
An Efficient Elephant Flow Detection with Cost-
Sensitive in SDN

Peng Xiao*, †, Wenyu Qu*, Heng Qi ‡, Yujie Xu*, Zhiyang Li*

*College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
†School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
‡School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China

Email: wenyu@dlmu.edu.cn

Abstract—The software defined networking (SDN) allows
separating control and data plane, which provides better network
management and higher utilization for data center network.
Among these topical applications in SDN, such as traffic
engineering, QoS and network management, there is significant
interest on classifying the flows and predict future traffic.
Classification plays an important role in SDN, especially for
elephant flow detection. However, how to efficiently detect all
kinds of flows with low cost still remains a challenge task in
current researches. To address this issue, in this paper, we
propose to introduce cost-sensitive learning method to define a
real-time elephant flow detection strategy and the subsequent
metric in flow detection. Then we apply our strategy to train and
evaluate cost-sensitive decision trees in SDN. Extensive
experiments on different settings and data sets have been
performed, showing that our strategy is good at detecting
elephant flow with high detection rates and low overhead.

Keywords—SDN; Elephant Flow; Cost-Sensitive; C4.5;

I. INTRODUCTION

Recently, software defined networking (SDN) [1] has
increasingly employed in data center. SDN has caused a
paradigm shift in communication networks and provides a
globally optimal management of network resources and a
flow-level control of network traffic. The most popular
example of SDN is OpenFlow [2], its controller defines packet
handling rules for switches. Thus, the problem of real-time
elephant flow detection is becoming increasingly important for
SDN management.

The centralized network control has also been considered
in data center [3]. SDN is a natural match for data center
because the applications running in data center are already
managed by a central entity, which can provide higher
utilization and better network management for data center.
SDN is equally attractive to manage WAN networks, where
logically centralized control simplifies traffic engineering
problems and packets routing [4]. Detecting elephant flows is
important to construct appropriate forwarding policy for
various types of flows.

Currently, many researchers have studied the elephant
flow problem. By measuring the flows of 10 data centers,
Benson et al. [5] found that 80% of the flows (or mice flows)
are smaller than 10KB in size and the most bytes are carried in
the top 10% large flows (or elephant flows). Thus, it is not
necessary for controller to operate all flows and direct their

traffic. In the meantime, the misclassifications cost of elephant
flows are more serious than one of mice flows.

To reduce work load on control plane and improve the
efficiency of traffic engineering, an elephant flow detection
approach had been proposed by AR Curtis et al. [6,7]. This
approach is designed to allow aggressive use of wild-carded
OpenFlow rules. But TCAM is a valuable resource in switches
which can only afford 1,500 wild-carded rules in OpenFlow,
which is difficult to scale up to operate the rapidly changing
traffic. It will need other hosts to meet the demands of flow
detection because of the limited processing capacity of TCAM.
Some researchers [8,9] proposed their detection systems,
which are pre-configured with a fixed value. The detection
will cause a lot of false positive and negative errors because
they do not consider the dynamically changing traffic
characteristics.

All these methodologies mentioned in [6-9] have fast
detecting speed but not high accuracy of detection. To
improve the detection accuracy, the machine learning methods
such as Naive Bayes [10], k-means [11], C4.5 decision tree
[12], SVM [13], KNN [14] had already been used in traffic
classification. All these approaches classify the flows by
measuring the flow features, which are a set of statistical
values from the flow beginning to end, such as duration.
However, the arrival and departure of flows are very fast in
data center [5], and it requires the controller to spend 10ms to
allocate resource for every new flow. Although the above
flow-based methods improve the classification accuracy
markedly by using machine learning methods, they cannot
detect flows in real-time.

The key point of elephant flow detection is to detect them
as soon as quickly and efficiently. Currently, many researchers
have proposed many detection methods. However, there some
bottlenecks that control plane is difficult to detect flows for
the traffic engineering:

(1) The conflict between the accuracy of classification and
real-time is irreconcilable. In data center networks, the
arrival and departure of flows are very fast, and the
classification accuracy for elephant flow must be high. The
methods based on statistical thresholds have higher speed in
real-time, but lower accuracy. Conversely, the classifications
based on flow features have higher accuracy, but it can not
be in real-time. This problem needs to be optimized,
especially for data center network.

