
Content Sharing Middleware for Mobile Devices
Petros Belimpasakis, Juha-Pekka Luoma and Mihaly Börzsei

Nokia Research Center
P.O.Box 1000, 33721

Tampere, Finland
{petros.belimpasakis, juha-pekka.luoma, mihaly.borzsei}@nokia.com

ABSTRACT
As mobile smart phones have evolved being converged devices,
they are able to generate and consume different types of high
quality content, such as images, music and video. The need of
people to share, synchronize and archive their content, lead to the
creation of multiple related mobile applications and adoption of
existing protocols for content sharing. In this paper we describe
selected protocols suited for content sharing (UPnP, Atom and
WebDAV), and we present the concept of Mobile Content
Sharing Middleware, which provides a common interface for
applications to access the different underlying transfer protocols
and bearers, in a way that the schematic differences of these
protocols are hidden. A prototype implementation of the
middleware was created for mobile devices based on Symbian
OS.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Data sharing, Web-based services.

Keywords
Content, sharing, middleware, Symbian, mobile devices

1. INTRODUCTION
Advanced mobile devices, capable of combining many features
and technologies, are nowadays becoming commonplace. The
best examples of such converged devices are smart phones which
include the functionality of multiple traditional devices, such as
mobile phones, digital cameras, digital music players, personal
navigation systems, etc. Especially, the disruption that smart
phones with image capturing function caused is huge. Camera
phones have already outstripped digital still camera sales by a
ratio of more than 4:1 and it is expected to reach 7:1 by 2010 [15].
Thus, mobile phones are likely to be become the primary
consumer device for creating digital content. Users are now
capable of creating their own content, easily and fast, opening
new opportunities for services and applications around the user-
generated content.

Apart from storing their content, for later retrieval and viewing,
the users also like to share it with other people, as an extension of

the human need for communication and experience sharing.
Sharing is a very wide term and it can be executed though many
paradigms. From the simple scenario of sending an image, over
Multimedia Messaging Service (MMS) from a mobile phone to
another one, to more advanced use cases of sharing content from a
smart phone to a large living room TV set, or uploading the
content to web services and inviting others to fetch it.

Smart phones that use “open platforms” allow 3rd party
developers to create their own applications and, via some pre-
defined Application Programming Interfaces (APIs), allow these
applications to access functions that the smart phone platform
provides. For example, the smart phones that are based on the S60
[13] platform, which runs on top of Symbian [16] Operating
System (OS) provide interfaces for 3rd party applications to easily
send content over MMS, using the specified API. Such an
application has to be aware of this API and should be developed
with the specific sharing method in mind. If a new sharing method
is added to the S60 platform, the end user applications would not
be able to directly use it. The application developers would be
required to study the newly added API, re-engineer their
application, re-compile and finally re-deploy it to their customers
that have already installed an older version. This is impractical
and imposes limitations to the lifecycles of applications.

In this paper we present a specialized middleware, which we call
Sharing Middleware that allows 3rd party developers to create
applications with sharing capabilities, while being agnostic of the
lower level sharing technologies, protocols and data transfer
interfaces. The target is to allow developers to create applications
with powerful sharing capabilities, but with limited programming
complexity, while making their applications future-proof to new
features and sharing technologies, by making an API which is
stable, reliable and future-proof.

Some first steps towards this direction, on the Symbian platform,
have already been done in [17], but the focus was on providing a
remote storage framework that would mount remote storage
servers on the local file system of a device. Our work is focusing
more on the higher levels of the content sharing aspects, taking
more into consideration metadata, thumbnails/preview icons,
access rights, as well as aspects of proximity based sharing. We
are designing a middleware to be used by metadata rich “media
album like” instead of just “file manager like” applications.

In this paper, after briefly analyzing the most common sharing
protocols (Section 2), we introduce our Sharing Middleware
(Section 3), its design requirements and architecture. In Section 4
we present a prototype middleware client, and in Section 5 some
basic performance results of our Symbian OS based
implementation. In Section 6 we present some related work done
in the area of mobile content sharing, and finally in Section 7 we
outline directions for future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobilware ‘08, February 12–15, 2008, Innsbruck, Austria.
Copyright © 2008 ACM 978-1-59593-984-5/08/02... $5.00

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2757

2. SHARING TECHNOLOGIES
Before starting the specification of our middleware, we studied
the most popular content sharing methods, as well as their
respective protocols and assumed them to be the principal
technologies to be initially supported by our middleware design.

