (viewed as a data exchange problem over
complete data) and then take the intersection. The second
semantics is based on considering again every possible world
of the source instance but, instead of computing the certain
answers, we consider all solutions, compute the query on ev-
ery solution and take the intersection of the answers. The
difference lies in that even if some possible worlds of the
source do not have a solution, the set of certain answers
may be non-empty because we just ignore these worlds. I.e.,
given an incomplete instance I over the source schema and a
set of source constrains, in the first semantics, an element in
the set of possible worlds is a complete data exchange prob-
lem for one of the complete source instances represented by
I. In the second semantics, an element in the set of possible
worlds is a solution of one of these complete data exchange
problems. Figure 2 illustrates the two distinct semantics
introduced in this paper. We will revisit this figure later
after we introduce formally the two semantics. In this pa-
per, we show that the two semantics are closely related to
each other, actually one is strictly more liberal than the
other. Interestingly, however, the computation of each set
of certain answers poses a different algorithmic challenge.
We show that for both our semantics, the certain answers
to unions of conjunctive queries can be computed in polyno-
mial time under the same assumptions for the constraints as
for complete data exchange settings (i.e., for sets of weakly
acyclic tuple-generating dependencies). The following ex-
ample shows that the two semantics are natural and that
both may be of interest in applications.

Example 1.1. Consider an online store. The customer
service department contains a database A with a single table
Members. Visitors of the site of the store who wish to become
members are requested to fill a Web form where they are
asked to provide information in many fields of which some

are mandatory and some optional. For simplicity, in this
example, we assume that the provided information involves
only three attributes and is stored in the table

Members (Email, Name, CCName),

which contains information on members email (Email), name
(Name), and credit card holder’s name (CCName). The latter
attribute is optional. That is, visitors have the option to pro-
vide only their email in the first attribute, their name in the
second attribute of the relation Members and leave the third
attribute blank.

The online store has also a sales department with a database
B consisting of a single table, namely

Customers (Email,Name,CCName).

For business reasons, the store needs to transfer the data
from the customer service department to the sales depart-
ment (i.e., from the database A to the database B). The
following source-to-target tgd is used for this transfer (in
this example, it is a simple copying tgd)

dst : Members(Email, Name, CCName) →
Customers(Email, Name, CCName).

The sales department however maintains a database with
the following integrity constraint holding (A reason for that
could be, e.g., to avoid fraud in the transactions):

dt : Customers(Email, Name, CCName) → Name = CCName.

Thus, we have egd dt as a target dependency. Suppose I =
{Members(john@gmail.com, John,null)} is an instance of
database A where null denotes the null value.

The target instance J should be such that I ∪ J satis-
fies the constraints dt and dst. There is an infinite num-
ber of such target instances. However, for the sake of ar-
gument, we consider here the following three candidate in-
stances as the most natural to materialize in the target:
J1 = ∅, J2 = {Customers(john@gmail.com, null, null)}
and J3 = {Customers(john@gmail.com, John, John)}.

Consider the following conjunctive queries posed on database
B:

Q1(Email) :- Customers(Email, Name, CCName).
Q2(Email, CCName) :- Customers(Email, Name, CCName).

Q1 asks only for a list of customer emails whereas Q2 asks
for a list of customer emails together with the correspond-
ing credit card holder’s name. Intuitively, the certain an-
swers expected in the first query is {(john@gmail.com)},
whereas the certain answers expected in the second query is
∅. The reason is that query Q1 only asks for the emails of
customers (and john@gmail.com is an email address of a
customer), whereas for query Q2, if we get in the answers
a fact that contains john@gmail.com in the first attribute,
we face the risk to get a non-valid CCName in the sec-
ond attribute of the query. On candidate target instances
J1 and J2, both queries compute the empty answer (because
a tuple with nulls is definitely not in the certain answers,
since there is a possible world which does not derive this
answer). On candidate instance J3, query Q1 computes
{(john@gmail.com)} as desired and query Q2 computes also
{(john@gmail.com, John)} which however contains false in-
formation. This shows the necessity for adopting two seman-
tics for certain answers. The more liberal semantics (which

������� � ��	
��� � ��� � � �

����� � ��� ��� � !�" # $&%

���

�
��('�)+*�, ��� �+-���� �/.&0(��1���
�2��+3&��� � 	
�24��5+�����

687:9�;:< =:> =�?�@:> @
A�BDCDE @:F:G:=�H�=:> > I F�G

JLK�M N:O P Q
687:9�;:< =�> =�?�@:> @
A�BDCDE @:F�GR=�H�=:> > I FRG

JLK�M NRO S Q

H�7:< P P H�7:< P S
���

H�7�< S P H�7�< S S
������

�T�+� 3U'�, � � ���

�

�

���

Figure 2: The two definitions of certain answers in IDE settings.

actually materializes J3) suffices to compute the answers of
Q1. However, we need to adopt the stricter semantics to
compute the answers of Q2 if we want to avoid getting false
information. We will revisit this example after we define
formally the two semantics of certain answers.

In our setting, an incomplete database is a database in-
stance which may have unknown values (nulls) or even some
facts may be missing. We allow for integrity constraints to
come with the incomplete database. These constraints may
be functional dependencies or in general any equality-generating
dependencies and tuple-generating dependencies (e.g., inclu-
sion dependencies). In the above example, for simplicity, we
did not have any source constraints. E.g., we could have the
functional dependency Email → Name, in which case the
instance I1 = {Members(john@gmail.com, John, null),
Members(john@gmail.com, null, null)} would have been the
same as the instance I = {Members(john@gmail.com, John,
null)}.

1.1 Our Contributions
We consider sets of constraints that are equality-generating

dependencies and tuple-generating dependencies. The con-
tributions of this work are summarized as follows:

(a) We define two meaningful semantics of certain answers
for data exchange settings in which the source instance may
contain incomplete data.

(b) We show that the two semantics are closely related
and we identify the cases in which they coincide.

(c) We use the chase to compute a universal instance
which is materialized in the target and is used to compute
the certain answers of unions of conjunctive queries.

(d) We investigate the complexity of query answering un-
der both semantics. In particular, we show that if the source
constraints consist of egds and weakly acyclic tgds, the source-
to-target constrains of tgds and the target constraints of egds
and weakly acyclic tgds, then we can compute certain an-
swers in PTIME.

