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ABSTRACT 
Remote sensing images are important in ecological, geographical 
and military applications. With the rapid growing volume of 
remote sensing images, how to manage and store the massive 
remote sensing images is becoming a must-be-solved problem. 
We build a scalable storage and management system for massive 
remote sensing images aiming to store global remote sensing 
images – Global Remote Sensing Images Management and 
Storage system (GRIMS). In GRIMS, we propose a tile pyramid 
model – Plate Carree Projection Grid Quad-Tree (PCPGQT) to 
spatially partition the high resolution images and build a double 
tower (DT) index for the big image data file. Meanwhile, we 
analyze the fragment problem in image mosaic. Through fragment 
collection, huge disk spaces could be saved. By using the open 
source software HADOOP, we realize a distributed storage 
system to store massive image data file. Experiments show that 
our tile pyramid model is suitable to support our system purpose, 
and the distributed storage system is highly efficient. 
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1. INTRODUCTION 
Remote sensing(RS) technologies, combined with geographical 
information systems(GIS) , have been applied into various fields 
such as government services, agriculture, oil and mineral 
exploration, emergency services, environmental monitoring, land 
using, urban planning, and ecological research[1]. Remote sensing 
data is the most important data for geographical analyzing. 
However, Earth scientists have been thwarted by the staggering 
volume of remote sensing images in their attempts to study the 
earth; either the numbers or the quality of various remote sensing 
platforms is greatly increasing. Facing the large volumes of data 
received from remote sensing sensors, how to manage and store 
the massive remote sensing images is becoming a must-be-solved 
problem. 
The characteristics of the remote sensing database are [2]: 
massive, spatial referenced, multi-spectrum, multi-platform, rich 
information, etc. Thus, a system for remote sensing images must 
meet the following requirements [3]: 
Spatial Query-Large Image databases must be highly efficient in 
supporting spatial query. So an efficient spatial index and the 
corresponding processing mechanism are needed. 

Multi-Resolution Support-This is driven by two factors: high 
cost of operations on full-resolution raster data; access restrictions 
to the full-resolution data. 
Mass Storage-Large image databases require storage capacities 
in the range of hundreds of gigabytes to terabytes. 
High-Performance Storage-Image databases with simultaneous 
multi-user access additionally demand data transfer bandwidths 
exceeding the I/O performance of individual hard disks. 
Considering the characteristics of remote sensing images and the 
system requirements, we design and implement a distributed 
management and storage system for massive remote sensing 
images—GRIMS (Global Remote Sensing Images Management 
and Storage system). Global means that our system is scalable to 
store global massive remote sensing images. The logic 
architecture of GRIMS is showed in figure 1. 

 
Figure 1. Logic Architecture of GRIMS. 

GRIMS is composed of several main parts: "Global Data Model", 
"Task Management", "Query Processing", "Data Update and 
Transform", "Meta data", "User Interface and Develop Interface", 
"Data Integration and Transform", "Data Management", "D-
MaRISS (Distributed-Massive Remote-sensing Image Storage 
System)". The last two components: "Data Management" and "D-
MaRISS" are the cores of the whole system.  
“Data Management” module deals with spatial partition and index. 
Based on the map projection theory, we propose a new tile 
pyramid model for spatial partition, build the corresponding index 
file. Meanwhile, we present a tile-based mosaic method to ensure 
the seamless mosaic of massive images. What’s more, we discuss 
the fragment collection problem, thus huge disk spaces could be 
saved. 
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“D-MaRISS” module is the distributed storage system for massive 
remote sensing images. We discuss the design principles for 
distributed storage of remote sensing images. Based on the open 
source software HADOOP, we realize a distributed massive 
remote sensing images storage system and explain the mechanism 
for storage. 
Research on the above two modules and the key technologies in 
them are the main contributions of this paper. 
The rest of the paper is organized as follows: section 2 is about 
related work; section 3 discusses the management of remote 
sensing images; section 4 involves with the distributed storage of 
remote sensing images; section 5 is about experiments and 
analysis; we make our conclusions in section 6.  

