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ABSTRACT 
 
Similarity search is a fundamental problem in information 
technology. The main difficulty of this problem is the high 
dimensionality of the data objects. In large time series databases, 
it’s important to reduce the dimensionality of these data objects, 
so that we can manage them. Symbolic representation is a 
promising technique of dimensionality reduction. In this paper we 
propose a new distance metric, which is applied to symbolic 
sequential data objects, and we test it on time series databases in 
classification task experiments. We also compare it to other 
distances that are well known in the literature for symbolic data 
objects, and we prove that it’s metric.   
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1. INTRODUCTION 
 
The problem of similarity search and information retrieval in 
large databases has attracted much attention lately, because it has 
a large number of applications in many fields of research. In most 
cases, the databases in question are very large, so using linear 
scanning in the similarity search can take a long time and can 
become ineffective. Research in this area has focused on its 
different aspects. One of these aspects is the distance metric used 
to measure the similarity between two data objects. Many 
distance metrics have been suggested. In time series databases, 
the most famous distance is the Euclidean distance, which is 
effective, but it has a few inconveniences; it is sensitive to noise 
and shifts on the time axis. It also requires many calculations, and 
is applied to series of identical lengths only [9]. Another feature 
of the similarity search problem is data representation. In 
multimedia IR the main problem we encounter is the so called 
“dimensionality curse”. One of the best solutions to deal with this 
problem is to utilize a dimensionality reduction technique, then to 
utilize a suitable indexing structure on the reduced data objects. 
There have been different suggestions to represent time series. To 
mention a few; Discrete Fourier Transform (DFT) [1] and [2], 

Discrete Wavelet Transform (DWT) [3], Singular Value 
Decomposition (SVD)[8], Adaptive Piecewise Constant 
Approximation  (APCA) [7], Piecewise Aggregate Approximation  
(PAA) [6] and [11],...etc. Symbolic representation is a 
dimensionality reduction technique that has many interesting 
advantages, because it allows using the ample text-retrieval 
algorithms and techniques. However, the first papers about 
symbolic representation of time series mainly addressed questions 
concerning the discretization scheme and the size of the alphabet 
[7]. 
 
There are several distance measures that apply to symbolic data. 
In the beginning these measures were restricted to data structures 
whose representation is naturally symbolic (DNA and proteins 
sequences, textual data…etc). But later these symbolic measures 
were also applied to other data structures that can be transformed 
into strings. There are quite a few distance metrics that apply to 
symbolically represented data. One of these measures is the edit 
distance (ED) [10], which is defined as the minimum number of 
delete, insert, and substitute (change) operations needed to 
transform string S into string T. This distance is the main distance 
measure used to compare two strings. Different variations of this 
distance were proposed later, to name a few; the edit distance on 
real sequence (EDR) [4], the edit distance with real penalty 
(EDRP) [4],and many others. The edit distance has a main 
drawback, in that it penalizes all change operations in the same 
way, without taking into account the character that is used in the 
change operation. In order to overcome this drawback we could 
predefine tables that give the costs of all possible change 
operations. But this approach is inflexible and highly dependent 
on the alphabet used. In this paper we propose a new distance 
metric that applies to strings. We call it “The Multi-Resolution 
Extended Edit Distance” (MREED). This distance adds new 
features to the well-known edit distance by adding additional 
terms to it. The new distance has a main advantage over the edit 
distance in that it deals with the above mentioned problem 
straightforwardly since there is no need to predefine a cost 
function for the change operation. This distance can, by itself, 
detect if the change operations use characters that are “familiar” 
or “unfamiliar” to the two strings concerned.  
 