1.2 Related Work
In the literature several frameworks for sharing data be-

tween independent applications have been proposed. Many
of them use the notion of certain answers for query answer-
ing. It is well recognized that for different query languages
some semantics are not meaningful (see e.g., [2, 1]) and,
therefore, the definition of certain answers problem has to
be revisited. Thus, for complete data exchange settings,

work has been done on defining certain answers for aggre-
gate queries [1] and for data exchange settings which may
incorporate arithmetic comparisons in their constraints and
for queries with arithmetic comparisons [2]. Work in [25] fo-
cuses on giving various semantics for query answering that
are meaningful in fragments of first order logic.

On the other end, for the query language of unions of con-
junctive queries, and after the work in [13], broader frame-
works have been considered and complexity results are ob-
tained. In [15] the peer data exchange setting (PDE in
short) was proposed where target-to-source constraints are
also assumed and the target may have its own data. In this
framework, under certain assumptions about the rules for
exchanging the data, computing certain answers becomes
intractable (coNP-complete). In arbitrary peer data man-
agement systems (PDMS in short) the relationship between
peers is specified using constraints that can be in either
direction (from one peer to another, and vice versa). In
PDMS, query answering, is undecidable [19, 31]. In [10],
computing certain answers for a special case of PDMS is
shown to be in ΠP

2 . Incomplete data exchange settings, in-
troduced in this paper, are more expressive settings than
complete data exchange and the problem of query answer-
ing is shown in this paper to be tractable whereas in peer
data exchange settings and full peer data management sys-
tems it is proven intractable (see Figure 3 for an illustration
of the discussion on the complexity of query answering for
unions of conjunctive queries).

2. PRELIMINARIES
In this section we review the classes of tuple-generating

dependencies and equality-generating dependencies, and the
concepts of instance and ground instance. We review the
results on complete data exchange settings, and in particular
the semantics of certain answers in complete data exchange
settings.

2.1 Data Dependencies and Instances.
We review the classes of tuple-generating dependencies

(tgds) and equality-generating dependencies (egds).

Definition 2.1. (tgd - egd)
Let D be a database schema.
- A tuple generating dependency (in short tgd) is a first-
order formula of the form

∀x(
φ(x) → ∃y ψ(x,y)

)
.

�����������	
�
����
���

��������� � �� ���	
��

�������������	
�
����
���

�������� � ��� � �� ���	���������

�������������	
�
����
���

�������� � ��� � �� � ��� ���	
��

�����	
�
��
�
�������������� 	
��

��������
�

��������
�

����

�������

�
�

� � �������

Figure 3: Hierarchy of data sharing settings w.r.t.
complexity of computing certain answers.

- An equality generating dependency (in short egd) is a
first-order formula of the form

∀x(
φ(x) → (x1 = x2)).

In the above formulas, φ(x) is a conjunction of atomic re-
lational formulas over D with variables in x. Each variable
in x occurs in at least one formula in φ(x). In addition,
ψ(x,y) is a conjunction of atomic relational formulas with
variables in x and y and each variable in y occurs in at least
one formula in ψ(x,y). x1 and x2 are variables from x.

In the rest of the paper, in some cases we will drop the
universal and existential quantifiers in tgds and egds implic-
itly assuming such quantification. We use rhs (lhs) to refer
to the right hand side (left hand side) of a tgd or an egd.
A tgd with no existentially quantified variables is called full
tgd.

We assume an infinite domain of constants Const and an
infinite set Var of variables, called labeled nulls, such that
Const ∩ Var = ∅. A fact is a relational atom over con-
stants from Const and labelled nulls from Var. We define
an instance to be a set of facts. For an instance K, we use
Const(K) and Var(K) to denote the set of constants and the
set of labeled nulls in K, respectively. An instance K where
Var(K) is empty, is called ground instance.

Let d : ∀x(
φ(x) → ∃y ψ(x,y)

)
be a tgd and D a database

instance. We say that D satisfies d if whenever there is a
homomorphism h from φ(x) to D, there exists an extension
h′ of h, where h′ is a homomorphism from the conjunction
φ(x) ∧ ψ(x,y) to D.

2.2 Query Answering in Complete Data Ex-
change Settings.

Fagin et al. in [13] introduced a data exchange setting
where the source instance is assumed to contain only con-
stants. In the rest of the paper, we refer to this setting as
complete data exchange setting (in short CDE).

Let S ={S1, . . . , Sn} and T = {T1, . . . , Tm} be two dis-
joint schemas, where each element in the sets is a relation.
We refer to S as the source schema and to T as the tar-
get schema. Instances over S are called source instances

whereas instances over T are called target instances. Tar-
get instances may contain values, called labeled nulls, that
appear in the target instance but not in the source instance
(“fresh” values).

A source-to-target dependency is a tgd of the form ∀x(
φS(x)

→ ∃y ψT(x,y)
)
. A target dependency is either a tgd of

the form ∀x(
φT(x) → ∃y ψT(x,y)

)
, or an egd of the form

∀x(
φT(x) → (xi = xj)). In all dependencies, φS(x), ψT(x,y)

and φT(x) are each a conjunction of atomic relational formu-
las over S or T respectively and xi, xj are among variables
in x. The following definition formalizes a complete data
exchange setting.

Definition 2.2. (complete data exchange setting)
A complete data exchange setting (CDE) is a quadruple
M = (S,T, Σst, Σt), such that:
• S is the source schema and T is the target schema;
• Σst is a finite set of source-to-target tgds;
• Σt is a finite set of target tgds and target egds.

We consider query answering for conjunctive queries posed
over the target schema. A conjunctive query q(x) over a
schema T is a formula of the form ∃yϕ(x,y), where ϕ(x,y)
is a conjunction of atomic formulas over T. The semantics
adopted for query answering is that of certain answers. Cer-
tain answers were introduced as the standard semantics used
in incomplete databases [17, 27]. It then became the stan-
dard semantics of query answering in data integration [24]
and data exchange [13]. Definition 2.3 defines certain an-
swers in CDE settings. Given a CDE setting M and a source
instance I, a target instance J is called a solution for I under
M, if (I, J) = I ∪ J satisfies Σst, and J satisfies Σt.