2. RELATED WORK 
Researchers have done superior works in order to efficiently store, 
organize, manage and publish massive remote sensing images. 
Their works can be mainly divided into two categories:  
The first category is: massive remote sensing images storage and 
management systems based on traditional RDBMS. By using the 
traditional RDBMS, there exist two technique routes: One is to 
spatially extend the RDBMS in order that it possesses the ability 
to manage raster type remote sensing images. Various Database 
Companies are the main driven force in this route, and Oracle 
Spatial GeoRaster[4][5][6] is the typical product. Another route to 
provide the ability of storage and management of massive remote 
sensing images is to implement spatial data engine (SDE) which 
acts as a middleware between applications and RDBMS. Most of 
the SDEs are implemented by GIS companies, among which 
ArcSDE[7] developed by ESRI is the most typical product. 
Compare the two technique routes, when using the former 
technique; we use extended SQL or database packages to access 
images in the database. Due to lack of consistent standards, 
different RDBMSs provide quite different access interfaces. 
However, by using SDEs, we use object-oriented style APIs, thus 
SDEs are ORM[8](object relation mapping) middle wares for 
spatial databases. 
From its early start in 1970s till now, traditional RDBMS 
technology is quite mature, but is still lack of efficiencies in the 
following aspects when trying to store and process remote sensing 
images: rapid access ability to massive data, flexibility, 
processing unstructured data, cost of storage and maintenance, 
rapid backup and recovery. Some of the shortcomings are 
essentially caused by the relational model of the traditional 
RDBMS. What's more, generic commercial DBMS is huge in 
scale, which leads to great system cost and difficulties when being 
deployed. All the above reasons become obstacles in using 
RDBMS as the foundation of system for massive remote sensing 
images.  
The second category is: massive remote sensing images storage 
and management systems based on generic massive storage 
systems. Network storage technology characterized by 
NAS(Network Area Storage) and SAN(Storage Area Network) is 
becoming more and more popular. HPSS[9][10] (High 
Performance Storage System, developed by IBM, US Department 
of Resource, Laboratory of Lawrence Livermore), 
RASCHAL[11][12](developed by NASA Jet Propulsion 
Laboratory, JPL), Blue Whale[13][14](developed by Chinese 
academy of sciences) all use this technologies. Among them, 

RASCHAL which is being used in the OnEarth[15] project by 
NASA JPL, stores more than 15TB global image mosaics. 
Moreover, Blue Whale has been used in many systems for remote 
sensing images in China. 
Generic storage systems concentrate on storage capacity and 
access speed, while aiming at more storage and fast reading and 
writing speed. It doesn't care the key issues that a system for the 
massive remote sensing images focuses on: effectively organize 
the image data, construct the indexes for image data, and leverage 
the cluster's parallel computing ability and data compression 
algorithms. The idea: to buy a commercial massive storage system, 
import the image data and gain an efficient storage and 
management system for massive remote sensing images is naive 
and unrealistic. 
Besides the above two categories, online high resolution remote 
sensing images browsing systems are flourishing. Google Maps 
and Google Earth are the outstanding systems among them. 
According to reference[16] published in 2005, remote sensing 
data that support the Google Maps/Earth come to 70.5TB, among 
which images account for 70TB and index data accounts for 
500GB. From 2005 till now, Google must have updated their 
remote sensing data, so the up-to-date data should exceed 100TB. 
Google implements many original key technologies in building its 
large scale data center, including: Google Cluster[17], 
Workqueue[18], GFS[19], MapReduce[20], Bigtable[16], 
Sawzall[18], Chubby[21].  
Considering the excellent online service quality provided by 
Google Maps/Earth, we reckon that Google's experiences in 
storage and management for remote sensing images are 
representative of the research trend, thus are valuable to our work. 

3. MANAGEMENT OF REMOTE SENSING 
IMAGES 
The size of individual remote sensing images and image mosaics 
often exceeds the amount of primary memory available. Typically, 
only parts of these objects are accessed at any given time and 
operations affecting the entire object are relatively rare. A spatial 
massive images management solution should therefore support the 
transparent spatial partitioning and reconstruction of large image 
objects. The efficient access to partitions or to individual pixels or 
cells of large spatial image objects requires the use of specialized 
spatial access or indexing methods. 

3.1 Spatial Partition and Index 
Spatial Partition aims to divide high resolution images into low 
resolution small tiles and build the index for each tile. GRIMS 
incorporates a spatial partition concept based on tile pyramid 
model.  

The tile pyramid model in our system involves with two classical 
map projection methods in map projection theory--Plate Carree 
projection and Mercator projection. Map projection, which 
projects the original images onto a datum plane, is a key step in 
the pre-processing of remote sensing images. By using the 
rectified images, the tile pyramid model partitions the global 
images into tiles, extracts pyramids at different levels and builds 
the corresponding indices. The two projection methods are 
popularly used in the storage systems of remote sensing images. 
Plate Carree projection is used in BMNG[22] and OnEarth, while 



Mercator projection is used in Google Maps, Microsoft Live 
Maps[23] and Yahoo Maps[24]. 

