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Abstract—The software defined networking (SDN) allows 
separating control and data plane, which provides better network 
management and higher utilization for data center network. 
Among these topical applications in SDN, such as traffic 
engineering, QoS and network management, there is significant 
interest on classifying the flows and predict future traffic. 
Classification plays an important role in SDN, especially for 
elephant flow detection. However, how to efficiently detect all 
kinds of flows with low cost still remains a challenge task in 
current researches. To address this issue, in this paper, we 
propose to introduce cost-sensitive learning method to define a 
real-time elephant flow detection strategy and the subsequent 
metric in flow detection. Then we apply our strategy to train and 
evaluate cost-sensitive decision trees in SDN. Extensive 
experiments on different settings and data sets have been 
performed, showing that our strategy is good at detecting 
elephant flow with high detection rates and low overhead. 
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I.  INTRODUCTION  

Recently, software defined networking (SDN) [1] has 
increasingly employed in data center. SDN has caused a 
paradigm shift in communication networks and provides a 
globally optimal management of network resources and a 
flow-level control of network traffic. The most popular 
example of SDN is OpenFlow [2], its controller defines packet 
handling rules for switches. Thus, the problem of real-time 
elephant flow detection is becoming increasingly important for 
SDN management. 

The centralized network control has also been considered 
in data center [3]. SDN is a natural match for data center 
because the applications running in data center are already 
managed by a central entity, which can provide higher 
utilization and better network management for data center. 
SDN is equally attractive to manage WAN networks, where 
logically centralized control simplifies traffic engineering 
problems and packets routing [4]. Detecting elephant flows is 
important to construct appropriate forwarding policy for 
various types of flows. 

Currently, many researchers have studied the elephant 
flow problem. By measuring the flows of 10 data centers, 
Benson et al. [5] found that 80% of the flows (or mice flows) 
are smaller than 10KB in size and the most bytes are carried in 
the top 10% large flows (or elephant flows). Thus, it is not 
necessary for controller to operate all flows and direct their 

traffic. In the meantime, the misclassifications cost of elephant 
flows are more serious than one of mice flows. 

To reduce work load on control plane and improve the 
efficiency of traffic engineering, an elephant flow detection 
approach had been proposed by AR Curtis et al. [6,7]. This 
approach is designed to allow aggressive use of wild-carded 
OpenFlow rules. But TCAM is a valuable resource in switches 
which can only afford 1,500 wild-carded rules in OpenFlow, 
which is difficult to scale up to operate the rapidly changing 
traffic. It will need other hosts to meet the demands of flow 
detection because of the limited processing capacity of TCAM. 
Some researchers [8,9] proposed their detection systems, 
which are pre-configured with a fixed value. The detection 
will cause  a lot of false positive and negative errors because 
they do not consider the dynamically changing traffic 
characteristics. 

All these methodologies mentioned in [6-9] have fast 
detecting speed but not high accuracy of detection. To 
improve the detection accuracy, the machine learning methods 
such as Naive Bayes [10], k-means [11], C4.5 decision tree 
[12], SVM [13], KNN [14] had already been used in traffic 
classification. All these approaches classify the flows by 
measuring the flow features, which are a set of statistical 
values from the flow beginning to end, such as duration. 
However, the arrival and departure of flows are very fast in 
data center [5], and it requires the controller to spend 10ms to 
allocate resource for every new flow. Although the above 
flow-based methods improve the classification accuracy 
markedly by using machine learning methods, they cannot 
detect flows in real-time. 

The key point of elephant flow detection is to detect them 
as soon as quickly and efficiently. Currently, many researchers 
have proposed many detection methods. However, there some 
bottlenecks that control plane is difficult to detect flows for 
the traffic engineering: 

(1) The conflict between the accuracy of classification and 
real-time is irreconcilable. In data center networks, the 
arrival and departure of flows are very fast, and the 
classification accuracy for elephant flow  must be high. The 
methods based on statistical thresholds have higher speed in 
real-time, but lower accuracy. Conversely, the classifications 
based on flow features have higher accuracy, but it can not 
be in real-time. This problem needs to be optimized, 
especially for data center network. 
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(2) The majority of existing detection methods are 
designed to minimize the number of errors. Nevertheless, the 
elephant flow detection often require classifiers that minimize 
the misclassifications costs. In SDN flow prediction, failing to 
detect an elephant flow can have more serious consequences 
than mice flow. 