Definition 2.3. (certain answers in CDE settings)
Let M = (S,T, Σst, Σt) be a CDE setting, q be a union of
conjunctive queries posed over the target schema T, and I
be a source instance. The certain answers of q w.r.t I and
M, denoted by certainM (q, I), is:

certainM (q, I) = ∩{q(K) | K ∈ SOL(M, I)},
where SOL(M, I) is the set of solutions for I and q(K) de-
notes the result of applying q on instance K.

For a CDE setting, an infinite set of solutions may exist.
Consequently, from Definition 2.3 it is clear that computing
the certain answers involves checking an infinite space of
solutions. In [13] it was shown that for a CDE setting M and
a source instance I, we can use chase to produce an instance
J called universal solution for I under M. Then a universal
solution is used to compute the certain answers to a union of
conjunctive queries. Specifically, the chase begins with I and
in each step produces an instance Ki. In general, each chase
step considers a tgd (egd respectively) φ(x) → ∃y ψ(x,y)
(φ(x) → x1 = x2, respectively) in the set of constraints Σ
and the current instance Ki. For every pair of tuples a, b
from Ki such that φ(a,b) is true in Ki, we introduce a fresh
tuple of distinct nulls u and create new facts in the Ki so
that ψ(a,u) holds (we either equate a1 to a2 or report “fail”
if a1 and a2 are distinct constants, respectively) and thus
we obtain Ki+1. A detailed description of the chase is given
in Section 5.

More specifically, for complete data exchange settings and
for queries that are unions of conjunctive queries, suppose J

is a universal solution, then we can compute certain answers
to unions of conjunctive queries using J :

certainM (q, I) = q(J)↓, (1)

where q(J)↓ is the set of all “null-free” tuples in q(J), i.e.,
all tuples t in q(J) such that every value in t is a constant.

Example 2.1. Consider our running Example 1.1 and
suppose the input source instance is the following complete
instance: I ′ = {Members(john@gmail.com, John, John)}.
Then by chasing I ′ with the dependencies dst and dt in Ex-
ample 1.1, we obtain the instance

{ Members(john@gmail.com, John, John),
Customers(john@gmail.com, John, John) }

and, by projecting it on the target schema, we obtain the
universal solution of I ′ for the set of constraints {dst, dt}
which is J ′ = {Customers(john@gmail.com, John, John)}.
By computing queries Q1 and Q2 on J ′, we get the answer
{(john@gmail.com)} and {(john@gmail.com, John)} respec-
tively.

3. INCOMPLETE DATA EXCHANGE SET-
TINGS (IDE)

In this section we introduce incomplete data exchange set-
ting (in short IDE) which generalizes CDE settings in that
the source instance could be incomplete, i.e., it may ei-
ther contain null values or have missing facts, and thus
it may be accompanied by dependencies defined over the
source schema. The meaning of these dependencies, called
source dependencies is that the possible worlds represented
by the incomplete instance should also satisfy certain con-
straints. Thus, in addition to source-to-target dependencies
(Σst) and target dependencies (Σt), an IDE setting contains
also source dependencies denoted Σs. A source dependency
is a dependency over the source schema S. Every source
dependency in Σs could be a tgd of the form ∀x(

φS(x) →
∃y ψS(x,y)

)
, or an egd of the form ∀x(

φS(x) → (xi = xj)
)
,

where φS(x) and ψS(x,y) are conjunctions of atomic rela-
tional formulas over S and xi, xj are among variables in x.
The following definition formalizes an incomplete data ex-
change setting.

Definition 3.1. (incomplete data exchange setting)
An incomplete data exchange setting (in short IDE), is a
quintuple M = (S,T, Σs, Σst, Σt), such that:
• S is a source schema and T is a target schema;
• Σs is a finite set of source tgds and source egds;
• Σst is a finite set of source-to-target tgds;
• Σt is a finite set of target tgds and target egds.

An IDE problem is a pair (I,M) where M = (S,T, Σs,
Σst, Σt) is an IDE setting and I is an incomplete instance
of schema S.

Notice that in CDE settings the set of source-to-target
constraints does not contain egds because this would amount
to assuming also source constraints in the data exchange
setting. In IDE settings we do not also consider source-to-
target egds because these are in essence source egds.

Similarly to complete data exchange settings, we assume
here an infinite domain of constants Const and an infinite
set Var of variables, called labeled nulls, such that Const and
Var are disjoint. Here however, we also assume an infinite

domain Null of nulls which are pairwise disjoint from Const

and Var. An incomplete instance over a schema consists of
relational facts with constants from Const, nulls from Null,
and labeled nulls from Var. A source incomplete instance in
an IDE setting contains only constants and nulls.

Recall that in the CDE setting, labeled nulls are intro-
duced because the target instance may contain incomplete
data and the labeled nulls are used to model unknown val-
ues in the target instance. In IDE settings, both the source
instance and the target instance may be incomplete. Thus,
we use nulls to represent unknown values in the source and
labeled nulls to represent unknown values in the target for
reasons of clarity of presentation. However, most of our
technical tools do not need this distinction.

Now towards defining meaningful semantics for certain
answers in the next section, we explain, in the following
paragraph, how an IDE problem can be viewed as a set of
complete data exchange problems.

An incomplete instance I represents a set of ground in-
stances, denoted Rep(I), where Rep(I) is defined to contain
exactly all ground instances Ii such that there is a homo-
morphism from I to Ii. Further, we denote by Sat(Σ) the
set of all ground instances Ii such that Σ is satisfied on Ii.
Thus, given a (possibly incomplete) source instance I and
a set of source constraints Σs, we assume that the possible
worlds represented by I and Σs is Rep(I) ∩ Sat(Σs).

Let M = (S,T, Σs, Σst, Σt) be an IDE setting. We call
the CDE setting M′ = (S,T, Σst, Σt) the corresponding to
M CDE setting. Let (I,M) be an IDE problem. Let Ii ∈
Rep(I)∩Sat(Σs). We call (Ii,M

′) a corresponding complete
data exchange problem (CCDE problem). We call corre-
sponding set of CDE problems the set {(I1,M

′), (I2,M
′) . . .}

(may be infinite), where each (Ii,M
′) is a CCDE problem.

Figure 4 illustrates an IDE problem (I,M) and the CCDE
problems (Ii,M

′).