In Mercator projection, showed in figure 2, images that range 
from longitude -180 to 180 and latitude -85.05112877980659 to 
85.05112877980659 are projected onto a regular square plane. 
The discrete multi-resolution pyramids that are extracted based 
upon that square plane can be quad-partitioned at each level and 
thus can be indexed by using quad-tree. We name the tile pyramid 
model based on Mercator projection--MPQT (Mercator Projection 
Quad-Tree). But as it can not cover the global images (lack of 
latitude coverage), it is not a suitable model for global images 
management. Left of figure 2 shows the projected global images, 
right of figure 2 shows its code string. 

 
Figure 2. MPQT Partition. 

While in Plate Carree projection, showed in figure 3, images that 
range from longitude -180 to 180 and latitude -90 to 90 are 
projected onto a rectangle plane which maintains a length and 
height ratio 2:1. The discrete multi-resolution pyramids that are 
extracted based on that rectangle plane can be uniformly 
partitioned at each level and thus can be indexed by using grid. 
We name the tile pyramid model based on Plate Carree projection 
-- PCPG (Plate Carree Projection Grid). In PCPG, tiles at each 
level are indexed by its column and row number. When indexing 
the 30 level tiles, the integer type can not hold such big number 
and the index file could be so huge. 

 
Figure 3. PCPG Partition. 

Based on the two models, we propose a new model named 
PCPGQT (Plate Carree Projection Grid Quad-Tree). In PCPGQT, 
we use the Plate Carree projection together with the quad-tree 
indexing to each tile at different levels. 

 

 
Figure 4. PCPGQT Partition. 

As the left of figure 4 shows, the top of the pyramid is a 1*2 grid. 
Take the top level two tiles as the root node, extend downwards, 

two quad-trees can be formed. In our model, the structure of the 
two quad-trees is called Double Towers (DT) index. Every tile 
has a unique code string. Let n denote the node in the two quad-
trees except the root node. f(n) is the parent node of n, C(n) is the 
code string. First, we define the Azimuth code: 

[Definition 3.1 Azimuth Code]: We partition a plane uniformly 
into several sub areas and assign each sub area with a unique code. 
These codes are call Azimuth code. 

Specially, if this partition can be executed recursively, the 
Azimuth code of the sub areas in every partition result is 
invariable. For PCPGQT, in the two quad-trees of DT, the square 
area is partitioned uniformly by using 0, 1, 2, 3 as the Azimuth 
code (as the right of figure 4 shows). In every recursion the four 
sub areas are coded clockwise from the northwest. For every node 
n, let c(n) be its Azimuth code, R(c)= {0, 1, 2, 3}. Based on the 
definition of the Azimuth code, the code string to node n can be 
constructed according to the following rules: 

- For the top two tiles in the pyramid, their C(n) are 'w' and 'e', 
with each presenting the western and eastern hemisphere 
separately. 

- Coding for the nodes in the two quad-trees are the same (the 
two quad-trees are called w-tree and e-tree).  

- For each non-root node n in w-tree (or e-tree), we have 
C(n)=C(f(n))+c(n), in which '+' is defined as string appending 
operation. 

Based on the above coding rules, we can use the longitude and 
latitude value and pyramid level to get the code string C(n) for 
each node n. The algorithm can be described as follows: 

 
Figure 5. GetTileCodeString Algorithm. 

The computing complexity is O(level). 

We implement the popular two models and compare them with 
our proposed model in section 5. 



3.2 Tile-based Mosaic and fragment collection 
Through spatial partition, we get a lot of tiles and their 
corresponding index codes. The next problem to solve is what 
should be put into database and how are they organized? This 
problem is discussed in the following sub sections. 

3.2.1 Data Preparing 
In GRIMS, four parts of data should be put into database. 

1. Image data file 

Tiles are the basic read and write unit in our system. We have two 
ways to serialize them into the file system: tile as a single file; all 
tiles are organized into a big file. For the first method, we can use 
the file name as the index key, while for the second method, we 
have to define and maintain the index key by ourselves. When the 
images are massive, the file system has to manage huge amount of 
files, for example, when the images go to TB amount, the number 
of tiles will be so big, and thus, access to such massive tiles would 
be a big burden for the file system. On the other hand, there is no 
such problem by using the second method. So, we use the second 
method to serialize our massive images. 

