
The PocketLocker Personal Cloud Storage System

Anandatirtha Nandugudi∗, Carl Nuessle∗, Geoffrey Challen∗, Emiliano Miluzzo† and Yih-Farn Chen†
∗Department of Computer Science and Engineering, University at Buffalo

†AT&T Labs Research
{ans25,carnues,challen}@buffalo.edu,{milluzo, chen}@research.att.com

Abstract—PocketLocker creates scalable, reliable, and perfor-
mant personal storage clouds out of available space distributed
across multiple personal devices. Designed to store rarely-changed
files on both interactive devices with limited storage (such as
smartphones) and non-interactive devices with large amounts
of storage (such as storage appliances), PocketLocker differs
from previous systems in not requiring that each device be
able to store all available content or be configured to only
view certain files. Instead, a storage orchestrator running as
a cloud service distributes erasure-coded file chunks across all
available devices to maximize performance and capacity and
minimize energy usage at battery-powered clients while meeting
configurable backup requirements. Unlike current cloud storage
options, PocketLocker is free and will scale as users add devices.

We motivate PocketLocker’s design by analyzing two months
of file access traces taken from 100 smartphones, and evaluate
its performance using trace-based simulations to explore design
parameters and measurements of a prototype Android implemen-
tation to establish real-world performance. By locating content
close to where it will be accessed by mobile devices, PocketLocker
provides low-latency access to large amounts of content. By
exploiting mobility and charging habits, PocketLocker can meet
backup requirements without draining the smartphone’s battery.

I. INTRODUCTION

As smartphones become ubiquitous, viewers naturally ex-
pect to have access to all of their personal content from
these devices—to view all of their photos and videos; play
any track from their music collection; and browse through
all previously sent chats, texts, and emails. These use cases
require smartphones to efficiently access far more data than
they can store locally, and yet both existing cloud storage
solutions [1], [2] and recent research filesystem designs [3], [4]
require each client store a complete replica. As users assemble
multilple devices—including smartphones, tablets, laptops, and
desktops—that collectively contain large amounts of storage,
their storage capacity should not be bottlenecked by the most
storage-constrained device. Given the cost and energy usage
of flash storage we do not anticipate mobile device storage
capacity to keep pace with that of other types of devices.

To address this personal storage bottleneck we propose to
allow users to apply the same techniques used to build reliable
cloud storage to create personal storage clouds. By combining
available space on existing personal devices, personal storage
clouds can achieve a capacity far greater than offered by free
cloud storage tiers. By utilizing nearby personal devices, per-
sonal storage clouds can provide better performance than cloud
storage. And by applying modern approaches to reliability and
availability, personal storage clouds can cope with failures and
disconnections inherent to personal devices.

We present the design and implementation of Pocket-
Locker, a system enabling scalable, reliable, and performant
personal storage clouds (PSC). PocketLocker is designed to
store rarely-changed files, such as photos, music, and videos,
and to provide access to an entire personal storage cloud
from any client device. PocketLocker exploits the locality of
devices within the PSC to arrange rapid transfers over LANs
when possible, and includes energy-saving features to reduce
battery drain on mobile clients. While PocketLocker uses direct
interaction between clients, it does not address the difficulties
of building a peer-to-peer distributed storage system. Instead,
a cloud service called the orchestrator is used to maintain a
consistent namespace and ensure that backup and availability
requirements are met. Clients apply local data caching policies
that reflect their usage patterns and their interaction with
other clients. PocketLocker simplifies locating data within
the personal storage cloud by utilizing Reed-Solomon erasure
coding [5], allowing clients to reconstruct files as long as they
can acquire any set of mutually-redundant chunks.

Our paper makes the following contributions. First, we
examine one month of data from 100 users to better understand
smartphone file access patterns. We conclude that today’s users
are generating and accessing far more content than can be
stored directly on their mobile device, making file systems
which require each client to store a complete replica unusable.
However, a survey that we distributed to 47 people indicates
that users do have free storage on other personal devices. These
results motivate PocketLocker’s design.

Second, we present the design of PocketLocker and de-
scribe how it uses multiple personal devices to build scalable,
performant, and energy-efficient personal storage clouds to
store rarely-changed files such as music, videos, and photos.
PocketLocker uses erasure coding to divide files into mul-
tiple chunks which are distributed across users’ participat-
ing devices—which can include smartphones, tablets, laptops,
desktops, and dedicated storage appliances. PocketLockers
orchestrator, which runs as a cloud service, distributes chunks
across the users devices to maintain file availability, maximize
performance, and meet configurable backup requirements.

Finally, we perform a detailed evaluation of PocketLocker
that proceeds along two lines. First, we utilize our file access
traces to examine the impact of several key PocketLocker
design parameters and estimate the performance of file access
on PocketLocker. Second, we measure the energy consumption
and performance of an Android prototype as it accesses files
under a variety of real-world conditions. Our results confirm
that by locating files intelligently, PocketLocker can provide
mobile users with energy-efficient low-latency access to far
more content than their mobile device can store locally.

MobiCASE 2014, November 06-07, Austin, United States
Copyright © 2014 ICST
DOI 10.4108/icst.mobicase.2014.257782

Users
10−2

10−1

100

101

102

103

104

105

106

107
Fi

le
Si

ze
(K

B
)

Fig. 1: File Sizes. Per-user distributions are shown for all media
files accessed by users during the experiment. Most files are between
10 KB and 1 MB, but some are up to 100 MB.

Our paper is structured as follows. Section II presents
several results that motivate and inform PocketLocker’s design,
which we present in detail in Section III. Section IV describes
the implementation of our current PocketLocker prototype
for Android smartphones, which we evaluate in Section V.
Section VI compares PocketLocker to similar systems before
Section VII discusses future work and concludes the paper.