INISCom 2015, March 02-04, Tokyo, Japan
Copyright © 2015 ICST
DOI 10.4108/icst.iniscom.2015.258274

(2) The majority of existing detection methods are
designed to minimize the number of errors. Nevertheless, the
elephant flow detection often require classifiers that minimize
the misclassifications costs. In SDN flow prediction, failing to
detect an elephant flow can have more serious consequences
than mice flow.

Motivated by above analysis, we propose a real-time
elephant flow detection strategy and define some metrics for
flow detection that considers cost-sensitive. The major
contributions of this paper are:

(1) We propose a real-time elephant flow detection system
which provides more high accuracy for the online detection.
By analyzing the relationship between statistical thresholds
and flow features in data center, we propose a two-stage
elephant flow detection strategy. The strategy can detect
elephant flows as soon as quickly and efficiently.

(2) We define the metrics of the flow detection regarding
not only accuracy, but also cost-sensitive. Our aim in this
work is to study and implement the appropriate strategy for
learning and testing cost-sensitive decision trees. By
considering cost-sensitive, the accuracy of elephant flow
detection is much higher.

(3) We evaluate the performance of this detection system
on real trace of the Internet and data center with Mininet [15].
The performance evaluations show that our approach can
significantly improve the accuracy of elephant flow detection.

The rest of the paper is organized as follows. In Section
Ⅱ, we give an overview on the elephant detection system. We
propose an real-time elephant flow detection strategy aiming
at improving the traffic measurement performance. We
discuss cost-sensitive learning and define the metrics in
Section Ⅲ . Our work is implemented and evaluated in
Section Ⅳ. Finally, we conclude in Section Ⅴ.

II. SYSTEM DESIGN

In this section we briefly introduce the framework of
elephant flow detection for SDN, and propose a useful real-
time elephant flow detection strategy to effectively solve the
conflict mentioned above.

A. System Model

Fig. 1 shows the proposed system model. Our method for
elephant flow detection consists of three modules including
Flow Collector, Real-time Detection Strategy and Classifier,
which run on the controller host.

In the Flow Collector module, the system captures IP
packets from the SDN network and collects traffic flows by IP
header inspection. A flow consists of IP packets having the
same five-tuple {src_ip, src_port, dst_ip, dst_port, protocol},
and each flow can be represented by a set of statistical features,
such as duration, c2s_psmax and c2s_pkts, etc. Once based on
the whole flow, the classification cannot detect flows online
because it needs to wait until the flow finishes itself. To avoid
this problem, we propose the flow collect method based on the
first time series.

Fig. 1 System model

After receiving the flows on time series from the above
module, the two-stage Detection Strategy module extracts
features that are important to SDN flow detection. There are
249 kinds of TCP flows basic features mentioned in [16], and
the other deep packet inspection (DPI) [17] characteristics can
also be used to represent the flows in SDN. In this system the
Real-time Detection Strategy module aims to select a n-tuple
features to build a robust classification.

The Classifier module analyzes whether a given n-tuple is
an elephant flow or not. This classification can be made by
any statistical or learning method [10-14]. In this work we use
C4.5 decision tree as the detection method. Cost-sensitive is
proposed to improve accuracy of elephant flow detection,
which is significant in traffic engineering for SDN.

The Flow Collector module can be implemented simply by
wireshark [18] or other sniffer tools such as tcpdump. We use
wireshark to intercept and display all packets which are
transmitted over a SDN network. After obtaining the IP
packets, we extract features on time series from these packets.
In Real-time Detection Strategy module, we extract some
useful features from the statistical data to represent each flow.
Wireshark and Tstat [19] can be used in the above two
modules, and the Classifier module is the key of our method.
Therefore, our work focuses on using the cost-sensitive
decision trees to detect elephant flows in this paper.

B. Elephant Flow Detection Strategy

Many services and applications are deployed in data center,
such as web, ftp, DNS, Hadoop, VMware, etc. For these
applications, some are elephant flows such as Hadoop
MapReduce, VMware migration, and others are mice flows in
most cases. Currently, some researchers have proposed
detection methods based on port, protocol or head packet
detection. However, there are many challenges to detect
elephant flows successfully. For example, the web services of
80 port can transport both http request and video file. So it is
difficult to detect a web flow only based on head packet,
though it enjoys advantages in the speed of detection. The
flow-based classification has high detection accuracy, while it
needs to wait until the flow finishes itself. The arrival and
departure of flows are very fast in data center, and it is
difficult to detect flow by flow-based classification in real-

time. Therefore, it is necessary to develop a detection strategy
to address these drawbacks for data center flow detection.

