
GRIMS: A Scalable Management and Storage System for
Massive Remote Sensing Images

Liang ZHAO#1, Luo CHEN#2, Ning JING#3, Huaiyu ZUO#4
#College of Electronic Science and Engineering

National Univ. of Defense Technology,
 Changsha 410073, China

1zlbusiniao@gmail.com
ABSTRACT
Remote sensing images are important in ecological, geographical
and military applications. With the rapid growing volume of
remote sensing images, how to manage and store the massive
remote sensing images is becoming a must-be-solved problem.
We build a scalable storage and management system for massive
remote sensing images aiming to store global remote sensing
images – Global Remote Sensing Images Management and
Storage system (GRIMS). In GRIMS, we propose a tile pyramid
model – Plate Carree Projection Grid Quad-Tree (PCPGQT) to
spatially partition the high resolution images and build a double
tower (DT) index for the big image data file. Meanwhile, we
analyze the fragment problem in image mosaic. Through fragment
collection, huge disk spaces could be saved. By using the open
source software HADOOP, we realize a distributed storage
system to store massive image data file. Experiments show that
our tile pyramid model is suitable to support our system purpose,
and the distributed storage system is highly efficient.

Keywords
RS images, GRIMS, Management, Partition, Storage, D-MaRISS

1. INTRODUCTION
Remote sensing(RS) technologies, combined with geographical
information systems(GIS) , have been applied into various fields
such as government services, agriculture, oil and mineral
exploration, emergency services, environmental monitoring, land
using, urban planning, and ecological research[1]. Remote sensing
data is the most important data for geographical analyzing.
However, Earth scientists have been thwarted by the staggering
volume of remote sensing images in their attempts to study the
earth; either the numbers or the quality of various remote sensing
platforms is greatly increasing. Facing the large volumes of data
received from remote sensing sensors, how to manage and store
the massive remote sensing images is becoming a must-be-solved
problem.
The characteristics of the remote sensing database are [2]:
massive, spatial referenced, multi-spectrum, multi-platform, rich
information, etc. Thus, a system for remote sensing images must
meet the following requirements [3]:
Spatial Query-Large Image databases must be highly efficient in
supporting spatial query. So an efficient spatial index and the
corresponding processing mechanism are needed.

Multi-Resolution Support-This is driven by two factors: high
cost of operations on full-resolution raster data; access restrictions
to the full-resolution data.
Mass Storage-Large image databases require storage capacities
in the range of hundreds of gigabytes to terabytes.
High-Performance Storage-Image databases with simultaneous
multi-user access additionally demand data transfer bandwidths
exceeding the I/O performance of individual hard disks.
Considering the characteristics of remote sensing images and the
system requirements, we design and implement a distributed
management and storage system for massive remote sensing
images—GRIMS (Global Remote Sensing Images Management
and Storage system). Global means that our system is scalable to
store global massive remote sensing images. The logic
architecture of GRIMS is showed in figure 1.

Figure 1. Logic Architecture of GRIMS.

GRIMS is composed of several main parts: "Global Data Model",
"Task Management", "Query Processing", "Data Update and
Transform", "Meta data", "User Interface and Develop Interface",
"Data Integration and Transform", "Data Management", "D-
MaRISS (Distributed-Massive Remote-sensing Image Storage
System)". The last two components: "Data Management" and "D-
MaRISS" are the cores of the whole system.
“Data Management” module deals with spatial partition and index.
Based on the map projection theory, we propose a new tile
pyramid model for spatial partition, build the corresponding index
file. Meanwhile, we present a tile-based mosaic method to ensure
the seamless mosaic of massive images. What’s more, we discuss
the fragment collection problem, thus huge disk spaces could be
saved.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.INFOSCALE 2008, June 4-6, Vico Equense, ItalyCopyright © 2008 978-963-9799-28-8DOI 10.4108/ICST.INFOSCALE2008.3516

“D-MaRISS” module is the distributed storage system for massive
remote sensing images. We discuss the design principles for
distributed storage of remote sensing images. Based on the open
source software HADOOP, we realize a distributed massive
remote sensing images storage system and explain the mechanism
for storage.
Research on the above two modules and the key technologies in
them are the main contributions of this paper.
The rest of the paper is organized as follows: section 2 is about
related work; section 3 discusses the management of remote
sensing images; section 4 involves with the distributed storage of
remote sensing images; section 5 is about experiments and
analysis; we make our conclusions in section 6.