II. MOTIVATION

To better understand storage usage on smartphones and
the potential to expand capacity by creating personal storage
clouds, we performed several measurement studies. We were
interested in answering the following questions: How much
storage do users have on their smartphones? How frequently
are media files created, modified, and accessed? And how is
available storage distributed across multiple personal devices?

A. Rate of Smartphone Storage Decline

To determine how rapidly users create content on their mo-
bile devices, we ran an IRB-approved experiment on PHONE-
LAB, a public smartphone testbed located at the University at
Buffalo [6]. 288 students, faculty, and staff carry instrumented
Android Samsung Galaxy Nexus smartphones and received
subsidized service in return for participation in experiments.
PHONELAB provides access to a representative group of
smartphone users balanced between genders and drawn from a
wide variety of age brackets, making our results representative
of the broader smartphone user community.

We distributed a simple experiment that periodically logged
the storage available on each smartphone which 105 PHONE-
LAB users joined for eight months, beginning shortly after
PHONELAB users received new smartphones in August, 2013.
Our log messages show users available storage declining by
roughly 30 MB per day, approximately the size of 30 photos
or a half-dozen music files. Aggregate capacity reflects both
the rate at which users are creating content, but also the rate
at which they may be moving content such as music on to
their device. However, if this rate of decline continues it will
only take the average PHONELAB participant three years to

Users
0

20

40

60

80

100

120

A
ll

Fi
le

O
pe

ra
tio

ns
(G

B
)

Modifications
Creations
Accesses

Fig. 2: Media files are rarely modified. Most file operations are
accesses.

generate more content than they can fit onto their Samsung
Galaxy Nexus [7] with its 32 GB of Flash. And this estimate
shows users coping with the existing storage limitations of
their personal devices. We expect that many already have far
more photos, music, and video than will fit onto their mobile
device.

B. Media Access Patterns

To obtain a more detailed picture of file access patterns for
the media files that we expect users to want to access on many
devices we distributed a second IRB-approved experiment
on PHONELAB to collect more detailed file access patterns.
By instrumenting the bionic C library used by Android
applications, we were able to log every file open performed
on all participating devices. We also logged the file size each
time a file was opened. Our changes were distributed as a
platform over-the-air update which PHONELAB participants
downloaded in November, 2013. Participants indicated consent
through a separate app. We collected one month of data from
December, 2013, from 100 users.

We filtered the dataset by extension to only include media
files which still left 1,780,617 opens of 147,756 distinct files
by 100 users during the month. Figure 1 shows CDFs of the
total number and size of the files opened by each PHONELAB
user during one month, showing that smartphone users access
a large amount of media from their mobile devices.

We marked 151,904 media files as created if they were
empty when opened, and only 11,612 files as modified by
comparing their sizes reported by successive open calls. This
limited us to files that were opened multiple times during the
trace, but we were still able to determine modifications for 89%
of the file accesses we observed. Figure 2 shows modifications
rates for photos, video, and audio files, demonstrating that
these files are rarely modified on mobile devices. PocketLocker
incorporates this assumption into its design.

C. Available Storage Distribution

Finally, to investigate the potential to utilize other nearby
personal devices as part of a personal storage cloud, we
distributed an IRB-approved survey to undergraduates at our

Location Min (GB) Mean (GB) Max (GB)
Home 8 308 3000
Work 7 97 600
Mobile 0.5 10 42
Total 15 415 3806

TABLE I: Storage space available at different locations. Results
from a survey of 47 people. Users have an order-of-magnitude less
space available on mobile devices compared with their other personal
devices.

university. For each device they owned, respondents were
asked to indicate how much storage capacity it had available
and, for immobile devices, where they used it most: at work
or school, or at home. Table I shows results collected from 47
volunteers. Results indicate that users have large storage capac-
ity from other devices, such as laptops and desktops, available
to them at multiple locations, while the free storage available
on their smartphones was one order-of-magnitude smaller. By
utilizing storage on other personal devices, PocketLocker can
address the mobile storage bottleneck.

III. DESIGN

A PocketLocker personal storage cloud (PSC) consists of
a set of clients—including smartphones, tablets, laptops, desk-
tops, and dedicated storage appliances—and a cloud service
called the orchestrator. Like most filesystems, PocketLocker
uses a namespace to map paths to a set of n uniquely-identified
chunks containing file data. Because chunks are the output
of erasure coding, the number of distinct chunks required for
reconstruction k is less than n, and k is stored in the namespace
for each path.

PocketLocker by design relies on consumer-grade network
devices for storage. The dispersal of file chunks to multiple
devices guards against inherent reliability limitations of the
individual devices in this storage pool. We expect that the
number of such devices users posses to increase with time,
further increasing reliability.

The orchestrator maintains the authoritative namespace
by using a monotonically-increasing counter to version all
namespace modifications, including opens, renames, updates,
and deletes. It also fixes the location of certain chunks to meet
backup requirements and coordinates transfers between fire-
walled clients during open. While the orchestrator must track
the location of some chunks to meet backup requirements, it
does not maintain the location of all chunks. The orchestrator
only requires a small amount of storage to facilitate transfers
between firewalled PSC clients.

Clients contribute storage to the PSC which PocketLocker
divides into a file cache, used to store reconstructed files, and
a chunk store, used to store chunks. By applying updates from
the orchestrator clients maintain a local cache of the namespace
to perform path lookups. Clients also track what chunks for
each path they have in their local chunk store. PocketLocker
users configure several attributes when attaching clients:

1) Capacity. The storage a client contributes to the PSC
2) Backup. Whether the client should be used to meet PSC

backup requirements. If so, it’s failure may lead to data
loss. PocketLocker uses this attribute when determining
where to backup chunks.