The rest of this paper is organized as follows: in section 2 we 
present a motivating example and the proposed distance with a 
related theorem. Section 3 provides the complexity analysis of the 
proposed distance. Section 4 contains the experiments that we 
conducted to test the proposed distance. In section 5 we discuss 
our distance in light of the results obtained. In section 6 we 
present conclusions and some future work.  
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2. THE PROPOSED DISTANCE 

2.1 Introduction 
 
Example1: Given the following strings: abcaS =1 ,  

aabbccS =2 , adbecfS =3 . Intuitively, we see that 2S is 
closer to 1S than 3S .Yet, if we calculate their edit distance 
we see that: 3),(),( 3121 == SSEDSSED . The reason for this 
is that the edit distance is based on local procedures, both in the 
way it is defined and in the algorithm used to compute it.  
 

2.2 Definition- The Multi-Resolution 
Extended Edit Distance 
Let ∑  be a finite alphabet, and let )(S

if , )(T
if be the frequency 

of the character i  in S and T , respectively. )(S
ijff , )(T

ijff be the 

frequency of the two-character subsequence ij  in S and T , 
respectively (including the case where ji = ) , and where S ,T  

are two non-empty strings on ∑ . The Multi-Resolution Extended 
Edit Distance (MREED) is defined as; 
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Where S , T  are the lengths of the strings TS, respectively 

and where 0≥λ , 0≥δ ( R∈δλ, ). We call λ  the frequency 
factor of the first degree, and δ  the frequency factor of the 
second degree.  

2.3   Theorem : MREED is a distance metric.  
Before we prove the theorem, we can easily notice that;   
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In order to prove the theorem we have to prove that; 

i) TSTSMREED =⇔= 0),(  

         i. a) TSTSMREED =⇒= 0),(  

-Proof: If 0),( =TSMREED , and taking into account (1) 
and (2), we get the following relations: 
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From (5), and since ED is metric we get: TS =  

         i. b) 0),( =⇒= TSMREEDTS  (obvious). 

From i. a) and i. b) we get TSTSMREED =⇔= 0),(   

ii) ),(),( STMREEDTSMREED =  (obvious). 

iii) ),(),(),( TRMREEDRSMREEDTSMREED +≤  

-Proof: RTS ,,∀ , we have: 

),(),(),( TREDRSEDTSED +≤                                     (6) 

(Valid since ED is metric). 
We also have: 
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(See the appendix for a brief proof of (7) and (8)) 
Adding (6), (7) and (8) side to side we get: 

),(),(),( TRMREEDRSMREEDTSMREED +≤ . 

From i), ii), and iii) we conclude that the theorem is valid.  
 
Example 2: (Revisiting the example presented in section 2.1) 

9),( 21 =SSMREED  while 15),( 31 =SSMREED .So we see 

that our distance could detect that  2S is closer to 1S than 3S  

3. COMPLEXITY ANALYSIS 
The time complexity of MREED is )( nmO × , where m is the 
length of the first string and n is the length of the second string, 

or )( 2nO if the two strings are of the same lengths. In order to 
make MREED scale well when applied to time series, we can find 
a symbolic representation method that would allow high 
compression of the time series (leading to drastic length 
reduction), with acceptable accuracy  

4. EXPERIMENTS 
As mentioned earlier, this new distance metric is applied to data 
structures which are represented symbolically. It’s important to 
mention here that we believe that bioinformatics or textual data 
bases are the ideal data structures to apply the MREED to. 
However, and since our field of research is time series, we had to 
test MREED on time series data bases. 