2. RELATED WORK
Researchers have done superior works in order to efficiently store,
organize, manage and publish massive remote sensing images.
Their works can be mainly divided into two categories:
The first category is: massive remote sensing images storage and
management systems based on traditional RDBMS. By using the
traditional RDBMS, there exist two technique routes: One is to
spatially extend the RDBMS in order that it possesses the ability
to manage raster type remote sensing images. Various Database
Companies are the main driven force in this route, and Oracle
Spatial GeoRaster[4][5][6] is the typical product. Another route to
provide the ability of storage and management of massive remote
sensing images is to implement spatial data engine (SDE) which
acts as a middleware between applications and RDBMS. Most of
the SDEs are implemented by GIS companies, among which
ArcSDE[7] developed by ESRI is the most typical product.
Compare the two technique routes, when using the former
technique; we use extended SQL or database packages to access
images in the database. Due to lack of consistent standards,
different RDBMSs provide quite different access interfaces.
However, by using SDEs, we use object-oriented style APIs, thus
SDEs are ORM[8](object relation mapping) middle wares for
spatial databases.
From its early start in 1970s till now, traditional RDBMS
technology is quite mature, but is still lack of efficiencies in the
following aspects when trying to store and process remote sensing
images: rapid access ability to massive data, flexibility,
processing unstructured data, cost of storage and maintenance,
rapid backup and recovery. Some of the shortcomings are
essentially caused by the relational model of the traditional
RDBMS. What's more, generic commercial DBMS is huge in
scale, which leads to great system cost and difficulties when being
deployed. All the above reasons become obstacles in using
RDBMS as the foundation of system for massive remote sensing
images.
The second category is: massive remote sensing images storage
and management systems based on generic massive storage
systems. Network storage technology characterized by
NAS(Network Area Storage) and SAN(Storage Area Network) is
becoming more and more popular. HPSS[9][10] (High
Performance Storage System, developed by IBM, US Department
of Resource, Laboratory of Lawrence Livermore),
RASCHAL[11][12](developed by NASA Jet Propulsion
Laboratory, JPL), Blue Whale[13][14](developed by Chinese
academy of sciences) all use this technologies. Among them,

RASCHAL which is being used in the OnEarth[15] project by
NASA JPL, stores more than 15TB global image mosaics.
Moreover, Blue Whale has been used in many systems for remote
sensing images in China.
Generic storage systems concentrate on storage capacity and
access speed, while aiming at more storage and fast reading and
writing speed. It doesn't care the key issues that a system for the
massive remote sensing images focuses on: effectively organize
the image data, construct the indexes for image data, and leverage
the cluster's parallel computing ability and data compression
algorithms. The idea: to buy a commercial massive storage system,
import the image data and gain an efficient storage and
management system for massive remote sensing images is naive
and unrealistic.
Besides the above two categories, online high resolution remote
sensing images browsing systems are flourishing. Google Maps
and Google Earth are the outstanding systems among them.
According to reference[16] published in 2005, remote sensing
data that support the Google Maps/Earth come to 70.5TB, among
which images account for 70TB and index data accounts for
500GB. From 2005 till now, Google must have updated their
remote sensing data, so the up-to-date data should exceed 100TB.
Google implements many original key technologies in building its
large scale data center, including: Google Cluster[17],
Workqueue[18], GFS[19], MapReduce[20], Bigtable[16],
Sawzall[18], Chubby[21].
Considering the excellent online service quality provided by
Google Maps/Earth, we reckon that Google's experiences in
storage and management for remote sensing images are
representative of the research trend, thus are valuable to our work.