115 432 596

/
(1)

(2) 75

(3)

241 433

(4)(5)

431 646 710

955

732

(a) Open. The figure illustrates a case where the request is satisfied
by locating k = 3 chunks: one in the client’s local chunk store, and
two on PSC devices on the WAN.

Orchestrator

 /flower.jpg
(1.2)

(1.3)

738. /flower.jpg

 /flower.jpg
(2.1)

(2.2)(1.3)

823. /flower.jpg ->
[431, 432]

...

(2.2)

431 432 45

(2.3)
(1.1)

(b) Creation. This illustrates (1) path registration, performed imme-
diately by a battery-powered client; and (2) erasure coding and chunk
registration, performed later by a wall-powered client.

Fig. 3: Illustrates the File Open and File Creation operations in
PocketLocker

3) Availability. Whether files stored on the PSC can be
unavailable when the client is unreachable. PocketLocker
uses this attribute when determining where to store
chunks so that files remain available.

4) Interactivity. Whether files are created or accessed on
this client. PocketLocker uses this attribute when reclaim-
ing storage.

5) Power. Whether the client is battery- or wall-powered.
PocketLocker uses this attribute when acquiring chunks
during open.

PocketLocker provides example sets of configuration op-
tions for common types of devices. A NAS appliance would be
used for backup and availability and would be non-interactive
and wall-powered. A laptop would be used for backup but not
availability, and would be interactive and battery-powered. A
smartphone would not be used for backup or availability, but
would be interactive and battery-powered. A desktop would be
used for backup, would be interactive and wall-powered, and
may possibly be used for availability depending on whether it
was regularly shut off and whether the user wished to access
their PSC when it was.

The PocketLocker system attempts to minimize its usage

Orchestrator

(1)(3)

PC 1
431 432 433

431 432 433

PC 2

Mobile

433

(2)

(4)

Fig. 4: Backup. A file is received and chunked by a powered device.
Under the direction of the Orchestrator, pinned chunks are distributed
to different devices.

of the 3G network, as the financial and energy costs of such
traffic remain significant. Transferring 3-4 1-MB pictures and
one 3-MB video daily can consume 10 percent of a typical
2-GB data plan at an amortized monthly cost of $4. [8], [9]
To minimize this impact, files are cached locally and on the
LAN, and file uploads are delayed if necessary to take place
via WiFi.

A. Creating, Modifying, and Deleting Files

To reduce energy usage on battery-powered clients, Pock-
etLocker separates creation into two steps which can be per-
formed on different clients: (1) path registration, a lightweight
operation; and (2) erasure coding and chunk registration, a
heavyweight operation. Figure 3b illustrates the process. When
a file is created the creator moves the file into its file cache
(1.1) and immediately registers the path with the orchestrator
(1.2), which immediately publishes it to other clients to avoid
path collisions (1.3). During the second part of creation, once
the file is erasure coded (2.1) n new chunks will be created and
registered with the in setting up our experiments and providing
information about the testbed. orchestrator, which assign them
unique IDs and associates the set of IDs with the path (2.2).
The client then moves the chunks into its chunk store (2.3).
Battery-power clients will wait to transfer the file for a period
of time configured as part of the backup process, described
later in Section III-D.

Modifications to existing PocketLocker files create a new
version of a file. They require an additional round of erasure
coding and distribution of new chunks. Because updating files
is a heavyweight operation, PocketLocker is designed for files
that are rarely or never changed, such as the media files in our
traces. Renames simply alter the path associated with existing
chunks, and deletes removes the path from the namespace.

Both updates and deletions invalidate chunks which clients
add to a reclamation list, but chunks are not removed until
storage is needed. Because clients do not coordinate chunk
removal with the orchestrator, PocketLocker provides no guar-
antees about the existence of old version or deleted files. How-
ever, because the reclamation list is processed in FIFO order,
modifications are generally removed first. Providing stronger
semantics would require more client-orchestrator coordination
which we have chosen to avoid.

B. Opening Files

To open a file, the opener first verifies that the path is valid.
If the file is already in the file cache, the open completes
immediately. Otherwise, the client maps the path to the n
chunk IDs and locates k as follows:

1) Local chunk store. If the opener has k chunks of the file
in its chunk store it reconstructs the file and adds it to its
file cache.

2) LAN transfer. If the opener is on a LAN with other
PSC clients it will broadcast a chunk request identifying
the path and chunks it needs to its LAN PSC neighbors
which will each report which requested chunks they store.
PocketLocker clients discover neighbors using a simple
UDP broadcast. Based on the replies the opener will
acquire any needed chunks and add them to its chunk
store. If it has k chunks, then the open continues as in
Step 1. As an optimization, if an opener requests k chunks
for a path and a PSC neighbor has the reconstructed file
in its file cache, it will offer to transfer the file instead of
chunks. This optimization is also applied in Steps 3 and 4.

3) WAN transfer. If the opener has not acquired k chunks
after Step 2, it forwards the remaining request to other
reachable PSC clients and processes replies as in Step 2.

4) Orchestrated transfer. If at the end of Step 3 the opener
still does not have k chunks, it forwards the remaining
request to the orchestrator. At this point the orchestrator
may be able to facilitate transfers with clients not publicly
reachable in Step 3, or the open may fail.

Figure 3a highlights the above process. The client needs
chunks 431-433 to reconstruct a file. The client first checks its
local cache (1) and is unable to locate the file. It is, however,
able to locate chunk 432 in its own chunk store (2). A search
of LAN devices does not turn up any of the desired chunks (3),
but the client finds chunk 433 on a WAN device (4). Finally,
the Orchestrator is able to locate the last chunk, 431, on another
WAN device (5).