�

�

�

�

�����

� ����������	��
����
� �

���������	��
����
� �� �� ������	��
���
���
��

Figure 4: Corresponding complete data exchange
problems.

Example 3.1. We revisit Example 1.1. For convenience
the attribute names are replaced by single letters and the con-
stants by integers, hence john@gmail.com is 11 and john
is 1. Thus, the incomplete source instance is I : a(11, 1, p)
and the dependencies are as follows: There is no source de-
pendency.
There is one source-to-target dependency:

dst : a(X, Y, Z) → b(X, Y, Z).
There is one target dependency:

dt : b(Z, X, Y) → X = Y.
The source instances (infinitely many) represented by I are
succinctly described as:

I1 : a(11, 1, 1);
I2 : a(11, 1, p′), p′ 6= 1.

Actually I2 represents an infinite set of instances which we
will denote I2i in order to be more precise. Consider the cor-
responding CDE setting M′ which contains dst and dt. Thus

there is one CCDE problem (I1,M
′) and infinitely many

CCDE problems (I2i,M
′).

4. SEMANTICS OF QUERY ANSWERING
IN IDE SETTINGS.

In this section we investigate query answering in IDE
settings. For the semantics of query answering we adopt
the concept of certain answers. Certain answers are de-
fined as the intersection of the answer of the query over all
possible worlds. In general, for a setting M, and source
instance I, if we determine the set of possible worlds in
the target, PW (I,M), then the definition of certain an-
swers is certainPW (I,M)(q, I) = ∩{q(J)|J ∈ PW (I,M)}.
For complete data exchange settings ([13]), the set of possi-
ble worlds, PW CDE(I,M), is defined as PW CDE(I,M) =
{J |J ∈ SOL(M, I)}.

In IDE settings, we introduce two semantics for certain an-
swers. Suppose we are given an incomplete source instance
I. We define certain answers of a query Q by resorting to the
corresponding complete data exchange problems for all com-
plete source instances represented by I. However there are
two different perspectives to define sets of possible worlds.
Either by taking all CCDE problems, for each of which we
have defined certain answers (see previous sections that de-
scribe known work for complete data exchange settings), i.e.,
PW A(I,M) = {(Ii,M

′)|(Ii,M
′) is a CCDE of (I,M)}; in

this case we take the intersection of certain answers as com-
puted over each (Ii,M

′) and this results to the definition
of certainA. Or, by taking all solutions for each CCDE and
computing the answers to the query in each solution and
then taking the intersection, i.e., in this case, PW B(I,M) =
∪SOL(Ii,M

′), for all CCDE problems (Ii,M
′). This results

to the definition of certainB .
This amounts to two different semantics where one is strictly

more liberal than the other. Definitions 4.1 and 4.2 intro-
duce the two semantics.

Definition 4.1. (certainAanswers)
Let M = (S,T, Σs, Σst, Σt) be an IDE setting and I be an

incomplete source instance. Let M′ = (S,T, Σst, Σt) be the
corresponding CDE setting and I1, I2, . . . be all instances in
Rep(I) ∩ Sat(Σs). Then,

certainA
M (q, I) = ∩certainM′(q, Ii).

Definition 4.2. (certainBanswers)
Let M = (S,T, Σs, Σst, Σt) be an IDE setting and I be

an incomplete source instance. Let M′ = (S,T, Σst, Σt) be
the corresponding CDE s etting, I1, I2, . . . be all instances in
Rep(I)∩Sat(Σs). Let A be the set of instances such that an
instance J is in A iff J is a solution of Ii under M′. Then,

certainB
M (q, I) = ∩Ji∈Aq(Ji).

Figure 2 illustrates the two concepts of certain answers. The
following proposition states the relationship between the two
semantics.

Proposition 4.1. Let M = (S,T, Σs, Σst, Σt) be an IDE
setting, and I be an (possibly incomplete) source instance.
Then the following hold for any conjunctive query q:
1. If certainB

M (q, I) = ∅ then certainA
M (q, I) = ∅.

2. certainA
M (q, I) = ∅ and certainB

M (q, I) 6= ∅ iff there ex-
ists a CCDE setting M′ and a source instance Ii such that
Ii has no solution (and hence certainM′(q, Ii) = ∅).
3.If certainA

M (q, I) 6= ∅ then certainA
M (q, I) = certainB

M (q, I).
4.certainA

M (q, I) ⊆ certainB
M (q, I).

Proof. The first clause is a straightforward consequence
of the definitions. The one direction of the second clause
follows from Definition 4.1. For the other direction of the
second clause we argue as follows: Since certainB

M (q, I) 6= ∅,
we know that there is at least one instance Ii in Rep(I) ∩
Sat(Σs) that has a solution under the corresponding CDE
setting. This, combined with the fact that certainB

M (q, I) 6=
∅, yields that there is at least one instance which does not
have a solution. The reason is that, if all instances in Rep(I)∩
Sat(Σs) have solutions, then, certainA

M (q, I) = certainB
M (q, I).

Clause 3 of the proposition is a straightforward consequence
of the first two clauses. Clause 4 of the proposition is a
straightforward consequence of Clause 3.

Example 4.1. We continue from Example 3.1. Consider
the query Q1 : q(Y) :- b(Y, Z, X). Then, certainB

M (q, I) =
q({b(11, 1, 1)}) = {11}, and certainA

M (q, I) = certainM′(q, I1)
∩certainM′(q, I2i) = {11} ∩ ∅ = ∅. Clearly the answer {11}
is a desirable answer because 11 is indeed a customer. Hence
for query Q1, the desirable set of answers is certainB

M (q, I).
Consider now the query Q2 : q(Y, X) :- b(Y, Z, X). Then,

certainB(q, I) = {11, 1} and certainA(q, I) = ∅. Here, how-
ever, {11, 1} is not a desirable answer because it says that
the credit card name of email 11 is 1 which is false, since
we did not have such information about 11 in the source in-
stance. Hence for query Q2, the desirable set of answers is
certainA

M (q, I).
Figure 5 illustrates first all the complete data exchange

problems that are derived in this example and, in a sec-
ond level, the solutions for each of them. Thus, in this fig-
ure, it is shown that all the infinite instances represented
by the I2 : a(11, 1, p′), p′ 6= 1 have no solution. The in-
stance I1 : a(11, 1, 1) has infinitely many solutions. In the
figure, we show two of the solutions. Thus certainA(q, I)
is empty (actually observe that it is empty for any query),
whereas certainB(q, I) has one tuple for each of the two
given queries.