3. MANAGEMENT OF REMOTE SENSING
IMAGES
The size of individual remote sensing images and image mosaics
often exceeds the amount of primary memory available. Typically,
only parts of these objects are accessed at any given time and
operations affecting the entire object are relatively rare. A spatial
massive images management solution should therefore support the
transparent spatial partitioning and reconstruction of large image
objects. The efficient access to partitions or to individual pixels or
cells of large spatial image objects requires the use of specialized
spatial access or indexing methods.

3.1 Spatial Partition and Index
Spatial Partition aims to divide high resolution images into low
resolution small tiles and build the index for each tile. GRIMS
incorporates a spatial partition concept based on tile pyramid
model.

The tile pyramid model in our system involves with two classical
map projection methods in map projection theory--Plate Carree
projection and Mercator projection. Map projection, which
projects the original images onto a datum plane, is a key step in
the pre-processing of remote sensing images. By using the
rectified images, the tile pyramid model partitions the global
images into tiles, extracts pyramids at different levels and builds
the corresponding indices. The two projection methods are
popularly used in the storage systems of remote sensing images.
Plate Carree projection is used in BMNG[22] and OnEarth, while

Mercator projection is used in Google Maps, Microsoft Live
Maps[23] and Yahoo Maps[24].

In Mercator projection, showed in figure 2, images that range
from longitude -180 to 180 and latitude -85.05112877980659 to
85.05112877980659 are projected onto a regular square plane.
The discrete multi-resolution pyramids that are extracted based
upon that square plane can be quad-partitioned at each level and
thus can be indexed by using quad-tree. We name the tile pyramid
model based on Mercator projection--MPQT (Mercator Projection
Quad-Tree). But as it can not cover the global images (lack of
latitude coverage), it is not a suitable model for global images
management. Left of figure 2 shows the projected global images,
right of figure 2 shows its code string.

Figure 2. MPQT Partition.

While in Plate Carree projection, showed in figure 3, images that
range from longitude -180 to 180 and latitude -90 to 90 are
projected onto a rectangle plane which maintains a length and
height ratio 2:1. The discrete multi-resolution pyramids that are
extracted based on that rectangle plane can be uniformly
partitioned at each level and thus can be indexed by using grid.
We name the tile pyramid model based on Plate Carree projection
-- PCPG (Plate Carree Projection Grid). In PCPG, tiles at each
level are indexed by its column and row number. When indexing
the 30 level tiles, the integer type can not hold such big number
and the index file could be so huge.

Figure 3. PCPG Partition.

Based on the two models, we propose a new model named
PCPGQT (Plate Carree Projection Grid Quad-Tree). In PCPGQT,
we use the Plate Carree projection together with the quad-tree
indexing to each tile at different levels.

Figure 4. PCPGQT Partition.

As the left of figure 4 shows, the top of the pyramid is a 1*2 grid.
Take the top level two tiles as the root node, extend downwards,

two quad-trees can be formed. In our model, the structure of the
two quad-trees is called Double Towers (DT) index. Every tile
has a unique code string. Let n denote the node in the two quad-
trees except the root node. f(n) is the parent node of n, C(n) is the
code string. First, we define the Azimuth code:

[Definition 3.1 Azimuth Code]: We partition a plane uniformly
into several sub areas and assign each sub area with a unique code.
These codes are call Azimuth code.

Specially, if this partition can be executed recursively, the
Azimuth code of the sub areas in every partition result is
invariable. For PCPGQT, in the two quad-trees of DT, the square
area is partitioned uniformly by using 0, 1, 2, 3 as the Azimuth
code (as the right of figure 4 shows). In every recursion the four
sub areas are coded clockwise from the northwest. For every node
n, let c(n) be its Azimuth code, R(c)= {0, 1, 2, 3}. Based on the
definition of the Azimuth code, the code string to node n can be
constructed according to the following rules:

- For the top two tiles in the pyramid, their C(n) are 'w' and 'e',
with each presenting the western and eastern hemisphere
separately.