PocketLocker reduces energy consumption at battery-
powered clients in two ways. First, it allows them to delegate
opens to a wall-powered client which receives a delegated
chunk request and then proceeds as in Step 2: issuing any
additional chunk requests on the battery-powered client’s be-
half and transferring all chunks to the opener when the open
completes. Second, all clients will prefer to transfer chunks
from wall-powered clients in Steps 2 and 3.

Depending on where required chunks are located, opening
a file can take a variable amount of time. We allow apps to
request a notification if an open may require more than a
configurable amount of time, allowing them to notify the user
or move themselves temporarily into the background until the
required transfers complete.

Finally, PSC clients can request files as soon as they
receive the path creation notification, meaning that this can
occur before the file has been erasure coded and the chunks
registered. In this case the open request only specifies the
path, and clients reply if they have the file in their file cache.
Normally the file creator will be the only PSC client with the

Device Type Encoding Rate
(KB/s)

Decoding Rate
(KB/s)

GalaxyNexus 60 112
Galaxy S3 119 312
Galaxy S4 130 188
NexusTablet 140 305

TABLE II: Erasure coding micro-benchmarks: Encoding and
decoding rates measured from 4 device types

file and required to transfer it to the opener. If the opener is
wall-powered, it then performs the erasure coding and creation
continues as described previously. We expect that in most cases
when files are requested before they have been erasure coded
the user has moved the creator onto the same LAN with the
opener—such as when a user opens a smartphone photo on
their laptop. If so, the time and energy required to transfer the
file to the opener should be minimal.

C. Performance

One key question we need to ask is whether the current mo-
bile devices can handle the computation demands of encryption
and encoding required in PocketLocker. Erasure coding, which
is used by our system, achieves storage efficiency and redun-
dancy at a cost of read performance. [10] Table II compares
the decoding and encoding times on the latest Nexus Tablet to
the older generation devices. It is clear that recent advances on
smartphones and tablets have significantly improved encoding
and decoding rates of erasure coding, making it a practical
technology for use in our PocketLocker design.

PocketLocker attempts to use all available client storage to
enable reliability, availability, and performance by intelligently
locating chunks within the PSC. PocketLocker reduces the
latency of file accesses in two ways. First, because many
file accesses occur soon after the file is created, PSC clients
opportunistically acquire k chunks of newly created files
after receiving creation notifications from the orchestrator.
On wall-powered clients this is done immediately; battery-
powered clients wait until their next charging session. To
evenly distribute chunks between clients to help meet later
backup requirements, these chunk requests identify the path
but not the chunk IDs, allowing the client receiving the request
to provide distinct subsets of k chunks of the n available
to different clients. Initial chunk requests also disable the
optimization described previously to prevent the creator from
transferring the reconstructed file rather than file chunks.

Second, PSC clients track local file access patterns to
intelligently manage their local chunk store when reclaiming
space. When under storage pressure, after emptying their
reclamation list, clients can either (1) remove reconstructed
files from their file cache or (2) remove chunks from their
chunk store. Because erasure decoding is more efficient than
encoding, clients first remove files in their cache.

At this point removing either files or chunks allows the
client to make latency tradeoffs between different files. For
example, keeping one chunk of many files reduces the access
latency of all but provides low-latency access to none1; at the

1Note that wall-powered PocketLocker clients can also repeat the erasure
coding process to reconstruct missing chunks for files in their file store, but
do to the overhead of erasure coding battery-powered clients will not.

other extreme, keeping complete files—either in the file store
or as k chunks—provides low-latency access to a smaller set
of files but higher latency for the rest. Because file chunk
size varies, removing one chunk of a large file can create
more space than several chunks of smaller files, but removing
chunks of more files increases the probability that a chunk will
be required during open. We compare several algorithms for
reclaiming storage in Section V-A evaluating their performance
on our traces.

Interactive and non-interactive clients reclaim storage dif-
ferently. Interactive clients keep statistics on their own chunk
access patterns and utilize them during reclamation, but do not
track chunks transferred to other devices in response to chunk
requests. Because non-interactive clients do not access files
locally, they only keep statistics on chunks accessed to respond
to chunk requests. As a result, interactive clients optimize for
their own behavior, while non-interactive clients optimize for
the clients they interact with.

D. Backup and Availability

The orchestrator ensures backup and availability require-
ments by pinning chunks at clients so that k chunks will
always be available—as long as the clients configured as
available are reachable—and survive client failures. Pinning
prevents clients from removing chunks during reclamation.
PocketLocker allows users to configure their PSC to not lose
any files older than a certain time interval (the backup window)
if up to a certain number of clients fail (the backup threshold).

Figure 4 illustrates common steps in the backup process. A
powered device receives and chunks a file created by a mobile
device (3.1). All chunks are initially pinned by default. Next,
the Orchestrator orders PC 2 to request chunk 433 from PC 1
(3.2), and PC 1 to unpin chunk 433 after the chunk has been
copied to PC 2 (3.3). Next, PC 1 fetches and pins chunk 433
from PC 2, and PC 1 unpins chunk 433 (3.4).

Backup and availability requirements can reduce the usable
size of the PSC depending on the distribution of storage con-
tributed by clients and how they are configured. A single small
client can limit the size of the entire PSC if its storage must be
used for backup. Or, a single large client may find its storage
underutilized if it is not marked as available. PocketLocker
estimates the capacity of the PSC at configuration time as
the lesser of (1) the sum of all the capacity contributed by
clients marked as available and (2) the sum of the storage
contributed by the smallest backup clients required to meet
the backup threshold. The tradeoff between client attributes
and PSC capacity is presented to the users when they configure
clients and choose backup thresholds. Remaining PSC space
is not unused: PocketLocker uses it to improve performance
by caching chunks and reconstructed files, and to allow users
to recover deleted files and old file versions.