In this section, we present the two-stage elephant flow
detection strategy as shown in Fig. 2. The strategy can detect
elephant flows quickly and efficiently, on the basis of
statistical thresholds and flow features on time series.

Fig. 2 Two-stage flow detection strategy

The flow is the large-scale data on time series. We adopt
head packet measurement in the first stage of detection to
distinguish predicting flows from mice flows by the threshold
of dst_port, protocol, etc. Then, these suspicious elephant
flows are sent to the second stage to improve the accuracy. In
the second stage, n-features are provided by statistics
information from the flow on first time series such as c2s_pkts,
s2c_psmax, etc. Following the work in the Feature Selection
module, we use the correlation-based filter (CFS) [20] to
generate optimal feature set for the data set.

In the following sections, we introduce cost-sensitive to
optimize the classification accuracy problem by using decision
trees. To test our methods, we design the optimization targets
for cost-sensitive detection.

III. COST‐SENSITIVE ANALYSIS

In recent years, cost-sensitive has become one of the most
popular machine learning algorithms [21]. The success of such
algorithms heavily depends on the choice of the costs. From
the analysis regarding classification speed, we tend to select
C4.5 decision trees as the classification method. In contrast to
the other machine learning methods, C4.5 classifier has
several advantages. For example, it is simple and easy to
implement, and able to handle a huge number of packets with
high speed, which has been widely used on network switch.
Aiming to understand the benefits of cost-sensitive, we have
evaluated our elephant flow detection using cost-sensitive.

A. Problem Formulation

In machine learning, classification is the assignment of a
label to a given input value. The SDN elephant flow detection
is also the same process that assigns each input value to one of
a given flow classes. Formally, the problem of elephant flow
detection can be stated as follows:

Given a test data set 1 2{ , ,..., }nT f f f which are traffic

flows in data center, a training data set 1 2{ , ,..., }nD d d d are

generated by machine learning including elephant flows and
mice flows, a class set 1{ ,..., ,..., }i j    which represent

the classes of the flows.

Given a particular test instance, the prior probability of
each possible class is ()

x
P f . Mathematically, the class of

flow is:
arg max ()xP f


  (1)

Given a specification of costs for correct and incorrect
flow predictions, an example should be predicted to have the
class that leads to the lowest cost. Let the (i, j) entry in a cost
matrix C be the cost of predicting class i when the true class

is j . If i j then the prediction is correct, while if i j the

prediction is incorrect. Thus, the optimal prediction for a flow

xf is the class i that minimizes

(,) () (,)x x
j

L f i P j f C i j  (2)

For instance, failing to detect an elephant flow can have
more serious consequences than mice flow in SDN flow
prediction. Based on Eq. (2), we prefer to rely on the costs
rather than the probability ()xP j f .

B. Costs Matrix and Optimal Decisions

Given an example in the two-class case, a cost matrix C
always has the following structure:

 actual negative actual positive

predict negative C(0,0)=C00 C(0,1)=C01

predict positive C(1,0)=C10 C(1,1)=C11

In the two-class case of the elephant and mice flow, the
optimal prediction is elephant flow if and only if the expected
cost of this prediction is less than or equal to the expected cost
of predicting mice flow:

10 11 00 01(0) (1) (0) (1)x x x xP j f C P j f C P j f C P j f C       (3)

Given (1)xp P j f  , Eq. (3) is equivalent to:

10 11 00 01(1) (1)p C pC p C pC     (4)

When the equation is in fact an equality, p is the threshold
for making optimal decisions.

1 0 0 0

1 0 0 0 0 1 1 1

C C
p

C C C C




  
 (5)

Eq. (5) shows that the elephant and mice flow cost matrix
has essentially only one degree of freedom from a decision-
making perspective, though it has two degrees of freedom
from a matrix perspective.

In the following section, we evaluate the performance of
our methods with cost-sensitive, and create a set of advanced
testing scenarios to verify it.

IV. EXPERIMENTS

In this section, we present our experimental setup and
describe the experimental results of our methods compared
with the others.