- Coding for the nodes in the two quad-trees are the same (the
two quad-trees are called w-tree and e-tree).

- For each non-root node n in w-tree (or e-tree), we have
C(n)=C(f(n))+c(n), in which '+' is defined as string appending
operation.

Based on the above coding rules, we can use the longitude and
latitude value and pyramid level to get the code string C(n) for
each node n. The algorithm can be described as follows:

Figure 5. GetTileCodeString Algorithm.

The computing complexity is O(level).

We implement the popular two models and compare them with
our proposed model in section 5.

3.2 Tile-based Mosaic and fragment collection
Through spatial partition, we get a lot of tiles and their
corresponding index codes. The next problem to solve is what
should be put into database and how are they organized? This
problem is discussed in the following sub sections.

3.2.1 Data Preparing
In GRIMS, four parts of data should be put into database.

1. Image data file

Tiles are the basic read and write unit in our system. We have two
ways to serialize them into the file system: tile as a single file; all
tiles are organized into a big file. For the first method, we can use
the file name as the index key, while for the second method, we
have to define and maintain the index key by ourselves. When the
images are massive, the file system has to manage huge amount of
files, for example, when the images go to TB amount, the number
of tiles will be so big, and thus, access to such massive tiles would
be a big burden for the file system. On the other hand, there is no
such problem by using the second method. So, we use the second
method to serialize our massive images.

2. The index file

We implements three different tile pyramid models in our system.
MPQT uses pyramid quad-tree index, PCPG uses pyramid grid
index, PCPGQT uses DT index.

Figure 6 shows the structure of the DT index file. DT index file is
actually a two-branch quad-tree. The root node stores two
separate parts with each part containing a character representing
the w-tree or the e-tree and a pointer to its child node. The tree
node maintains four parts. Every part in the node contains a
character representing the Azimuth code. Moreover, it also
contains two pointers: one pointer points to the child node, while
the other one points to the image tile in the data file.

Figure 6. Structure of the DT index file.

3. The Metadata file

With reference to the standard of remote sensing metadata
published by the Federal Geographic Data Committee (FGDC)
[25], we build our own metadata file. In our metadata file we
record the following contents: the sensor’s information, the
frequency information, the spatial reference, the tile size, the
pyramid level and the data compression method. The metadata
file is serialized into a XML file.

4. The additional information file

The fragment list is described in section 3.2.3.

3.2.2 Tile-Based Mosaic
We can ensure the exact level of each image in the pyramid
through the longitude and latitude vale. But the size of the image
generally are not integral times of the partition grid (we use
512*512 grid). In order to describe this situation, we first propose
some definitions:

[Definition 3.2 Minimal Grid Bounding Rectangle (MGBR)]:
the minimal rectangle that an image takes up at some level in the
pyramid is called its MGBR.

[Definition 3.3 Natural Tile]: the image tile that is fully covered
by the image in its MGBR.

[Definition 3.4 Inferior Tile]: the image tile that is partially
covered by the image in its MGBR.

Figure 7. Tiles in the partition grid.

Figure 7 shows the natural tiles and inferior tiles in the MGBR.
The uncovered part in the tile is generally filled by black point in
our system.

Figure 8. Overlapped Area.

It is a typical and common situation in the mosaic operation that
two MGBRs are overlapped at some inferior tiles, as figure 8
shows. To solve this problem and thus make the whole mosaic
seamless, we define a tile-based mosaic (TIM) operation. It means
that when we mosaic two inferior tiles, the value of the pixels in
the overlapped area are calculated by ‘|’ (or) operation. And so,
we call this a “Tile-based Mosaic” method.