2. The index file 

We implements three different tile pyramid models in our system. 
MPQT uses pyramid quad-tree index, PCPG uses pyramid grid 
index, PCPGQT uses DT index.  

Figure 6 shows the structure of the DT index file. DT index file is 
actually a two-branch quad-tree. The root node stores two 
separate parts with each part containing a character representing 
the w-tree or the e-tree and a pointer to its child node. The tree 
node maintains four parts. Every part in the node contains a 
character representing the Azimuth code. Moreover, it also 
contains two pointers: one pointer points to the child node, while 
the other one points to the image tile in the data file. 

 
Figure 6. Structure of the DT index file. 

3. The Metadata file 

With reference to the standard of remote sensing metadata 
published by the Federal Geographic Data Committee (FGDC) 
[25], we build our own metadata file. In our metadata file we 
record the following contents: the sensor’s information, the 
frequency information, the spatial reference, the tile size, the 
pyramid level and the data compression method. The metadata 
file is serialized into a XML file. 

4. The additional information file 

The fragment list is described in section 3.2.3. 

3.2.2 Tile-Based Mosaic 
We can ensure the exact level of each image in the pyramid 
through the longitude and latitude vale. But the size of the image 
generally are not integral times of the partition grid (we use 
512*512 grid). In order to describe this situation, we first propose 
some definitions: 

[Definition 3.2 Minimal Grid Bounding Rectangle (MGBR)]: 
the minimal rectangle that an image takes up at some level in the 
pyramid is called its MGBR.  

[Definition 3.3 Natural Tile]: the image tile that is fully covered 
by the image in its MGBR. 

[Definition 3.4 Inferior Tile]: the image tile that is partially 
covered by the image in its MGBR. 

 
Figure 7. Tiles in the partition grid. 

Figure 7 shows the natural tiles and inferior tiles in the MGBR. 
The uncovered part in the tile is generally filled by black point in 
our system.  

 
Figure 8. Overlapped Area. 

It is a typical and common situation in the mosaic operation that 
two MGBRs are overlapped at some inferior tiles, as figure 8 
shows. To solve this problem and thus make the whole mosaic 
seamless, we define a tile-based mosaic (TIM) operation. It means 
that when we mosaic two inferior tiles, the value of the pixels in 
the overlapped area are calculated by ‘|’ (or) operation. And so, 
we call this a “Tile-based Mosaic” method.  

3.2.3 Fragment Collection 
TIM operation frequently occurs in the partition process, this TIM 
operation thus will produce a lot of fragments. A fragment means 
the storage space in the data file that can not be reassigned or 
reused. Figure 9 shows the process that how fragments are 
produced. 



 
Figure 9.  How fragments are produced. 

When a new tile m is being written to the data file: 

- Step1: Judge whether Tile m is overlapped with the existing 
tiles. Now, we assume that Tile m is overlapped with Tile 002, 
so a TIM operation is needed. 

- Step2: Extract the data of Tile 002 from the data file by using 
the spatial index file. 

- Step3: Execute TIM operation and we get a new tile named Tile 
n+2. Because in our system we use data compression algorithm 
(different pixel values get different compression results), the 
storage space for every tile maybe different. The new Tile n+2 
generally is larger than the original Tile 002, so we can not 
insert the new tile into the original space. 

- Step4: Append Tile n+2 to the end of the data file. 

- Step5: Update the spatial index; change the pointer of Tile 002 
to the new Tile n+2.  

Through the above 5 steps, the original space that holds the data 
of Tile 002 becomes a fragment. Our experiment shows, because 
of the frequent TIM operations, the fragments can be up to 
50%~60% in the data file. To solve this waste of disk space, we 
propose a “Fragment Collection” method. 

 
Figure 10. Fragment collection process. 

As figure 10 shows, the fragment collection process can be 
described as the following steps: 

- Step1: Initialize a fragment information list (FL) to record the 
position and size of all the fragments. The FL is an ordered 
linked-list, the nodes in the list are ordered from small to big by 
the size of the fragment it points to. (Figure (a) shows) 

- Step2: When a new tile is being written to the data file, we first 
check the FL to find whether there exists a fragment that can 
hold the tile. If there is more than one suitable fragment, we 
choose the smallest and put the tile data in it. (Figure (b) shows) 

- Step3: Record the remnant space as a new fragment and insert 
into FL. (Figure (c) shows) 

- Step4: Update the FL to make sure that the fragments are 
ordered from small to big. (Figure (d) shows) 

- Step5: If all the fragments can not hold the tile, we append the 
new tile to the end of the data file. 