Motivated by above analysis, we propose a real-time 
elephant flow detection strategy and define some metrics for 
flow detection that considers cost-sensitive. The major 
contributions of this paper are:  

(1) We propose a real-time elephant flow detection system 
which provides more high accuracy for the online detection. 
By analyzing the relationship between statistical thresholds 
and flow features in data center, we propose a two-stage 
elephant flow detection strategy. The strategy can detect 
elephant flows as soon as quickly and efficiently.  

(2) We define the metrics of the flow detection regarding 
not only accuracy, but also cost-sensitive. Our aim in this 
work is to study and implement the appropriate strategy for 
learning and testing cost-sensitive decision trees. By 
considering cost-sensitive, the accuracy of elephant flow 
detection is much higher. 

(3) We evaluate the performance of this detection system 
on real trace of the Internet and data center with Mininet [15]. 
The performance evaluations show that our approach can 
significantly improve the accuracy of elephant flow detection. 

The rest of the paper is organized as follows. In Section 
Ⅱ, we give an overview on the elephant detection system. We 
propose an real-time elephant flow detection strategy aiming 
at improving the traffic measurement performance. We 
discuss cost-sensitive learning and define the metrics in 
Section Ⅲ . Our work is implemented and evaluated in 
Section Ⅳ. Finally, we conclude in Section Ⅴ. 

II. SYSTEM DESIGN 

In this section we briefly introduce the framework of 
elephant flow detection for SDN, and propose a useful real-
time elephant flow detection strategy to effectively solve the 
conflict mentioned above. 

A. System Model 

Fig. 1 shows the proposed system model. Our method for 
elephant flow detection consists of three modules including 
Flow Collector, Real-time Detection Strategy and Classifier, 
which run on the controller host. 

In the Flow Collector module, the system captures IP 
packets from the SDN network and collects traffic flows by IP 
header inspection. A flow consists of IP packets having the 
same five-tuple {src_ip, src_port, dst_ip, dst_port, protocol}, 
and each flow can be represented by a set of statistical features, 
such as duration, c2s_psmax and c2s_pkts, etc. Once based on 
the whole flow, the classification cannot detect flows online 
because it needs to wait until the flow finishes itself. To avoid 
this problem, we propose the flow collect method based on the 
first time series.  

 

Fig. 1 System model 

After receiving the flows on time series from the above 
module, the two-stage Detection Strategy module extracts 
features that are important to SDN flow detection. There are 
249 kinds of TCP flows basic features mentioned in [16], and 
the other deep packet inspection (DPI) [17] characteristics can 
also be used to represent the flows in SDN. In this system the 
Real-time Detection Strategy module aims to select a n-tuple 
features to build a robust classification. 

The Classifier module analyzes whether a given n-tuple is 
an elephant flow or not. This classification can be made by 
any statistical or learning method [10-14]. In this work we use 
C4.5 decision tree as the detection method. Cost-sensitive is 
proposed to improve accuracy of elephant flow detection, 
which is significant in traffic engineering for SDN. 

The Flow Collector module can be implemented simply by 
wireshark [18] or other sniffer tools such as tcpdump. We use 
wireshark to intercept and display all packets which are 
transmitted over a SDN network. After obtaining the IP 
packets, we extract features on time series from these packets. 
In Real-time Detection Strategy module, we extract some 
useful features from the statistical data to represent each flow. 
Wireshark and Tstat [19] can be used in the above two 
modules, and the Classifier module is the key of our method. 
Therefore, our work focuses on using the cost-sensitive 
decision trees to detect elephant flows in this paper. 

B. Elephant Flow Detection Strategy 

Many services and applications are deployed in data center,  
such as web, ftp, DNS, Hadoop, VMware, etc. For these 
applications, some are elephant flows such as Hadoop 
MapReduce, VMware migration, and others are mice flows in 
most cases. Currently, some researchers have proposed 
detection methods based on port, protocol or head packet 
detection. However, there are many challenges to detect 
elephant flows successfully. For example, the web services of 
80 port can transport both http request and video file. So it is 
difficult to detect a web flow only based on head packet, 
though it enjoys advantages in the speed of detection. The 
flow-based classification has high detection accuracy, while it 
needs to wait until the flow finishes itself. The arrival and 
departure of flows are very fast in data center, and it is 
difficult to detect flow by flow-based classification in real-



time. Therefore, it is necessary to develop a detection strategy 
to address these drawbacks for data center flow detection. 

In this section, we present the two-stage elephant flow 
detection strategy as shown in Fig. 2. The strategy can detect 
elephant flows quickly and efficiently, on the basis of 
statistical thresholds and flow features on time series. 