3.2.3 Fragment Collection
TIM operation frequently occurs in the partition process, this TIM
operation thus will produce a lot of fragments. A fragment means
the storage space in the data file that can not be reassigned or
reused. Figure 9 shows the process that how fragments are
produced.

Figure 9. How fragments are produced.

When a new tile m is being written to the data file:

- Step1: Judge whether Tile m is overlapped with the existing
tiles. Now, we assume that Tile m is overlapped with Tile 002,
so a TIM operation is needed.

- Step2: Extract the data of Tile 002 from the data file by using
the spatial index file.

- Step3: Execute TIM operation and we get a new tile named Tile
n+2. Because in our system we use data compression algorithm
(different pixel values get different compression results), the
storage space for every tile maybe different. The new Tile n+2
generally is larger than the original Tile 002, so we can not
insert the new tile into the original space.

- Step4: Append Tile n+2 to the end of the data file.

- Step5: Update the spatial index; change the pointer of Tile 002
to the new Tile n+2.

Through the above 5 steps, the original space that holds the data
of Tile 002 becomes a fragment. Our experiment shows, because
of the frequent TIM operations, the fragments can be up to
50%~60% in the data file. To solve this waste of disk space, we
propose a “Fragment Collection” method.

Figure 10. Fragment collection process.

As figure 10 shows, the fragment collection process can be
described as the following steps:

- Step1: Initialize a fragment information list (FL) to record the
position and size of all the fragments. The FL is an ordered
linked-list, the nodes in the list are ordered from small to big by
the size of the fragment it points to. (Figure (a) shows)

- Step2: When a new tile is being written to the data file, we first
check the FL to find whether there exists a fragment that can
hold the tile. If there is more than one suitable fragment, we
choose the smallest and put the tile data in it. (Figure (b) shows)

- Step3: Record the remnant space as a new fragment and insert
into FL. (Figure (c) shows)

- Step4: Update the FL to make sure that the fragments are
ordered from small to big. (Figure (d) shows)

- Step5: If all the fragments can not hold the tile, we append the
new tile to the end of the data file.

Although by using this method, we can not diminish all the
fragments, but we can indeed decrease the fragment in the data
file and thus greatly improve the usage of disk space.

4. DISTRIBUTED STORAGE OF REMOTE
SENSING IMAGES
The research to meet the rapidly growing demands of massive
remote sensing images presents two trends: one is the architecture
of storage changes from centralized to distributed and from small
scale clusters to large scale clusters; the second is data
management based on traditional RDBMS changes to specified
systems that consider the special properties of remote sensing
images.

Using the distributed file systems to store massive remote sensing
data has the following two merits: the cost is low because no
commercial DBMS is needed; the performance can be optimized
through operations to file system at operating system level. So
according to analysis in section 2 and the above reasons, we
choose the distributed file system to store massive remote sensing
images.

At present, we could use a lot of distributed file systems like AFS,
NFS, Lustre, GPFS, which can meet the needs for general purpose
applications. But when trying to use them as the infrastructure for
specified applications of massive remote sensing images, we
could find that they are lack of efficiencies.

According to Google’s GFS and based on the open source
software HADOOP, We have designed and implemented the D-
MaRISS (Distributed-Massive Remote-sensing Image Storage
System）to meet the rapidly growing demands of storing massive
remote sensing images. D-MaRISS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design has
been driven by key observations of our technological environment,
which reflect a marked departure from some earlier file system
design assumptions. We have reexamined traditional choices and
explored radically different points in the design space.

- The system stores a number of large image data files. Multi-GB
files are the common case and should be managed efficiently.

- The system is built from many inexpensive commodity
components typically Linux computers in our system.

- The workloads have many large, sequential writes that append
data to files. Typical operation sizes are similar to those for
reads. Once written, files are seldom modified again. Small
writes at arbitrary positions in a file are supported but do not
have to be efficient.