Although by using this method, we can not diminish all the 
fragments, but we can indeed decrease the fragment in the data 
file and thus greatly improve the usage of disk space. 

4. DISTRIBUTED STORAGE OF REMOTE 
SENSING IMAGES 
The research to meet the rapidly growing demands of massive 
remote sensing images presents two trends: one is the architecture 
of storage changes from centralized to distributed and from small 
scale clusters to large scale clusters; the second is data 
management based on traditional RDBMS changes to specified 
systems that consider the special properties of remote sensing 
images. 

Using the distributed file systems to store massive remote sensing 
data has the following two merits: the cost is low because no 
commercial DBMS is needed; the performance can be optimized 
through operations to file system at operating system level. So 
according to analysis in section 2 and the above reasons, we 
choose the distributed file system to store massive remote sensing 
images. 

At present, we could use a lot of distributed file systems like AFS, 
NFS, Lustre, GPFS, which can meet the needs for general purpose 
applications. But when trying to use them as the infrastructure for 
specified applications of massive remote sensing images, we 
could find that they are lack of efficiencies. 

According to Google’s GFS and based on the open source 
software HADOOP, We have designed and implemented the D-
MaRISS (Distributed-Massive Remote-sensing Image Storage 
System）to meet the rapidly growing demands of storing massive 
remote sensing images. D-MaRISS shares many of the same goals 
as previous distributed file systems such as performance, 
scalability, reliability, and availability. However, its design has 
been driven by key observations of our technological environment, 
which reflect a marked departure from some earlier file system 
design assumptions. We have reexamined traditional choices and 
explored radically different points in the design space.  

- The system stores a number of large image data files. Multi-GB 
files are the common case and should be managed efficiently.  



- The system is built from many inexpensive commodity 
components typically Linux computers in our system. 

- The workloads have many large, sequential writes that append 
data to files. Typical operation sizes are similar to those for 
reads. Once written, files are seldom modified again. Small 
writes at arbitrary positions in a file are supported but do not 
have to be efficient. 

- The system must efficiently implement well-defined semantics 
for multiple clients.  

 
Figure 11. The architecture of D-MaRISS. 

A D-MaRISS cluster consists of a single management node and 
multiple data nodes and is accessed by multiple clients, as showed 
in figure 11. Each of these nodes is typically a commodity Linux 
machine running a user-level server process. It is easy to run both 
a data node and a client on the same machine, as long as machine 
resources permit and the lower reliability caused by running 
possibly flaky application code is acceptable.  

Files are divided into fixed-size blocks. Each block is identified 
by an immutable and globally unique 64 bit block handle assigned 
by the management node at the time of block creation. Data nodes 
store blocks on local disks as Linux files and read or write block 
data specified by a block handle and byte range. For reliability, 
each block is replicated on multiple data nodes. By default, we 
store three replicas, though users can designate different 
replication levels for different regions of the file namespace. 

With reference to Figure 11, let us explain the interactions for a 
simple read. First, using the fixed block size, the client translates 
the file name and byte offset specified by the application into a 
block index within the file. Then, it sends the management node a 
request containing the file name and block index. The 
management node replies with the corresponding block handle 
and locations of the replicas. The client caches this information 
using the file name and block index as the key. The client then 
sends a request to one of the replicas, most likely the closest one. 
The request specifies the block handle and a byte range within 
that block. Further reads of the same block require no more client-
management node interaction until the cached information expires 
or the file is reopened. In fact, the client typically asks for 
multiple blocks in the same request and the management node can 
also include the information for blocks immediately following 
those requested. This extra information sidesteps several future 
client-management node interactions at practically no extra cost. 

In GRIMS, the data file is stored in D-MaRISS. The other files 
mentioned above are stored in the client computers. 

5. EXPERIMENTS AND ANYLISIS 
We do some experiments to test our methodology; the 
environment can be described as follows: 

- Clusters: We maintain a local network of 1 management node, 
10 data nodes, 12 clients through a Gigabit Ethernet switcher. 
Every node has the same configurations, as figure 12 shows: 

 
Figure 12. Configurations of every node in the cluster. 

- Distributed File System: We use the Hadoop Distributed File 
System (HDFS) module provided by the open source software 
HADOOP (version 0.12.0). The number of replications to each 
block is 3 and the block size is 64M. 