When the orchestrator is unable to meet the backup or
availability requirements the PSC is full and new files cannot
be created. The user is warned when the PSC is nearing
capacity and requested to add storage or remove files. To allow
file access, interactive clients reserve a portion of their storage
for the file cache; to allow chunk transfers, all clients reserve
a portion of their chunk store for unpinned chunks.

The backup window allows PocketLocker to reduce energy
usage on battery-powered clients by not forcing them to
immediately transfer created files to other PSC clients or
receive pinned chunks required for backup. When new files are
created on battery-powered client, the client begins attempting
to offload the file to a wall-powered client, which will perform
the second part of the file creation process, including erasure
coding and distributing chunks to other clients. Our current
algorithm waits a configurable portion of the backup window
for the device to be plugged in, and if that time window
expires it transfers the file as soon as it reaches an energy-
efficient network such as a wired or Wifi connection. When the
backup window is about to expire, any available connection—
including mobile data networks—is used as a last resort. Users
are warned that short backup windows will produce high
energy consumption when configuring their backup window.

Users can report client failures to PocketLocker manually
or configure PocketLocker to consider a backup client as failed
if the orchestrator cannot reach it for a period of time. Once
a new client has been attached to the PSC after a failure,
the orchestrator will immediately rerun the pinning algorithm
described in Section III-F which will cause the new client
to request chunks needed to meet the backup requirement. In
certain cases erasure coding may need to be repeated for some
files to recover the full set of n chunks, but this can proceed
using any k chunks that are available.

E. Erasure Coding Parameters

The erasure coding parameters affect the design of the
PocketLocker PSC in two ways. First, if n is smaller than
the number of backup clients then the orchestrator may need
to move a chunk from one client to another to rebalance
storage usage while meeting backup requirements. Since this is
undesirable, we choose n to be equal to the number of devices
initially configured for backup.

Second, k determines both the chunk size—which is equal
to the file size divided by k—and the overhead of erasure
decoding, which increases with k. Using larger values of k and
creating larger numbers of smaller chunks allows more even
storage distribution over clients, and allows clients to make
finer tradeoffs between storage and access latency by caching
between 1 and k chunks of the file in their store. However,
due to PocketLocker’s focus on battery-powered clients, we set
k = 2 to minimize the energy overhead of erasure decoding.
A smaller k value also maximizes the chances of disaster
recovery, as fewer chunks need be available from the n total
in order to reconstruct the original file.

F. Chunk Pinning Algorithm

Periodically the orchestrator collects a list of chunks stored
from all PSC clients and runs a chunk pinning algorithm to
determines where to pin chunks to meet the user’s backup
and availability requirements. Our placement algorithm uses
a greedy approach that meets the backup requirements and
availability requirements in separate passes. If the size of the
PSC is constrained by the backup requirement, the availability
pass proceeds first in order to avoid reducing capacity on
clients needed for backup. If the size of the PSC is constrained
by the availability requirement, the order is reversed.

Users
0

20

40

60

80

100

Pe
rc

en
ta

ge
of

A
cc

es
se

d
B

yt
es

Mobile Data Network
Wifi WAN
Wifi LAN

Fig. 5: Connectivity During File Accesses. Placing PSC clients on
each user’s two most frequently-used Wifi networks could absorb a
large portion of their file access activity.

In each pass, for each file the orchestrator begins with
the client with the most capacity and pins chunks until the
requirement is met. The backup pass stripes chunks across
backup clients to meet the backup requirement, while the
availability pass stacks chunks onto available devices to meet
the availability requirement. The algorithm avoids transfers
when possible by considering what chunks are already pinned
or available in each client’s store.

When clients receive a list of pinned chunks from the
orchestrator, they retrieve any chunks they are missing using
the chunk request process. To ensure that chunks for newly-
created files are not evicted before they can be pinned by the
orchestrator, chunks for new files and file updates are initially
pinned after creation at all clients. The next time the backup
algorithm runs, many of these chunks will be unpinned.

G. Offline Operation

PocketLocker assumes clients are generally connected, but
is designed to support periods where clients are disconnected
from both the orchestrator and storage lockers. Disconnected
clients can access any files in their file store or that they
can reconstruct using chunks in their local chunk store. Any
changes to the namespace, such as creations, are cached. When
the client reconnects, it downloads namespace updates from the
orchestrator and identifies any conflicts. Because it is designed
to store media files, PocketLocker does not attempt to merge
conflicting versions. Instead, it asks users to choose between
updates or to rename the file.

H. File Metadata

Finally, to support media files requiring metadata for
browsing such as photo thumbnails, PocketLocker allows small
metadata files to be associated with files in the PSC. Metadata
files are stored in a separate part of each client’s storage
and retrieved during the initial chunk requests that follow
file creation. Unlike chunks, however, metadata files are not
reclaimed, since we assume their storage overhead is limited.

Users
0

20
40
60
80

100
%

A
cc

es
se

d
B

yt
es

Random

Mobile
WAN
LAN
Hits

Users
0

20
40
60
80

100

%
A

cc
es

se
d

B
yt

es

FIFO

Mobile
WAN
LAN
Hits

Users
0

20
40
60
80

100

%
A

cc
es

se
d

B
yt

es

LRU

Mobile
WAN
LAN
Hits

Users
0

20
40
60
80

100

%
A

cc
es

se
d

B
yt

es

Most Accessed

Mobile
WAN
LAN
Hits

Fig. 6: Comparison of Reclamation Algorithms.