- The system must efficiently implement well-defined semantics
for multiple clients.

Figure 11. The architecture of D-MaRISS.

A D-MaRISS cluster consists of a single management node and
multiple data nodes and is accessed by multiple clients, as showed
in figure 11. Each of these nodes is typically a commodity Linux
machine running a user-level server process. It is easy to run both
a data node and a client on the same machine, as long as machine
resources permit and the lower reliability caused by running
possibly flaky application code is acceptable.

Files are divided into fixed-size blocks. Each block is identified
by an immutable and globally unique 64 bit block handle assigned
by the management node at the time of block creation. Data nodes
store blocks on local disks as Linux files and read or write block
data specified by a block handle and byte range. For reliability,
each block is replicated on multiple data nodes. By default, we
store three replicas, though users can designate different
replication levels for different regions of the file namespace.

With reference to Figure 11, let us explain the interactions for a
simple read. First, using the fixed block size, the client translates
the file name and byte offset specified by the application into a
block index within the file. Then, it sends the management node a
request containing the file name and block index. The
management node replies with the corresponding block handle
and locations of the replicas. The client caches this information
using the file name and block index as the key. The client then
sends a request to one of the replicas, most likely the closest one.
The request specifies the block handle and a byte range within
that block. Further reads of the same block require no more client-
management node interaction until the cached information expires
or the file is reopened. In fact, the client typically asks for
multiple blocks in the same request and the management node can
also include the information for blocks immediately following
those requested. This extra information sidesteps several future
client-management node interactions at practically no extra cost.

In GRIMS, the data file is stored in D-MaRISS. The other files
mentioned above are stored in the client computers.

5. EXPERIMENTS AND ANYLISIS
We do some experiments to test our methodology; the
environment can be described as follows:

- Clusters: We maintain a local network of 1 management node,
10 data nodes, 12 clients through a Gigabit Ethernet switcher.
Every node has the same configurations, as figure 12 shows:

Figure 12. Configurations of every node in the cluster.

- Distributed File System: We use the Hadoop Distributed File
System (HDFS) module provided by the open source software
HADOOP (version 0.12.0). The number of replications to each
block is 3 and the block size is 64M.

5.1 Query Performance

Figure 13. Query and browse interface.

Figure 13 is the query and browse interface. We carry out our
experiments based on it. The query process begins with
designating an image data set. Then it shows some metadata of
the data set. With user input query value, the requested image
could be fetched. And the time used could be displayed.

We realize the three abovementioned spatial partition model in
our system and test the cost of the spatial index and the query
performance. The image data set used in this experiment has the
following properties: 22.3GB, 0.2 meter resolution, infrared
aeronautic remote sensing images.

Figure 14. Size of index file and query performance.

Figure 14 (a) shows that the size of the spatial index file to the
size of the remote sensing images data file is 1:100000. So, we
can infer that the size of the index file of the PB amount images is
10 to 100 GB. In a large scale distributed storage environment,
this index file can by stored directly in the memory to support
highly efficient query. Figure 14 (b) shows that the difference
between the query performances based on different model is not
notable. With the growing size of data file, the change of the
query performance is not obvious either. All the queries could be
completed in 200 ms.

From figure 14 we can see that our proposed model PCPGQT is
not the best either in size of the index file or in the query
performance. But as the MPPQT model can not deal with global
remote sensing images, what’s more, the PCPG model is weaker
than PCPGQT in either the two aspects. So we still choose our
PCPGQT as the spatial partition model. It is the best tradeoff
between our aim and performance.

5.2 Throughput of D-MaRISS
The second experiment involves with testing the throughput of D-
MaRISS. For a node connected to a 100Mbps Ethernet card, its
theoretical saturated transfer rate (STR) is 12.5MB/s. But, the
average actual transfer rate (AATR) we obtain in our test is about
11.219MB/s which account for 89.75% of the theoretical value. In
our experiment, we test the concurrent read or write performance
of D-MaRISS through increasing the clients, thus the AWR or
ARR can be recorded.