5.1 Query Performance 

 
Figure 13. Query and browse interface. 

Figure 13 is the query and browse interface. We carry out our 
experiments based on it. The query process begins with 
designating an image data set. Then it shows some metadata of 
the data set. With user input query value, the requested image 
could be fetched. And the time used could be displayed. 

We realize the three abovementioned spatial partition model in 
our system and test the cost of the spatial index and the query 
performance. The image data set used in this experiment has the 
following properties: 22.3GB, 0.2 meter resolution, infrared 
aeronautic remote sensing images. 



 
Figure 14. Size of index file and query performance. 

Figure 14 (a) shows that the size of the spatial index file to the 
size of the remote sensing images data file is 1:100000. So, we 
can infer that the size of the index file of the PB amount images is 
10 to 100 GB. In a large scale distributed storage environment, 
this index file can by stored directly in the memory to support 
highly efficient query. Figure 14 (b) shows that the difference 
between the query performances based on different model is not 
notable. With the growing size of data file, the change of the 
query performance is not obvious either. All the queries could be 
completed in 200 ms. 

From figure 14 we can see that our proposed model PCPGQT is 
not the best either in size of the index file or in the query 
performance. But as the MPPQT model can not deal with global 
remote sensing images, what’s more, the PCPG model is weaker 
than PCPGQT in either the two aspects. So we still choose our 
PCPGQT as the spatial partition model. It is the best tradeoff 
between our aim and performance. 

5.2 Throughput of D-MaRISS 
The second experiment involves with testing the throughput of D-
MaRISS. For a node connected to a 100Mbps Ethernet card, its 
theoretical saturated transfer rate (STR) is 12.5MB/s. But, the 
average actual transfer rate (AATR) we obtain in our test is about 
11.219MB/s which account for 89.75% of the theoretical value. In 
our experiment, we test the concurrent read or write performance 
of D-MaRISS through increasing the clients, thus the AWR or 
ARR can be recorded. 

We write a program based on socket and read/write interfaces 
provided by the local file systems to test the average actual 
transfer rate (AATR). Meanwhile, we directly invoke the read and 
write functions provided by D-MaRISS to get the ARR and AWR 
values. 

 

Figure 15. Aggregate read rate. 

We have a 16GB image data set which contains 32 files which are 
512MB. The data set is stored in D-MaRISS. N clients read 
randomly from the 32 files. Figure 15 shows the test result for 
ARR test. The top curve shows theoretical limits imposed by our 
network topology which is accord with formula (1). (M denotes 
the number of data nodes; N denotes the number of clients). The 
middle curve shows the aggregate read rate that we could get in 
our own experiment environment. The bottom curve shows the 
ARR. As we can see, the ARR increases with the numbers of 
client. When the client number exceeds 10, either STR, AATT or 
ARR all become steady with little change. The STR becomes a 
fixed value 125MB/s after the number of clients goes to 10. This 
is because we maintain 10 data nodes in the cluster.  
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( ) ( )
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read DataNode

MAX STR N STR
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Figure 16. Aggregate write rate. 

For AWR test, every client has a 1GB image file to write to D-
MaRISS. Figure 16 shows the result for AWR test. The write rates 
are much lower than the write rates because D-MaRISS maintains 
3 replications of the original file. The STR goes to its max value 
41.7MB/s after the number of clients goes to 10. Its value is 
accord with formula (2). 
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Experiments by Google in ref [19] show similar results in 
throughput test.  

6. CONCLUSIONS 
In order to overcome the growing gap between the production rate 
of remote sensing images and the almost complete absence of 
suitable management solutions, we build a highly efficient and 
scalable storage and management system for remote sensing 
images. The primary objective of GRIMS is to store global 
remote sensing images. For this purpose, we implement our 
system upon distributed file system to make it scalable; 
meanwhile we design a suitable partition model to organize the 
global remote sensing images. The key elements of our solution 
can be summarized as follows: 

- Tile pyramid-based  image partitioning 

- DT index 



- Fragment collection 

- Spatial tile query 

- Highly scalable storage system upon ordinary Linux desktops 

The system tests demonstrated a good scalability and performance. 
Our proposed method and system can meet the needs of storage 
and management of massive remote sensing images mentioned in 
section 1. So, GRIMS is a scalable and global-oriented system. 

But, right now, we haven’t considered the temporal aspect of 
remote sensing images, so it is our way ahead. 
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