Observe that if the two semantics of certain answers com-
pute the same set or not depends only on the instance I and
the set of constraints, i.e., it does not depend on the query.
There is the following semantic difference between the two
definitions certainA and certainB . Observe that the depen-
dencies pose more constraints on the possible source ground
instances in an indirect way. In particular, the target de-
pendencies may cause some source ground instances to be
“inconsistent”, in the sense that they do not have a solution,
e.g., a(11, 1, 2) in Example 4.1. In such a case, certainB will
ignore such source grounds instances, while certainA will say
the answer is empty since the input of the problem is not
“consistent”. As we discussed in the example, both defini-
tions are meaningful depending on which are the desirable
answers.

5. COMPLEXITY OF QUERY ANSWERING
In this section we investigate the complexity of the query

answering problem in IDE settings. We prove that we can
compute certain answers under both semantics by using the
result of a finite chase [26, 7, 6, 17]) on the source instance
I. We define a universal instance to be the result of a finite
chase (if chase does not fail) on I. We know that for an
arbitrary set of dependencies, a finite chase may not exist.
The conditions identified in [13] were characterized under

��������������	
��

����������
�� ����������
��
�

���������
�� ���������
���������
�� �����������
�����������

�

Figure 5: Explaining how to compute certain an-
swers in Example 4.1

the term weak acyclicity (or under the term stratified witness
in the independent work [12]). In Section 5.1 we show that
the same conditions are still sufficient to compute certain
answers to union of conjunctive queries in IDE settings.

5.1 Computing a Universal Instance
In this subsection we describe the chase procedure and

describe conditions under which chase is guaranteed to ter-
minate. We use chase to compute a universal instance for
an IDE problem which will be materialized in the target and
will be used to compute certain answers as we show in the
next subsection. Chase is a useful tool for reasoning about
dependencies (e.g. [26, 7, 6, 17]). A chase procedure may
a) either never terminate; b) or fail; c) or terminate success-
fully. For the last case the result of chase is guaranteed to
satisfy the dependencies.

Definition 5.1. (Chase Step)
Let K be an incomplete instance. We distinguish between
tgds and egds:
(tgd) Let d be a tgd of the form : φ(x) → ∃yψ(x,y). Let
h be a homomorphism from φ(x) to K such that there is no
extension h′ of h. We say that d can be applied to K with
homomorphism h. Let K′ be the union of K with the set of
facts obtained by:

(i) extending h to h′ such that each variable in y is as-
signed a fresh labeled null, followed by

(ii) taking the image of the atoms of ψ under h′.
We say that the result of applying d to K with h is K′ and

write K
d,h−→ K′ to denote the chase step.

(egd) Let d be an egd of the form φ(x) → (x1 = x2). Let
h be a homomorphism from φ(x) to K such that h(x1) 6=
h(x2). We say that d can be applied to K with homomor-
phism h. We distinguish two cases:

(a) if both h(x1) and h(x2) are in Const then we say that
the result of applying d to K with h is failure and write

K
d,h−→ ⊥ to denote the chase step.

(b) otherwise, let K′ be K where we identify h(x1) and
h(x2) as follows: if one is a constant, then the labeled null
is globally replaced by the constant; if both are labeled nulls,
then one is replaced globally by the other. We say that the

result of applying d to K with h is K′ and write K
d,h−→ K′.

We continue with the definition of chase.

Definition 5.2. (Chase)
Let Σ be a set of tgds and egds, and K be an incomplete
instance.
• An chase sequence of K with Σ is a sequence (finite or

infinite) of chase steps Ki
d,h−→ K′

i+1, with i = 0, 1, . . . , with
K = K0 and di a dependency in Σ.

• A finite chase of K with Σ is a finite chase sequence Ki
d,h−→

K′
i+1, 0 ≤ i < m, where either (a) Km =⊥ or (b) there is

no dependency di of Σ and there is no homomorphism hi

such that di can be applied to Km with hi. We say that
Km is the results of the finite chase. We refer to case (a) as
failing finite chase and to case (b) as successful finite chase.

In the rest of the paper, given an IDE setting M and a
source instance I where we have renamed the nulls in I into
labelled nulls, we refer to the result of the chase J projected
to the target schema as universal instance.

Weak Acyclicity.
In CDE settings a chase may never terminate because of

a target constraint. In IDE settings, a similar phenomenon
may also occur because of a source constraint. So we need
to identify the conditions under which there is a finite chase.
The notion of weak acyclicity guarantees the termination of
chase. A characteristic example of weakly acyclic tgds is the
class of full tgds, i.e., tgds with no existentially quantified
variables. Without the weak acyclicity assumption on the
set of target tgds, it has been shown that the existence of
solution problem in complete data exchange settings may
be undecidable [22]. The following definition formalizes the
concept of weak acyclicity for a set of tgds.

Definition 5.3. (Weakly acyclic set of tgds)
Let Σ be a set of tgds over a database schema. We construct
a directed graph (called the dependency graph) as follows:
(1) There is a node for every pair (R, A) with a relation
symbol R of the schema and an attribute A of R. We call
such a pair (R, A) a position. (2) Add edges as follows: for
every tgd φ(x) → ψ(x,y) in Σ and for every x in x that
occurs in ψ(x,y), we call x a propagated variable. For such
a propagated variable x, for every occurrence of x in φ(x) in
position (R, Ai), do the following:

(i) For every occurrence of x in ψ(x,y) in position (S, Bj),
add an edge (R, Ai) → (S, Bj) (if it does not already exist);

(ii) In addition, for every existentially quantified variable
y in y and for every occurrence of y in ψ(x,y) in position
(T, Ck), add a special edge (R, Ai) → (T, Ck) (if it does not
already exist).

We say Σ is weakly acyclic if the dependency graph has
no cycle going through a special edge.

The following lemma from [13] establishes the polynomial
time bound in Theorems 5.1 and 5.3.