We write a program based on socket and read/write interfaces
provided by the local file systems to test the average actual
transfer rate (AATR). Meanwhile, we directly invoke the read and
write functions provided by D-MaRISS to get the ARR and AWR
values.

Figure 15. Aggregate read rate.

We have a 16GB image data set which contains 32 files which are
512MB. The data set is stored in D-MaRISS. N clients read
randomly from the 32 files. Figure 15 shows the test result for
ARR test. The top curve shows theoretical limits imposed by our
network topology which is accord with formula (1). (M denotes
the number of data nodes; N denotes the number of clients). The
middle curve shows the aggregate read rate that we could get in
our own experiment environment. The bottom curve shows the
ARR. As we can see, the ARR increases with the numbers of
client. When the client number exceeds 10, either STR, AATT or
ARR all become steady with little change. The STR becomes a
fixed value 125MB/s after the number of clients goes to 10. This
is because we maintain 10 data nodes in the cluster.

() (0 N M)
(1)

() ()
read DataNode

read DataNode

MAX STR N STR
MAX STR M STR N M

= ⋅ ≤ ≤⎧
⎨ = ⋅ ≥⎩

Figure 16. Aggregate write rate.

For AWR test, every client has a 1GB image file to write to D-
MaRISS. Figure 16 shows the result for AWR test. The write rates
are much lower than the write rates because D-MaRISS maintains
3 replications of the original file. The STR goes to its max value
41.7MB/s after the number of clients goes to 10. Its value is
accord with formula (2).

() (0)
(2)

() ()

write DataNode

DataNode
write

MAX STR N STR N M
M STRMAX STR N M

REPLICAS

= ⋅ ≤ ≤⎧
⎪
⎨ ⋅

= ≥⎪⎩

Experiments by Google in ref [19] show similar results in
throughput test.

6. CONCLUSIONS
In order to overcome the growing gap between the production rate
of remote sensing images and the almost complete absence of
suitable management solutions, we build a highly efficient and
scalable storage and management system for remote sensing
images. The primary objective of GRIMS is to store global
remote sensing images. For this purpose, we implement our
system upon distributed file system to make it scalable;
meanwhile we design a suitable partition model to organize the
global remote sensing images. The key elements of our solution
can be summarized as follows:

- Tile pyramid-based image partitioning

- DT index

- Fragment collection

- Spatial tile query

- Highly scalable storage system upon ordinary Linux desktops

The system tests demonstrated a good scalability and performance.
Our proposed method and system can meet the needs of storage
and management of massive remote sensing images mentioned in
section 1. So, GRIMS is a scalable and global-oriented system.

But, right now, we haven’t considered the temporal aspect of
remote sensing images, so it is our way ahead.

7. ACKNOWLEDGMENTS
The authors would like to pay our sincere thanks to Lu LIU who
is now in Tech Univ of Munich, and Guo CHENG. Only with
their talented work can we finish this paper. Also, thanks should
be paid to the excellent programmers in Google. Our idea is
originated from their famous products. Last, thanks for the
support by NSF 40601080.

8. REFERENCES
[1] Shuo Dong, Qiaoli Hu. 2005 Building remote sensing

database on Grid. IGARSS-Volume 1 (July 25-29, 2005).
[2] Shock, C., Chang, C., Davis, L., Goward, S., Saltz, J. H., and

Sussman, A.1996. A High Performance Image Database
System for Remotely Sensed Imagery. In Proceedings of the
Second international Euro-Par Conference on Parallel
Processing-Volume II (August 26 - 29, 1996). Lecture Notes
in Computer Science, vol. 1124. Springer-Verlag, London,
109-122.

[3] Stephan NEBIKER, 1998 Girds-An Architecture for
Managing Very Large Orthoimage Mosaics in A Database
Framework. IAPRS.