We tested our distance in a classification task on 12 datasets 
chosen from the 20 datasets available in UCR [12]. We used 
leaving-one-out cross validation. We meant to include quite a 
variety of cases in our tests; the number of classes varies between 
2 (Gun-Point) and 50 (50words). The size of the training set 
varies between 30 (Beef and CBF) and 560 (Face all). The size of 
the testing set varies between 30 (Beef and Olive Oil) and 3000 
(Yoga), and the length of the time series (before compression) 
varies between 60 (Synthetic Control) and 570 (Olive Oil) 
Time series are not naturally represented symbolically. But a few 
methods have been proposed to present them as strings. One of 
the most famous methods in the literature is SAX [5]. SAX is 
based on the idea that normalized time series have highly 
Gaussian distribution, so one can determine breakpoints that will 
produce equal-sized areas under the Gaussian curve. SAX is 
applied as follows: the time series are normalized, then the PAA 
representation of the time series is obtained by dividing the data 
into w equal sized frames, then the mean of each frame is 
calculated. These means constitute the PAA approximation.  The 
next step is the discretization of the PAA to get a discrete 
representation of the times series. This is achieved by benefiting 
from the Gaussian distribution of the normalized time series. The 
last step of SAX is using the following distance measure; 
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where n is the length of the original time series, w is the length of 

the strings (the number of the frames) , 
∧
S and

∧
T are the symbolic 

representations of the two time series S andT respectively, and 
the function ()dist  is implemented by using the appropriate 
statistical lookup table. After reaching this last step, SAX 
converts the resulting strings into numeric values so that the 
MINDIST can be calculated. The main of idea of our experiments 
is that instead of converting these strings into numeric values, we 
can use a distance that is directly applied to strings.   To test 
MREED we proceed in the same way as SAX to get a symbolic 
representation of the time series, then we replace MINDIST with 
MREED, we also tested replacing MINDIST with ED for 
comparison reasons. It’s important to mention that SAX (When 
we refer to SAX from now on in this paper, we mainly mean the 
distance measure used in SAX) is a method that is designed 
directly to be used on time series, so it’s a very competitive 
method. In order to make a fair comparison, we used the same 
compression ratio that was used to test SAX (i.e. 1:4). We also 
used the same range of alphabet size [3, 10]. We chose to 
compare it to the 1-NN Euclidean distance, since SAX was 
compared to it. The Euclidean distance, of course, is calculated 
using the original time series. Both ED and SAX have one 
parameter, which is the alphabet size. MREED has two extra 
parameters; the frequency factor of the first degreeλ , and the 
frequency factor of the second degreeδ . For each of the 12 
datasets we optimize the two parameters λ  and δ on the training 
sets to get the optimal values of these parameters; i.e. the values 
that minimize the error rate. Then we utilize these optimal values 
on the testing set to get the error rate for each method and for 
each dataset. The final results of our experiments are shown in 
Table. 1. (There’s no training phase for the Euclidian distance). 

The best method of the three is highlighted (the figures in red are 
the cases when the Euclidean distance gave the best results). For 
simplicity, we optimize the two parameters λ  and δ  in the 
interval [ ]1,0  only (step=0.25), except in the cases where there is 
strong evidence that the error is decreasing monotonously as λ or 
δ  increases. 

When comparing a method with another one there are two 
statistical parameters to be used, one of them is the mean error; 
the smaller the mean error is, the better the method is. Another 
statistical parameter is the standard deviation (STD). The 
importance of this latter is to show how robust the method is (i.e. 
can be applied to as many different types of datasets as possible). 
Here also, the smaller the STD is, the better the method is.  The 
results obtained show that the average error is the smallest for 
MREED, it’s even smaller than that of the Euclidean distance. 
They also show that of all the three tested methods (ED, MREED, 
and SAX) MREED has the minimum standard deviation, which 
means that MREED is the most robust one of the three tested 
methods. It’s worth to mention since the Euclidian distance is 
applied to the raw data, where there’s is no compression of 
information, so it may give better results in some cases than 
distances applied to symbolic, compressed data.  

5. DISCUSSION 
1-In the experiments we conducted we had to use time series of 
equal lengths for comparison reasons only, since SAX can be 
applied only to strings of equal lengths. But MREED (and ED, 
too) can be applied to strings of different lengths 
 
2- We didn’t conduct experiments for alphabet size=2 because 
SAX is not applicable in this case  
 
3- In order to represent the time series symbolically, we had to 
use a technique prepared for SAX. Nevertheless, a representation 
technique prepared specifically for MREED may even give better 
results.  
 