Lemma 5.1. [13] Let Σ be a set of weakly acyclic tgds and
a set of egds. Then, there is a polynomial in the size of an
instance K that bounds the length of every chase sequence
of K with Σ.

Theorem 5.1. Let M = (S,T, Σs, Σst, Σt) be an IDE
setting where Σst is a set of tgds and Σs, Σt are both unions
of a weakly acyclic set of tgs with a set of egds. Let I be the
incomplete source instance. Then, computing a universal
instance for I under M can done in polynomial time.

Proof. We apply chase on the source instance I after
renaming all nulls to labelled nulls. From Lemma 5.1 we
know that the length of chase in CDE settings is bounded

by polynomial time. Therefore, a universal instance can
be computed in polynomial time in the size of I since the
incomplete data exchange setting is fixed.

The following is an interesting observation: If Σt is a weakly
acyclic set of tgds then certainA

M (q, I) = certainB
M (q, I).

This is a consequence of Proposition 4.1 and the fact that
if there is an instance Ii in Rep(I) ∩ Sat(Σs) that has no
solution then this can be caused only by the existence of an
egd. The reason is that, for complete data exchange settings
that have a weakly acyclic set of tgds as target dependencies
(i.e., no egds) there is always a solution[13].

The following is a known fact that shows the robustness
of the notion of universal instance. There can be more than
one chase sequence given an input instance I. However, we
can prove that the results of any chase on I are guaranteed
to be homomorphically equivalent. The proof is similar to
an analogous result about universal solutions in [13].

5.2 Computing Certain Answers in IDE Set-
tings.

We prove now that, by using the universal instance, we
can compute certain answers in polynomial time for unions
of conjunctive queries for both semantics and for IDE set-
tings where the constraints contain a weakly acyclic set of
tgds and a set of egds. In particular, given an IDE setting
M = (S,T, Σs, Σst, Σt), and a (possibly incomplete) source
instance I, let J be a universal instance and let (Ii, M

′) be a
CCDE problem and Ji be the universal solution of (Ii, M

′).
According to our definitions, CertainA(q, I) = ∩q(Ji). How-
ever, CertainA(q, I) 6= q(J)↓, whereas CertainB(q, I) = q(J)↓,
where we use ↓ to denote the restriction of q(J) to facts that
only contain constants. Thus, computing CertainA(q, I) is
not done in a straightforward way using J ; we need to con-
struct an algorithm to decide whether there exists Ii such
that the CCDE (Ii, M

′) has no solution. If there is not,
then CertainA(q, I) = ∩q(Ji)= CertainB(q, I) = q(J)↓; oth-
erwise, CertainA(q, I) = ∅.

Thus, as we prove in detail below, in order to compute
CertainB

M(q, I), we chase I with the set Σ = Σs ∪ Σst ∪ Σt,
compute a universal instance J (if there is one) and finally
we compute q(J)↓. In order to compute CertainA

M(q, I), we
run the algorithm which decides whether there is a CCDE
with no solution and then we either compute q(J)↓ or we
decide that the set of answers is empty.

5.2.1 Complexity of computing certainB answers.
Here we show that the result of chase, i.e., the universal in-

stance, can be used to compute certainB answers to unions
of conjunctive queries. We simply compute the query on
the universal instance. The following theorem states it for-
mally. Theorem 5.3 shows that the complexity of computing
certainB answers of conjunctive queries is PTIME.

Theorem 5.2. Let M = (S,T, Σs, Σst, Σt) be an IDE
setting and q be a union of conjunctive queries posed over
the target schema T. For every (possibly incomplete) source
instance I, if the result of chase on I is J then it holds:
certainB(q, I) = q(J)↓.

The proof of Theorem 5.2 is a consequence of the lemmas
that are proved in the rest of this subsection.

Theorem 5.3. Let M = (S,T, Σs, Σst, Σt) be an IDE
setting and q be a union of conjunctive queries posed over
the target schema T. For every (possibly incomplete) source
instance I, computing certainB(q, I) can be done in polyno-
mial time.

Proof. The proof of the theorem is a straightforward
consequence of Theorem 5.2. We can evaluate q on a uni-
versal instance J in polynomial time and we can decide in
polynomial time whether a tuple t is in the certain answers
of q on J . Therefore, computing certainB(q, I) can be done
in polynomial time.

In the rest of this subsection we prove the lemmas that
are used in the proof of Theorem 5.2. Lemma 5.2 is proved
in [13].

Lemma 5.2. Let d be a tgd, K be an instance (possibly

with nulls), and K
d,h−→ K′ be a chase step (where K′ 6= ⊥)

caused by a homomorphism h from the lhs of d to K. Let
E be an instance such that: (i) E satisfies d; and (ii) K
homomorphically maps to E. Then, K′ homomorphically
maps to E.

The following lemma proves that a universal instance com-
puted by the chase has a similar property as a universal so-
lution in the complete data exchange settings, i.e., it can be
homomorphically mapped to all solutions for all CCDEs.

Lemma 5.3. Let M = (S,T, Σs, Σst, Σt) be an IDE set-
ting, I be an incomplete source instance and J a universal
instance of I under M. Let I1, I2, . . . be all instances in
Rep(I) ∩ Sat(Σs) and J1, J2, . . . universal solutions to the
CCDE problems. Then, J homomorphically maps to every
Ji, i = 1, 2, Hence J homomorphically maps on every
solution of every CCDE problem.

Proof. By definitions there is a homomorphism from I
to every Ji ∪ Ii. Moreover, Ji ∪ Ii satisfies the constraints.
From Lemma 5.2 we get that there is a homomorphism from
J ∪ I to every Ji ∪ Ii. Since the J ’s and I’s are on disjoint
schemas, we get that there is a homomorphism from J to
Ji.

The following lemma is the main technical result con-
cerning the proof of Theorem 5.2. It says that we can
use a universal instance computed by the chase to compute
certainB(q, I).

Lemma 5.4. Let M = (S,T, Σs, Σst, Σt) be an IDE set-
ting and q be a union of conjunctive queries posed over the
target schema T. Let I be a (possibly incomplete) source
instance, J be a universal instance and J1, . . . , Jk universal
solutions to the CCDE problems. Then, it holds: ∩{q(Ji)} =
q(J)↓.