A. Testbed and data sets

All methods mentioned above are implemented with weka
[22] API, and have been performed on our data center which
provides Floodlight, Mininet, Hadoop service, web service, etc.
Two Hadoop clusters consist of 32 machines running in the
data center. All machines carry on linux operating system of
Ubuntu server 64 bit. In the meantime, we deploy a sniffer
host as a monitor of the whole network and collect the traffic
data for our methods. To verify the effectiveness and
availability of our methods, the experiments are conducted on
the following data sets:

(1) The wide data set, which is obtained from the wide
trace [23]. The data set is from daily trace at a trans-Pacific
line (150 Mbps link) and has many stochastic factors, which
makes traffic classification more difficult. We use the data set
to test the wide adaptability and high accuracy of the cost-
sensitive decision trees. In this data set we select WWW flows
as the important flows because the WWW flows dominate the
Internet flows.

(2) The data center data set, which is a full payload traffic
data set we collected at a 100 Mbps edge link of our data
center mentioned above over several days. We launch cloud
computer applications to the Hadoop clusters with large data
and capture the traffic. The data set contains elephant traffic
and mice traffic of our data center, such as Hadoop, DNS,
WWW, etc.

B. Performance evaluation

Fig. 3 The accuracy with different penalty

In this section, we conduct a group of experiments to
verify our methods. This group of experiments contains: (1)
We evaluate the performance of cost-sensitive decision trees
with cost-sensitive analysis and the number of dimensions. (2)
We compare the different data sets with cost-sensitive. (3) We
compare the performance of our methods with others.

To evaluate the influence of the cost penalty and the
feature dimensions, we test the performance of our methods
on the wide data set. We select 1000 training samples per-
class as the training data. The penalty of misclassification cost
is set to an integer from 1 to 10. As shown in Fig. 3, the
classification accuracy is greatly affected by penalty and the
feature dimensions. Furthermore, the value of accuracy is
sharply up when the penalty varies from 1 to 5, which is more
obvious for the 6-dimensional data set. As is to be expected,
the increase of dimension can improve accuracy, but it leads to
a longer response time.

Fig. 4 The accuracy with different training samples

In order to evaluate the influence of cost-sensitive, we test
the performance of C4.5 with different amounts of training
samples on the wide data set. Fig. 4 shows the accuracy of
C4.5 without cost-sensitive using different training samples.
We can see that few training samples severely impact the
classification performance. The results show C4.5 without
cost-sensitive analysis can reach the target of high accuracy,
but the size of training data set is so big that it needs more
overhead.

Fig. 5 The accuracy with cost and data set

Fig. 5 shows the results with cost obtained from the
experiments on the two data set. Based on the above results
with the wide data set, we use 10% of each data set as the
training data and select 6-dimensional features. Moreover, the
penalty value is 5. From the results, we observe that the
classification accuracy with cost-sensitive has generally
improved in different data sets, especially in the data center
data set. The data center traffic is different from the Internet
traffic. For the data center data set, 80% of the flows are
smaller than 10KB in size and the most bytes are carried in the
top 10% elephant flows. It is clear that cost-sensitive analysis
is suitable for the data center data set.

Fig. 6 The comparison of methods on the data center data set

To compare our methods with the other approaches, we
built experiments on the data center data set. Fig. 6 shows the
delay time of three competing methods. In our system, the
detection delay includes head packet delay in the first stage
and n-features classification delay in the second stage. In the
first stage of head packet detection, Flow Collector module
mentioned above is responsible for distinguish and mark the
suspicious elephant flows for further detection in the second
stage. The head packet delay takes few milliseconds for first
stage, which can be ignored. In this experiment, we evaluate
the delay performance without the head packet delay, because
this delay is very short and head packet is only a small part of
the whole flow. Our detection strategy can detect an elephant
flows in few tens of milliseconds. The average duration time
of elephant flows is about several seconds. As shown in Fig. 6,
our methods only spend 2 seconds in filtering 10,000 flows,
which is enough to filter and detect the elephant flows in data
center.

V. CONCLUSION

In this paper, we showed how to detect the elephant flow
with cost-sensitive in SDN. Our approach is based on cost-
sensitive decision trees by using our elephant flow detection
strategy. To maximize the detection rates and minimize the
misclassifications costs of elephant flows, we presented the
metrics of the cost-sensitive decision trees. The ideas and
mechanisms are illustrated by using the Internet and data
center trace. We conducted experiments under many different
settings and data sets. Finally the experiment results show our
methods are good at solving the elephant flow detection
problem. In the future work, we expect to expand our analysis
to the SDN network deployed in large enterprises. We also
want to find a method to determine the suitable cost matrix
automatically for decision trees.