IV. IMPLEMENTATION

We have implemented PocketLocker PSC as an An-
droid background service on both interactive and fixed non-
interactive devices. Galaxy Nexus and Nexus 5 smartphones
constituted the mobile interactive devices, and Android x86
virtual machines [11] running on desktops served as the
fixed non-interactive. The PocketLocker service runs in the
background and exposes APIs to provide clients access to
the files stored in the user’s PSC. It also maintains chunk
placement in the cache as directed by the orchestrator.

We chose to implement PocketLocker as a user application
rather than integrating the service with the file system so that
users do not need root privileges to install PocketLocker on
their devices and PocketLocker can be distributed via the An-
droid Play Store. [12] On both interactive and non-interactive
devices, the PocketLocker service maintains the local file and
chunk cache according to the placement directions calculated
by the orchestrator. On fixed devices, PocketLocker also offers
two network services. The discovery service responds to chunk

B
inder dr iver

Orchestrator

GCM

Discovery

PocketLocker Lib

Cache

Files

Metadata

Chunk

Client 1

Services

HTTP

Erasure
code

Client 2

Client N

Fig. 7: Architecture. The figure illustrates the different components
in the implementation of PocketLocker.

requests that are issued by interactive devices on the same local
network. The HTTP service facilitates the transfer of newly
created files and chunks among the user’s PSC devices as per
the chunk placement scheme.

PocketLocker exposes its APIs both to the orchestrator, to
receive local cache maintenance directions, and to local client
applications, to provide access to user files. PocketLocker
clients interact with the PocketLocker service via the binder
driver framework in Android. The binder facilitates thread safe
inter process communication in Android. The orchestrator was
implemented using the Tornado and Flask web frameworks.
The orchestrator listens to status updates by the user’s PSC
devices and tracks and maintains the cache information at each
of the devices in the user’s PSC using an SQLite database. To
push information to user’s PSC device, the orchestrator uses
the Google Cloud Messaging (GCM) framework to communi-
cate information about new file creation and chunk placement
with the user’s PocketLocker devices.

V. EVALUATION

We evaluate PocketLocker in two ways. First, we analyze
the file access traces we collected on PHONELAB to deter-
mine the impact of parameters important to PocketLocker’s
design. We also use the traces as inputs to a trace-based
simulation to compare approaches to performing client storage
reclamation. Second, we perform detailed measurements of our
PocketLocker prototype engaging in the types of file accesses
described previously. Our results indicate how utilizing nearby
clients can improve performance, and also how PocketLocker
enables energy-efficient operation on battery-powered clients.

A. Trace Analysis

PocketLocker relies on nearby clients to improve perfor-
mance of file accesses. In the best case, other PSC clients are
located on the same LAN. To determine whether nearby clients
can assist with file accesses, we performed further analysis of
the traces described in Section II.

Because PHONELAB only provides visibility into partici-
pant smartphones, we have to infer where users would have
other PSC clients nearby. To do so, we simulated the presence
of PocketLocker PSC clients on the two Wifi networks that
each user spent the most time connected to, which could
represent home and work networks. We then divided file

Users
0

10

20

30

40

50

60
Ti

m
e

to
N

ex
tC

ha
rg

e
(h

ou
rs

)

Fig. 8: Time Until Next Charge After File Creation. Separating
the process of creating files into two steps allows PocketLocker to
reduce energy consumption by performing transfers during the next
charging cycle.

accesses into three categories: (1) ones that occur on the same
LAN with a simulated PSC client, (2) those that do not occur
on a PSC LAN but still occur while the user is connected
to a high-speed and energy-efficient Wifi network, and (3)
those that occur when the user is connected to a mobile data
network2. Figure 5 shows the results. For around half of the
users, even without a local cache half of the file accesses
could be served by two clients placed at their most used Wifi
networks. Only in the remaining half of accesses, where files
are not locatable on another PSC client on the LAN, must a
device go outside the network.

We were also interested in how many file creations could
be offloaded by delaying transfer until the user plugged their
smartphone in to charge. Figure 8 shows per-user distributions
of the of time between file creations and the next charging
session. For all users, the median is under 10 hours with worst-
case maximums approaching a day. Overall, the results suggest
that by delaying the initial file transfer required during creation
for a portion of the user’s backup window, PocketLocker can
enable energy-neutral transfers on battery-powered clients.

Finally, we built a trace-based simulator to experiment with
different policies for managing the mobile client chunk store.
We configured each PSC client smartphone with 1 GB of
storage, considerably less than the amount of file accesses we
observed during our one-month experiment, and managed the
chunk store using four different algorithms: random eviction,
first-in-first-out (FIFO), least-recently-used (LRU), and least-
accessed first (Access). Figure 6 compares the results. When
file accesses missed the chunk store, we classified the access as
described previously based on the smartphone’s connectivity
at that moment. Surprisingly, we did not observe any large
performance differences between these algorithms, although
they were able to manage the local chunk store to absorb
a large number of file accesses. A great deal of inter-user
variation is visible, and we are continuing to study how
to better adapt PocketLocker’s reclamation algorithms to the
specifics of each users file access patterns.

2We found no file accesses that occurred more than five minutes from log
messages indicating the presence of a mobile data network, a reflection of the
always-connected nature of smartphones.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
File Size (Mb)

0

10

20

30

40

50

60

70

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

One chunk
Two chunks

Fig. 9: PocketLocker energy savings. The figure illustrates the
savings in energy when an interactive device downloads one chunk
compared to downloading two chunks to access the file.