Proof. We will first prove that ∩{q(Ji)} ⊆ q(J)↓. Equiv-
alently we will prove that the following holds: if a tuple t is
not in q(J)↓ then there is a source instance Ii ∈ Rep(I) ∩
Sat(Σs) and a universal solution Ji for Ii such that t is not
in q(Ji).

Intuitively, we will prove that there is a ground instance
Ii which has, under the CCDE problem, a universal solution
Ji such that q(Ji) “reduced“ to the tuples that contain only
constants of I is equal to q(J)↓. Then the proof of the lemma
is a straightforward consequence of this. We give below the
technical details.

Let the result of chase on I be I ′ ∪ J ′′ where I ′ are the
tuples in the relations in the schema of the source and J ′′ are
the tuples in the relations in the schema of the target. Let
I ′1∪Ji be the result after replacing all labeled nulls in I ′∪J ′′

by distinct constants (distinct from any constant present in
I ′ ∪ J ′′). (Thus, we obtain ground instances I ′1 resulting
from I ′ and Ji resulting from J ′′.) Observe that if I ′1 = Ii

is the input to the corresponding CDE setting then, Ji is
a universal solution of this setting because of isomorphism.
However, Ji is isomorphic to J ′′ hence q(J ′′) ↓= q(Ji) ↑
where the symbol ↑ denotes that we consider the tuples that
use only constants from J (not the new constants introduced
to obtain J1 from J).

For the other direction, let t be in q(J)↓. According to
Lemma 5.3 the homomorphism from q to J creates a ho-
momorphism from q to Ji. Hence t is in q(Ji)↓ for ev-
ery i. Hence t is in ∩q(Ji)↓ = ∩Il∈Rep(I)∩Sat(Σs)q(Jil) =
certainM (q, I).

Proof. (of Theorem 5.2) From Definition 4.2 we have
that certainM (q, I) = ∩q(Ji)↓. From Lemma 5.4 we know
that ∩q(Ji)↓ = q(J)↓. It follows that certainM (q, I) =
q(J)↓. From Theorem 5.1 we get that a universal instance
can be computed in polynomial time.

The following example shows how the result of chase can
be used to compute certain answers.

Example 5.1. We revisit Example 4.1. A universal in-
stance of I = {a(11, 1, N)} under M is J = {b(11, 1, 1)}.
Thus, we compute the certainB of Q1 to be equal to q(J) =
{(11)} and the certainB of Q2 to be equal to q(J) = {(11, 1)}.

Interesting Observation.
We include an interesting observation from a clear the-

oretical point of view. Our results extend previous results
related to incomplete database theory. Imielinski and Lipski
in [20] proved a property of the already known chase pro-
cedure for incomplete databases. In particular, they proved
that we may ignore dependencies while computing answers
to conjunctive queries on incomplete, provided the database
is always maintained in a “chased” form.

Let D be an incomplete database. Suppose a state of D
consists of a single table T (built up from constants and
variables) and a set Σ of implicational dependencies (i.e.,
equality-generating dependencies and total tuple-generating
dependencies (i.e., full tgds)). Let Rep(T) denotes the set of
possible worlds represented by T and Sat(Σ) the set of all
relations satisfying all dependencies in Σ as we defined them
in our setting. Then, w.r.t. answering conjunctive queries,
the following holds:

Rep(T) ∩ Sat(Σ) ≡CQ Rep(chaseΣ(T)) (2)

Our results about computing certainB essentially extend
this result to tuple generating dependencies which may not
be total. To see that, imagine an IDE setting with no target
constraints and with source-to-target constraints to be only
copying tgds.

5.2.2 Complexity of computing certainA answers.
In this subsection we essentially give an algorithm which

tells whether a particular IDE problem (M, I) has a CCDE
problem which does not have a solution. If there is, then we
know that certainA answers is empty for every conjunctive

query, if not then for any conjunctive query the notions of
certainA and certainB coincide. We state it formally in the
theorem below.

Theorem 5.4. Let M = (S,T, Σs, Σst, Σt) be an IDE
setting and q be a union of conjunctive queries posed over
the target schema T. Given an incomplete source instance
I, computing certainA

M (q, I) is polynomial.

Proof. From Proposition 4.1 we know that we only need
to decide whether there exists a CCDE problem which has
no solution. If it does not then certainA(q, I)=certainB(q, I)
and we know from the previous subsection how to compute
certainB(q, I). Otherwise certainA(q, I) = ∅. Thus, we give
an algorithm here to decide whether there is a CCDE which
has no solution.

Intuition: whether there is a ground instance I0 in Rep(I)∩
Sat(Σs) which has no solution wrto M ′ is a “local”property,
i.e., it depends on a set of tuples in I whose cardinality is
bounded by a constant (which is a function of the maximum
size of the tgds and egds).

Let c = c2
0 where c0 is the maximum size of tgd or egd in

the constraints. The algorithm is the following:
Step 1. For each combination S of at most c nulls of I0

we construct a sequence of Ij
S which is I after we equate the

nulls in S to one of the constants in I say constant j.
Step 2. For each Ij

S , we apply chase with respect to all
constraints (source, source-to-target and target constrains).
If the chase does not fail we proceed to the next Ij

S . Other-
wise, we report that certainA(q, I) = ∅.

Step 3. If chase succeeds for all Ij
S then we report that

certainA(q, I)=certainB(q, I).
Step 4. We compute certainB(q, I).
Proof of correctness: The one direction is easy, if the

chase fails, then we have a counterexample to that that
certainA(q, I) 6= ∅ a ground instance in Rep(I) ∩ Sat(Σs)
which has no solution. For the other direction, suppose in-
stance I0 in Rep(I)∩Sat(Σs) has no solution. Suppose J0 is
the target instance produced after chasing with the source-
to-target dependencies. Then this means that some target
egd d failed on J0 which means in turn that there is a ho-
momorphism h from the lhs of d to J0 (that requires, on the
rhs, to equate two distinct constants). The image of h is
at most c0 tuples from J0. These c0 tuples were produced
while applying the source-to-target tgds on I0, hence they
used at most c2

0 tuples of I0. Now, construct I ′0 which locally
on these c2

0 tuples is isomorphic to I0 and otherwise is “like”
I. I ′0 is one of the Ij

S that the algorithm looks at and also,
by construction, it is guaranteed for the chase to fail.