Acknowledgment

This work is supported by National Nature Science
Foundation of China (Nos. 61370199, 61370198, 61432002
and 61402069), the Prospective Research Project on Future
Networks from Jiangsu Future Networks Innovation Institute,
and the Fundamental Research Funds for the Central
Universities (Nos. 3132014325, 3132013335).

References
[1] Feamster, Nick, Jennifer Rexford, and Ellen Zegura. "The road to SDN:

an intellectual history of programmable networks." ACM SIGCOMM
Computer Communication Review 44.2 (2014): 87-98.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks,” SIGCOMM CCR, vol. 38, no. 2, 2008.

[3] Al-Fares, Mohammad, et al. "Hedera: Dynamic Flow Scheduling for
Data Center Networks." NSDI. Vol. 10. 2010.

[4] Jain, Sushant, et al. "B4: Experience with a globally-deployed software
defined WAN." Proceedings of the ACM SIGCOMM 2013 conference
on SIGCOMM. ACM, 2013.

[5] Benson, Theophilus, Aditya Akella, and David A. Maltz. "Network
traffic characteristics of data centers in the wild." Proceedings of the
10th ACM SIGCOMM conference on Internet measurement. ACM,
2010.

[6] Curtis, Andrew R., et al. "Devoflow: scaling flow management for high-
performance networks." ACM SIGCOMM Computer Communication
Review. Vol. 41. No. 4. ACM, 2011.

[7] Curtis, Andrew R., Wonho Kim, and Praveen Yalagandula. "Mahout:
Low-overhead datacenter traffic management using end-host-based
elephant detection." INFOCOM, 2011 Proceedings IEEE. IEEE, 2011.

[8] Mori, Tatsuya, et al. "Identifying elephant flows through periodically
sampled packets." Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement. ACM, 2004.

[9] Kumar, Abhishek, et al. "Data streaming algorithms for efficient and
accurate estimation of flow size distribution." ACM SIGMETRICS
Performance Evaluation Review 32.1 (2004): 177-188.

[10] A. W. Moore and D. Zuev, “Internet traffic classification using Bayesian
analysis techniques.” in SIGMETRICS. ACM, 2005, pp. 50–60.

[11] J. Erman, M. F. Arlitt, and A. Mahanti, “Traffic classification using
clustering algorithms.” in Proceedings of the ACM SIGCOMM
Workshop on Mining Network Data. ACM, 2006, pp. 281–286.

[12] N. Williams, S. Zander, and G. J. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical ip traffic
flow classification.” Computer Communication Review, pp. 5–16, 2006.

[13] A. Este, F. Gringoli, and L. Salgarelli, “Support vector machines for tcp
traffic classification,” Computer Networks, pp. 2476–2490, 2009.

[14] M. Roughan, S. Sen, O. Spatscheck, and N. G. Duffield, “Class-of-
service mapping for qos: a statistical signature-based approach to ip
traffic classification.” in Internet Measurement Conference, 2004, pp.
135–148.

[15] Mininet. http://mininet.org/

[16] D. Z. Moore, Andrew and M. Crogan, “Discriminators for use in
flowbased classification.” Queen Mary and Westfield College,
Department of Computer Science, 2005.

[17] Luchaup, Daniel, et al. "Deep packet inspection with DFA-trees and
parametrized language overapproximation." INFOCOM, 2014
Proceedings IEEE. IEEE, 2014.

[18] wireshark. https://www.wireshark.org/

[19] Tcp statistic and analysis tool, http://tstat.tlc.polito.it/index.shtml

[20] M. A. Hall, “Correlation-based feature selection for discrete and
numeric class machine learning,” in Proceedings of the 17th
International Conference on Machine Learning, 2000, pp. 359–366.

[21] Lomax, Susan, and Sunil Vadera. "A survey of cost-sensitive decision
tree induction algorithms." ACM Computing Surveys (CSUR) 45.2
(2013): 16.

[22] Weka. http://www.cs.waikato.ac.nz/ml/weka

[23] Mawi working group traffic archive. http://mawi.wide.ad.jp/mawi