[4] Oracle Corp. Oracle Spatial 11g GeoRaster. Oracle
Technical White Paper, 2007.7.

[5] Oracle Corp. Oracle Spatial GeoRaster 10g Release 2 (10.2)
User’s Guide and Reference (B14254-01). 2005.6.

[6] Oracle Corp. Oracle Database 10g GeoRaster: Scalability
and Performance Analysis. Oracle Technical White Paper,
2005.8.

[7] ESRI ArcSDE. http://www.esri.com/software/arcgis/arcsde/
[8] Scott W. Ambler. Mapping Objects to Relational Databases:

O/R Mapping In Detail.
http://www.agiledata.org/essays/mappingObjects.html

[9] HPSS: High performance storage system,
http://www.sdsc.edu/hpss/hpss.html

[10] Richard W. Watson. High Performance Storage System
Scalability: Architecture, Implementation and Experience.
Proceedings of the 22nd IEEE/13th NASA Goddard
Conference on Mass Storage Systems and Technologies,
MSST 2005. pp. 145-159.

[11] RASCHAL: Raid Again Storage using Commodity
Hardware And Linux,
http://pat.jpl.nasa.gov/public/lucian/RASCHAL.html, last
updated: 2005.12.18

[12] Lucian Plesea. Remote Access to Very Large Image
Repositories, 2005. A High Performance Computing
Perspective. Pasadena, CA, USA: Jet Propulsion Laboratory,
NASA, 2005.

[13] Yang Dezhi, Huang Hua, Zhang Jiangang, Xu Lu. 2005.
BWFS：A Distributed File System with Large Capacity,
High Throughput and High Scalability. Journal of Computer
Research and Develop, 2005.6. 42(6).

[14] Huang Hua, Zhang Jiangang, Xu Lu, 2005. Distributed
Layered Resource Management Model in Blue W hale
Distributed File System. Journal of Computer Research and
Develop, 2005.6. 42(6).

[15] NASA JPL OnEarth, http://onearth.jpl.nasa.gov/index.html
[16] Chang, F., Dean, J., Ghemaw, S., Hsieh, W. C., Wallach, D.

A., Burrows, M., Chandra, T., Fikes, A., and Gruber, R.
2006. Bigtable: A distributed structured data storage system.
In 7th OSDI (2006). pp. 205–218.

[17] Luiz André Barroso, Jeffrey Dean, Urs Holzle. 2003. The
Google Cluster Architecture. USA: IEEE Computer Society,
2003.

[18] Rob Pike, Sean Dorward, Robert Griesemer, and Sean
Quinlan. 2005. Interpreting the data: Parallel analysis with
Sawzall. Scientific Programming, 13(4):277–298, 2005.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,
2003. The Google File System, Proc. 19th Symposium on
Operating System Principles, Lake George, New York, 2003,
pp. 29-43.

[20] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters, Proc 6th Symposium on
Operating Systems Design and Implementation, San
Francisco, 2004, pages 137-149.

[21] BURROWS, M. 2006. The Chubby lock service for loosely
coupled distributed systems. In Proc. of the 7th OSDI (Nov.
2006).

[22] Reto Stockli, Eric Vermote, Nazmi Saleous, Robert Simmon
and David Herring, 2005. The Blue Marble Next Generation
- A true color earth dataset including seasonal dynamics
from MODIS, http://snowy.arsc.alaska.edu/nasa/bmng.pdf ,
October 17, 2005.

[23] Microsoft Live Maps (Microsoft Virtual Earth),
http://maps.live.com

[24] Yahoo Maps, http://maps.yahoo.com
[25] FGDC, Content Standard for Digital Geospatial Metadata:

Extensions for Remote Sensing Metadata.
http://www.fgdc.gov/standards/projects/FGDC-standards-
projects/csdgm_rs_ex/MetadataRemoteSensingExtens.pd