 

Fig. 2 Two-stage flow detection strategy 

The flow is the large-scale data on time series. We adopt 
head packet measurement in the first stage of detection to 
distinguish predicting flows from mice flows by the threshold 
of dst_port, protocol, etc. Then, these suspicious elephant 
flows are sent to the second stage to improve the accuracy. In 
the second stage, n-features are provided by statistics 
information from the flow on first time series such as c2s_pkts, 
s2c_psmax, etc. Following the work in the Feature Selection 
module, we use the correlation-based filter (CFS) [20] to 
generate optimal feature set for the data set. 

In the following sections, we introduce cost-sensitive to 
optimize the classification accuracy problem by using decision 
trees. To test our methods, we design the optimization targets 
for cost-sensitive detection. 

III. COST‐SENSITIVE ANALYSIS 

In recent years, cost-sensitive has become one of the most 
popular machine learning algorithms [21]. The success of such 
algorithms heavily depends on the choice of the costs. From 
the analysis regarding classification speed, we tend to select 
C4.5 decision trees as the classification method. In contrast to 
the other machine learning methods, C4.5 classifier has 
several advantages. For example, it is simple and easy to 
implement, and able to handle a huge number of packets with 
high speed, which has been widely used on network switch. 
Aiming to understand the benefits of cost-sensitive, we have 
evaluated our elephant flow detection using cost-sensitive. 

A. Problem Formulation 

In machine learning, classification is the assignment of a 
label to a given input value. The SDN elephant flow detection 
is also the same process that assigns each input value to one of 
a given flow classes. Formally, the problem of elephant flow 
detection can be stated as follows: 

Given a test data set 1 2{ , ,..., }nT f f f which are traffic 

flows in data center, a training data set 1 2{ , ,..., }nD d d d are 

generated by machine learning including elephant flows and 
mice flows, a class set 1{ ,..., ,..., }i j    which represent 

the classes of the flows. 

Given a particular test instance, the prior probability of 
each possible class is ( )

x
P f . Mathematically, the class of 

flow is: 
arg max ( )xP f


                                     (1) 

Given a specification of costs for correct and incorrect 
flow predictions, an example should be predicted to have the 
class that leads to the lowest cost. Let the (i, j) entry in a cost 
matrix C be the cost of predicting class i  when the true class 

is j . If i j  then the prediction is correct, while if i j  the 

prediction is incorrect. Thus, the optimal prediction for a flow 

xf  is the class i that minimizes 

( , ) ( ) ( , )x x
j

L f i P j f C i j                     (2)   

For instance, failing to detect an elephant flow can have 
more serious consequences than mice flow in SDN flow 
prediction. Based on Eq. (2), we prefer to rely on the costs 
rather than the probability ( )xP j f . 

B.  Costs Matrix and Optimal Decisions 

Given an example in the two-class case, a cost matrix C 
always has the following structure: 

 actual negative actual positive

predict negative C(0,0)=C00 C(0,1)=C01 

predict positive C(1,0)=C10 C(1,1)=C11 

In the two-class case of the elephant and mice flow, the 
optimal prediction is elephant flow if and only if the expected 
cost of this prediction is less than or equal to the expected cost 
of predicting mice flow: 

10 11 00 01( 0 ) ( 1 ) ( 0 ) ( 1 )x x x xP j f C P j f C P j f C P j f C        (3) 

Given ( 1 )xp P j f  , Eq. (3) is equivalent to: 

10 11 00 01(1 ) (1 )p C pC p C pC                                   (4) 

When the equation is in fact an equality, p is the threshold 
for making optimal decisions.  

1 0 0 0

1 0 0 0 0 1 1 1

C C
p

C C C C




  
                                 (5) 

Eq. (5) shows that the elephant and mice flow cost matrix 
has essentially only one degree of freedom from a decision-
making perspective, though it has two degrees of freedom 
from a matrix perspective. 



In the following section, we evaluate the performance of 
our methods with cost-sensitive, and create a set of advanced 
testing scenarios to verify it. 

IV. EXPERIMENTS 

In this section, we present our experimental setup and 
describe the experimental results of our methods compared 
with the others.  