In particular this is how we construct I ′0: The c tuples are
isomorphic as in I0. The rest of the tuples in I are modified
in that some nulls are equated to produce the c tuples. We
equate these nulls and leave the rest of the nulls as they are.
And we equate each null now to a distinct constant.

Interestingly, observe that the following idea for comput-
ing certainA

M (q, I) does not work: We use a variant of chase
to compute from I an instance J such that certainA

M (q, I) =
q(J)↓. The following is a counterexample to this claim; it
uses only one copying chase step.

Example 5.2. Let M = (S,T, Σs, Σst, Σt) be an IDE
setting where Σs = ∅ and

Σst = {d1 : a(X, Y), a(Z, W) → b(X, Y), b(Z, W)};

Σt = {d2 : b(X, Y), b(Y, Z) → X = Z}.
Let I = {a(3, y), a(z, 5)} be an incomplete source instance.
A possible world represented by I is Ii = {a(3, N), a(N, 5)}.
Then, chasing with d1 results to {b(3, N), b(N, 5)} and then
d2 is applied and chase [13] fails. However, if we apply
chase to I then we produce J = {b(3, y), b(z, 5)}. Let q(x) :
−b(x, y). Then q(J) = {(3)} whereas certainA

M (q, I) = ∅.

6. CONCLUSION
In this work we study the query answering problem in

data exchange settings where the source instance may con-
tain null values and have missing tuples and is accompanied
by dependencies. For the semantics of query answering we
give two definitions of certain answers either (a) over all
certain answers of the query on the corresponding complete
data exchange settings or (b) over all solutions of the corre-
sponding complete data exchange settings. Both definitions
use an infinite number of possible worlds. Hence, it is a
challenge to show that the problem of computing certain
answers is even decidable. We show here that, for unions
of conjunctive queries, we can compute certain answers in
polynomial time for both semantics.

In this paper we focused on deriving those answers to the
query that do not contain null values and that are guar-
anteed to be derived in any possible worlds. A future di-
rection is to allow nulls in the answers and possibly derive
answers that may not be guaranteed in all possible worlds
but that satisfy another meaningful criterion. Another fu-
ture direction is to investigate the problem of computing
certain answers for incomplete data for aggregate queries
and queries which have built-in predicates (e.g., arithmetic
comparisons). Finally, when we have uncertain data (i.e.,
data with probabilities attached to it or with lineage), the
problem of how to compute certain answers (in fact how to
define the semantics) is open.

7. REFERENCES
[1] F. Afrati and P. Kolaitis. Answering aggregate queries

in data exchange. In PODS, 2008.

[2] F. Afrati, C. Li, and V. Pavlaki. Data exchange in the
presence of arithmetic comparisons. In EDBT, 2008.

[3] B. Alexe, L. Chiticariu, and W. C. Tan. Spider: a
schema mapping debugger. In VLDB, pages
1179–1182, 2006.

[4] M. Arenas, P. Barcelo, R. Fagin, and L. Libkin.
Locally consistent transformations and query
answering in data exchange. In PODS, 2004.

[5] M. Arenas and L. Libkin. XML data exchange:
Consistency and query answering. In PODS, 2005.

[6] C. Beeri and M. Y. Vardi. Formal systems for tuple
and equality generating dependencies. SIAM J. on
Computing, 13(1):76–98, 1984.

[7] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. J. ACM, 31(4):718–741, 1984.

[8] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and
J. Widom. Uldbs: Databases with uncertainty and
lineage. In VLDB, pages 953–964, 2006.

[9] P. A. Bernstein. Generic model management: A
database infrastructure for schema manipulation. In
IDM 2003 Workshop, 2003.

[10] L. Bertossi and L. Bravo. Query answering in peer to

peer data exchange systems. In EDBT Workshop on
Peer to Peer Computing and Databases, 2004.

[11] D. Burdick, P. M. Deshpande, T. S. Jayram,
R. Ramakrishnan, and S. Vaithyanathan. Olap over
uncertain and imprecise data. VLDB J.,
16(1):123–144, 2007.

[12] A. Deutsch and V. Tannen. Mars: A system for
publishing xml from mixed and redundant storage. In
VLDB, 2003.

[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering. In
ICDT, 2003. Full version: TCS 336(1): 89–124, 2005.

[14] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
Getting to the core. In PODS, 2003. Full version:
ACM TODS 30(1): 174–210, 2005.

[15] A. Fuxman, P. Kolaitis, R. Miller, and W.-C. Tan.
Peer data exchange. In PODS, 2005.

[16] G. Gottlob. Computing cores for data exchange: New
algorithms and practical solutions. In PODS, 2005.

[17] G. Grahne. The problem of incomplete information in
relational databases, volume 554. Spring-Verlag,
Berlin, Lecture Notes in Computer Science, 1991.

[18] L. Haas, M. Hernandez, H. Ho, L. Popa, and M. Roth.
Clio grows up: from research prototype to industrial
tool. In SIGMOD, 2005.

[19] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
mediation for large-scale semantic data sharing.
VLDB journal, 14(1):68–83, 2005.

[20] T. Imielinski and W. Lipski. Incomplete information
and dependencies in relational databases. In
SIGMOD, pages 178–184, 1983.

[21] T. Imielinski and W. Lipski. Incomplete information
in relational databases. J. ACM, 31(4):761–791, 1984.

[22] P. Kolaitis, J. Panttaja, and W.-C. Tan. The
complexity of data exchange. In PODS, 2006.

[23] P. G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. In PODS, 2005.

[24] M. Lenzerini. Data integration: A theoretical
perspective. In PODS, 2002.

[25] L. Libkin. Data exchange and incomplete information.
In PODS, 2006.

[26] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. ACM TODS,
4(4):455–469, 1979.

[27] R. v. d. Meyden. Logical approaches to incomplete
information: A survey. In Logics for Databases and
Information Systems, pages 307–356, 1998.

[28] R. J. Miller, L. M. Haas, and M. Hernández. Schema
mapping as query discovery. In VLDB, 2000.

[29] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández,
and R. Fagin. Translating web data. In VLDB, 2002.

[30] P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE,
pages 596–605, 2007.

[31] I. Tatarinov and A. Halevy. Efficient query
reformulation in peer data management systems. In
SIGMOD, 2004.