B. Prototype Performance Evaluation

We evaluated the prototype of the implementation de-
scribed in Section IV in two ways. First, we measured the
time required to access files of various sizes with devices
connected to different networks types. Secondly, we measured
the energy consumption to access files. In our experiments
we chose k = 2 as the number of chunks required for
reconstruction. We used Samsung Galaxy S4 and Nexus 5
smartphones as interactive devices, and utilized Android VMs
running PocketLocker as fixed nearby devices.

1) File access: : Figure 10 illustrates the time required
to download files of different sizes with clients having to
download k chunks to reconstruct the file when connected to
different networks. The On Device scenario denotes the time
required to reconstruct the original file from the chunks that
are available locally on the device. This is the best scenario as
there are no chunks downloaded from other sources. In LAN
Wifi, we have a fixed device present on the same LAN as
the interactive device. The device downloads both the chunks
required to reconstruct the file from the fixed device and is the
fastest compared to any other connection type. WAN Wifi has
fixed devices that are publicly accessible over the Internet to
the interactive devices. WAN Wifi is analogous to downloading
files from the cloud today. Arranged Wifi presents the scenario
where the fixed devices are not publicly accessible and data
transfers are done via a relay. As seen in Figure 10, the time to
open a file when the chunks are downloaded on the LAN Wifi
are almost 50% faster when compared to WAN Wifi scenario.
This result is encouraging, as we envision most chunk transfers
happening over LAN Wifi.

2) Energy Consumption: : We used the Monsoon power
monitor [13] to measure the energy consumption for the
scenarios described in Section V-B1. Figure 11 illustrates the
average energy consumption over five experiment runs on
the interactive device. As expected, data transfers over the
cellular network consumes the most amount of energy and the
scenarios using the WiFi interface on the interactive device
consume significantly lesser energy compared to the scenario
where cellular network is used. Figure 9 compares the energy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
File Size (Mb)

0

50

100

150

200

250

Fi
le

A
cc

es
sT

im
e

(s
)

On Device
LAN Wifi
WAN Wifi
Arranged Wifi
LTE

Fig. 10: PocketLocker file open times. Figure illustrates the time to open files by the interactive device when connected to different networks.

consumption of file access when downloading two chunks with
the energy required to access the file by downloading one
chunk. The energy consumption when accessing the file by
downloading one chunk is less than the consumption to access
the file by downloading both chunks. This is a positive result
for PocketLocker as it stores only some of the required chunks
instead of all chunks under storage pressure.

Energy consumption by smartphones when pushing re-
cently created file chunks to remote storage does not pose
a similar issue. The System deliberately dictates that devices
wait until plugged in before they commence upload.

C. Scalability:

The orchestrator is the only component in PocketLocker
that is centralized and could optionally use cloud infrastruc-
ture. Each user typically will have on the order of tens of
devices that form her PSC, which can be easily coordinated
by a single instance of the orchestrator. Thus, growth of the
userbase encounters no limit: each user has an individual PSC
supported by an individual instance of an orchestrator.

VI. RELATED WORK

Mobile devices, being relatively new, did not contribute
to the design of prototype distributed file systems. Early
systems such as Coda [14] and Ficus [15] were concerned with
addressing the base problem of file caching and replication.
The limitations of mobile devices, particularly constrained
storage and energy and intermittent connectivity, were not
relevant. Standard network file systems such as NFS [16] did
not provide direct offline access or redundancy.

By contrast, there are robust commercial solutions such
as TimeMachine [17] that furnish redundant storage from any
device. These cloud solutions are also typically limited in space
and use third party storage.

The approach taken by EnsemBlue [4] focuses on replicat-
ing files among mobile devices. Users can specify file groups
that are replicated. Cimbiosys [18] narrows this approach,
implementing filters such as file type to determine replication
policy. Files not matching the filter are not replicated. These
approaches limit access to files that can fit on a given user’s

device. Additionally, since a file will not always be replicated,
there is no specific attempt to provide file backup. Since
offline edits are allowed, conflicts occur and must be resolved.
PRACTI [19] focuses on maximizing tradeoffs of the general
goals of consistency, replication and independence. This nec-
essarily unfocuses the specific needs of mobile storage.

PocketLocker aims to make all files in the PSC available.
Which files are maintained locally are determined by usage
patterns and network conditions. Those that are not are still
available with a possible delay. The size of the PSC can
thus greatly exceed the local storage of a particular device.
The chunk distribution system of PocketLocker minimizes the
impact of device failure and ensures file redundancy.

The Eyo system [20] provides a distributed unified names-
pace. While file metadata is automatically replicated, replica-
tion of file data is left to rules specified by client programs.
Thus, files may not be replicated against failure. If a user
wants to access a nonlocal file, the system can furnish its
current location but does not automatically retrieve it. Editing
a file offline can result in a conflict that must be resolved.
The system addresses storage pressure by pruning file version
history without respect to possible loss of redundancy.

The concept of separating the distribution of file metadata
from data underpins another system, Ori [3]. Accessing remote
file data depends on being able to access that device directly.
Otherwise, the call fails. Ori permits users to move versioned
file histories among devices—permitting offline editing but in-
curring storage overhead and producing conflicts. File backup
focuses on versioning. Whether a file is replicated depends
upon whether the user has mounted a remote system. Imple-
mentation of deliberate redundancy, in the form of multiple
copies on multiple devices, remains a function of user choices.