A. Testbed and data sets 

All methods mentioned above are implemented with weka 
[22] API, and have been performed on our data center which 
provides Floodlight, Mininet, Hadoop service, web service, etc. 
Two Hadoop clusters consist of 32 machines running in the 
data center. All machines carry on linux operating system of 
Ubuntu server 64 bit. In the meantime, we deploy a sniffer 
host as a monitor of the whole network and collect the traffic 
data for our methods. To verify the effectiveness and 
availability of our methods, the experiments are conducted on 
the following data sets: 

(1) The wide data set, which is obtained from the wide 
trace [23]. The data set is from daily trace at a trans-Pacific 
line (150 Mbps link) and has many stochastic factors, which 
makes traffic classification more difficult. We use the data set 
to test the wide adaptability and high accuracy of the cost-
sensitive decision trees. In this data set we select WWW flows 
as the important flows because the WWW flows dominate the 
Internet flows. 

(2) The data center data set, which is a full payload traffic 
data set we collected at a 100 Mbps edge link of our data 
center mentioned above over several days. We launch cloud 
computer applications to the Hadoop clusters with large data 
and capture the traffic. The data set contains elephant traffic 
and mice traffic of our data center, such as Hadoop, DNS, 
WWW, etc.  

B.  Performance evaluation 

 
Fig. 3 The accuracy with different penalty 

In this section, we conduct a group of experiments to 
verify our methods. This group of experiments contains: (1) 
We evaluate the performance of cost-sensitive decision trees 
with cost-sensitive analysis and the number of dimensions. (2) 
We compare the different data sets with cost-sensitive. (3) We 
compare the performance of our methods with others. 

To evaluate the influence of the cost penalty and the 
feature dimensions, we test the performance of our methods 
on the wide data set. We select 1000 training samples per- 
class as the training data. The penalty of misclassification cost 
is set to an integer from 1 to 10. As shown in Fig. 3, the 
classification accuracy is greatly affected by penalty and the 
feature dimensions. Furthermore, the value of accuracy is 
sharply up when the penalty varies from 1 to 5, which is more 
obvious for the 6-dimensional data set. As is to be expected, 
the increase of dimension can improve accuracy, but it leads to 
a longer response time. 

 

Fig. 4 The accuracy with different training samples 

In order to evaluate the influence of cost-sensitive, we test 
the performance of C4.5 with different amounts of training 
samples on the wide data set. Fig. 4 shows the accuracy of 
C4.5 without cost-sensitive using different training samples. 
We can see that few training samples severely impact the 
classification performance. The results show C4.5 without 
cost-sensitive analysis can reach the target of high accuracy, 
but the size of training data set is so big that it needs more 
overhead. 

 

Fig. 5 The accuracy with cost and data set 

Fig. 5 shows the results with cost obtained from the 
experiments on the two data set. Based on the above results 
with the wide data set, we use 10% of each data set as the 
training data and select 6-dimensional features. Moreover, the 
penalty value is 5. From the results, we observe that the 
classification accuracy with cost-sensitive has generally 
improved in different data sets, especially in the data center 
data set. The data center traffic is different from the Internet 
traffic. For the data center data set, 80% of the flows are 
smaller than 10KB in size and the most bytes are carried in the 
top 10% elephant flows. It is clear that cost-sensitive analysis 
is suitable for the data center data set. 



 

Fig. 6 The comparison of methods on the data center data set 

To compare our methods with the other approaches, we 
built experiments on the data center data set. Fig. 6 shows the 
delay time of three competing methods. In our system, the 
detection delay includes head packet delay in the first stage 
and n-features classification delay in the second stage. In the 
first stage of head packet detection, Flow Collector module 
mentioned above is responsible for distinguish and mark the 
suspicious elephant flows for further detection in the second 
stage. The head packet delay takes few milliseconds for first 
stage, which can be ignored. In this experiment, we evaluate 
the delay performance without the head packet delay, because 
this delay is very short and head packet is only a small part of 
the whole flow. Our detection strategy can detect an elephant 
flows in few tens of milliseconds. The average duration time 
of elephant flows is about several seconds. As shown in Fig. 6, 
our methods only spend 2 seconds in filtering 10,000 flows, 
which is enough to filter and detect the elephant flows in data 
center. 

V. CONCLUSION 

In this paper, we showed how to detect the elephant flow 
with cost-sensitive in SDN. Our approach is based on cost-
sensitive decision trees by using our elephant flow detection 
strategy. To maximize the detection rates and minimize the 
misclassifications costs of elephant flows, we presented the 
metrics of the cost-sensitive decision trees. The ideas and 
mechanisms are illustrated by using the Internet and data 
center trace. We conducted experiments under many different 
settings and data sets. Finally the experiment results show our 
methods are good at solving the elephant flow detection 
problem. In the future work, we expect to expand our analysis 
to the SDN network deployed in large enterprises. We also 
want to find a method to determine the suitable cost matrix 
automatically for decision trees. 
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