4-The improvement of MREED over the edit distance may seem 
relatively small. We think that the main reason for this is because 
our distance is mainly useful in the cases where the frequency of 
sub-sequences plays the main role in the similarity search (like, 
for example, when the similarity is based on repetitions of a 
sequence of certain amino-acids in a protein).  

6. CONCLUSIONS AND FUTURE WORK 
In this paper we presented a new distance metric applied to 
strings. The main feature of this distance is that it considers the 
frequency of characters and sub-sequences, which is something 
other distance measures do not consider. Another important 
feature of this distance is that it is a metric. We tested our distance 
on a time series classification task, and we compared it to two 
other distances. We showed that our distance gave better results, 
even when compared to a method (SAX) that is designed mainly 
for symbolically represented time series. 
A possible future work is to use MREED in motif discovery in 
time series data mining, by representing the motif symbolically 
and applying MREED by using the frequency of the motif rather 
than the frequency of symbols or subsequences.  



 
 

 
 

Table 1. The error rate of ED, MREED, SAX , together with the Euclidean distance on the testing sets of  the 12  datasets. 
        The parameters used in the calculations are those that give optimal results on the training tests. 
 

      (*: α is the alphabet size) 
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APPENDIX  
Lemma : Let ∑  be a finite alphabet, )(S

if , )(T
if be the 

frequency of the character i in S , T , respectively, where S and 
T are two strings represented by ∑ .  
Let;           ∑−+=

i

T
i

S
i ffTSTSD ),min(2),( )()(  

Then 321 ,, SSS∀  we have: 

),(),(),( 233121 SSDSSDSSD +≤                 (A1) 
For all n , where n is the number of characters used to represent 
the strings 

Proof: We will prove the above lemma by induction.  
i) Basic step: 1=n , this is a trivial case.  

Given three strings 321 ,, SSS  represented by the same character 

a  .Let aaa SSS 321 ,,  be the frequency of a  in 321 ,, SSS , 
respectively.   We have six configurations in this case; 

1) aaa SSS 321 ≤≤ ,  2) aaa SSS 231 ≤≤ , 3) aaa SSS 312 ≤≤  

4) aaa SSS 132 ≤≤ ,  5) aaa SSS 213 ≤≤ ,   6) aaa SSS 123 ≤≤  

We will prove that relation (A1) holds in these six configurations. 

1) aaa SSS 321 ≤≤ . 

In this case we have: aaa SSS 121 ),min( = , 

aaa SSS 131 ),min( = , aaa SSS 232 ),min( =  
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?
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By substituting the above values in this last relation we get;  

⇒−++−+≤−+ aaaaaaaaa SSSSSSSSS 223131

?

121 222  

aa SS 23

?
220 −≤ . This is valid according to the stipulation of this 

configuration. The proofs of cases 2), 3), 4), 5) and 6) are similar 
to that of case 1). 

From 1)-6) we conclude that the lemma is valid for 1=n  

ii) Inductive step: Let’s assume that the lemma holds for 1−n , 
where 2≥n and we will prove it for n . Since the lemma holds 
for 1−n then: ),(),(),( 233121 SSDSSDSSD +≤        (A2) 
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 When a new character is added the strings represented by 
1−n characters become represented by n characters.  

Let the frequency of the newly introduced character be 
)()()( 321 ,, S

n
S

n
S

n fff in 321 ,, SSS  respectively.  

We have six configurations of the newly added character; 
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We will prove that relation (A1) holds in these six configurations. 
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Taking (A2) into account, we get:  )()(
?

23 220 S
n

S
n ff −≤ , which 

is valid according to the stipulation of this configuration.  
The proofs of cases 8), 9), 10), 11) and 12) are similar to that of 
case 7).  
From 7)-12) we conclude that the lemma is valid for n .  

From i) and ii), the lemma holds. 