PocketLocker handles replication of both file metadata
and data directly. The system, having a bird’s eye view of
all storage devices, can ensure that files are always chunked
and replicated to disparate devices to guard against failure.
Distribution of the chunks is tuned to the differing storage
capacities of different devices. Storage reclamation policy
follows file history and usage patterns in order to maximize
backup potential. The centralized design of PocketLocker also
allows it to handle potential remote access issues. If a file or

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

File Size (Mb)

0

50

100

150

200

250

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

On Device
LAN Wifi
WAN Wifi
Arranged Wifi
LTE

Fig. 11: PocketLocker energy consumption.Figure illustrates the energy consumption on interactive device to open files of different sizes
when connected to different networks.

chunks are not directly reachable from a client device due to
firewall issues, the Orchestrator can often mediate an indirect
relay transfer rather than simply failing.

VII. CONCLUSION

PocketLocker addresses an emerging need of mobile sys-
tems by crafting a personal storage cloud from multiple
personal devices. While mobile devices remain storage con-
strained, consumers today typically have copious unused stor-
age in other devices such as desktop computers and external
hard drives. Previous cloud-based solutions have not been
designed to target this space. PocketLocker does, in a manner
sensitive to both the reliability limitations of consumer equip-
ment and the energy limitations and communication costs of
mobile devices. It targets rarely changing files such as photos
and videos, typical products of mobile devices. The system
distributes these files automatically amongst the devices of a
user’s personal cloud. The storage devices need not be homo-
geneous in size or type. An intelligent orchestrator arranges
storage to maximize usage of these differing devices, maximize
redundancy, and minimize network costs. PocketLocker is free
and uses no additional devices. System storage and backup
policies are tuned based upon data gleaned from testing using
using 100 smartphones.

Looking ahead, we envision incorporating energy min-
imization in the system’s chunk placement algorithm—
presently, it considers network connectivity and storage size.
The timing of when new files are uploaded to the PSC
presently hinges on fixed deadlines. We would like to use
a more flexible schedule that considers network and energy
conditions dynamically.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous MobiCASE
reviewers for their constructive feedback. PHONELAB
administrator Maulik Dave was particularly helpful in setting
up our experiments and providing information about the
testbed.

REFERENCES

[1] “Your Stuff, Anywhere,” http://www.dropbox.com/, 2014.
[2] “One account. All of Google.” https://drive.google.com, 2014.
[3] A. J. Mashtizadeh, A. Bittau, Y. F. Huang, and D. Mazières, “Replica-

tion, history, and grafting in the ori file system,” in Proceedings of the
Twenty-Fourth ACM SOSP, 2013.

[4] D. Peek and J. Flinn, “Ensemblue: Integrating distributed storage and
consumer electronics,” in Proceedings of the 7th OSDI. USENIX
Association, 2006, pp. 219–232.

[5] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial & Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[6] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar,
C. Qiao, S. Y. Ko, and G. Challen, “Phonelab: A large programmable
smartphone testbed,” in Proceedings of First International Workshop on
Sensing and Big Data Mining. ACM, 2013, pp. 1–6.

[7] “Galaxy Nexus,” http://en.wikipedia.org/wiki/Galaxy Nexus.
[8] “Cell Phone and Device Plans,” http://www.att.com/, 2014.
[9] “Choose Your Single Line Plan,” http://www.verizonwireless.com/

wcms/consumer/shop/shop-data-plans/single-line-data-plans.html,
2014.

[10] J. D. Cook, R. Primmer, and A. de Kwant, “Compare cost and
performance of replication and erasure coding,” Hitachi Review.

[11] “Run Android on Your PC,” http://www.android-x86.org/, 2014.
[12] “Google Play,” https://play.google.com/, 2014.
[13] “Monsoon Solutions Inc. Power Monitor,” http://www.msoon.com/

LabEquipment/PowerMonitor/, 2014.
[14] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the

coda file system,” ACM Transactions on Computer Systems (TOCS),
vol. 10, no. 1, pp. 3–25, 1992.

[15] R. G. Guy, J. S. Heidemann, W.-K. Mak, T. W. Page Jr, G. J. Popek,
D. Rothmeier et al., “Implementation of the ficus replicated file system.”
in USENIX Summer, 1990, pp. 63–72.

[16] B. Nowicki, “Nfs: Network file system protocol specification,” 1989.
[17] “Time Machine,” www.apple.com/support/timemachine, 2014.
[18] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-

Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat, “Cimbiosys: A
platform for content-based partial replication,” in Proceedings of the
6th USENIX symposium on NSDI, 2009, pp. 261–276.

[19] N. M. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng, “Practi replication.” in NSDI, vol. 6, 2006.

[20] J. Strauss, C. Lesniewski-Laas, J. M. Paluska, B. Ford, R. Morris, and
F. Kaashoek, “Device transparency: a new model for mobile storage,”
ACM SIGOPS Operating Systems Review, vol. 44, no. 1, pp. 5–9, 2010.

http://www.dropbox.com/
https://drive.google.com
http://en.wikipedia.org/wiki/Galaxy_Nexus
http://www.att.com/
http://www.verizonwireless.com/wcms/consumer/shop/shop-data-plans/single-line-data-plans.html
http://www.verizonwireless.com/wcms/consumer/shop/shop-data-plans/single-line-data-plans.html
http://www.android-x86.org/
https://play.google.com/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
www.apple.com/support/timemachine

	Introduction
	Motivation
	Rate of Smartphone Storage Decline
	Media Access Patterns
	Available Storage Distribution

	Design
	Creating, Modifying, and Deleting Files
	Opening Files
	Performance
	Backup and Availability
	Erasure Coding Parameters
	Chunk Pinning Algorithm
	Offline Operation
	File Metadata

	Implementation
	Evaluation
	Trace Analysis
	Prototype Performance Evaluation
	File access:
	Energy Consumption:

	Scalability:

	Related Work
	Conclusion
	References