 In the Internet domain, content sharing is nowadays heavily
based on the “offering” paradigm. We consider offering as the
paradigm of making content (i.e. media items) available face-to-
face or remotely, for others. Content items are not transferred
unless downloaded by the other party, and only a copy can be
taken. Examples include offering of pictures on a website, or
offering music files via peer-to-peer networks. In the first case,
hosting space can be on a 3rd party server, like the very popular
Flickr [9] service, for images. In the second case, content is
directly offered from one of the owner’s devices to other devices.
That could be done among devices in physical proximity, or
devices communicating remotely. We assume that communicating
devices are using the Internet Protocol (IP), and thus studied
transfer technologies which work on top of it. Our study identified
three protocols as the most widely used ones.

2.1 UPnP Audio/Video (AV)
The UPnP Forum has specified protocols which enable electronics
devices, to discover and use each other’s services. The UPnP AV
architecture [18] has as a goal the selection and controlled
discovery of media content at home. It introduces three elements:

• Media Server, a device hosting and offering content for
browse/download, while also accepting content uploads

• Media Renderer, a device that can render (i.e. “play”)
content offered by a Media Server

• Control Point, an entity that coordinates the communication
between the Media Server and Media Renderer.

In UPnP AV, metadata is defined in the Content Directory
specification [19], and includes fields from the Dublin Core (DC)
[3] metadata and Digital Item Declaration Language (DIDL) Lite
[5]. Apart from adding metadata information to the content items,
it also enables browsing and automatic searching of items hosted
in a Media Server. Hypertext Transfer Protocol (HTTP) is the
mandatory media transfer protocol, but other protocols can be
optionally supported. UPnP AV protocols are nowadays
supported by many network enabled consumer electronics
devices, like computers, smart phones, stereo systems and high
end television sets [3].

2.2 IETF Atom
The Internet Engineering Task Force (IETF) Atom Publishing
Format and Protocol (atompub) working group specifies protocols
for editing, syndicating and archiving sources of episodic media
content. Used mainly for news and blog sites, it follows the web
feed paradigm that allows a client to follow changes and updates
on a web site that it is interested in. The main specifications are:

• The Atom Syndication Format [11], which describes “feeds”
consisting of “entries”, each with extensible metadata. The
description XML-based and incorporates fields similar to the
DC. Atom feeds are retrieved using HTTP GET with the
feed URL, and managed using the Atom Publishing Protocol.

• The Atom Publishing Protocol [8] is the editing protocol for
Atom feeds. It is based on HTTP for managing
communication between a server and a client, and supports

the normal HTTP POST, GET, PUT, DELETE for the
respective CRUD (Create, Read, Update, Delete) operations
on Atom entries. It benefits from features and optimizations
generally available with HTTP, such as authentication,
encryption and improved scalability through caching.

Atom protocols are nowadays used by most web sites that offer
frequently updated content, such as blogs, social network based
services, online photo albums and news sites. On the client side, it
is supported by many browsers, feed readers and online album
sharing applications. The name Atom without qualification is
used interchangeably for Atom Syndication Format as well as for
Atom Publishing Protocol.
Really Simple Syndication (RSS) is an XML format similar to
Atom Syndication Format and used for the same purpose, mainly
differing in Atom protocols being more strictly defined and richer
in functionality and detail than the older RSS [6]. In content
sharing, the biggest advantage of Atom protocols compared to
RSS is the support for both upload and download of content and
its descriptions, while RSS supports download only.

2.3 IETF WebDAV
The IETF Web-based Distributed Authoring and Versioning
(WebDAV) [7] protocol defines HTTP extensions to enable
distributed web authoring tools to be broadly interoperable, while
supporting user needs. The HTTP with the WebDAV extensions
basically gives read-write access to the clients and it can be used
as a remote file system for the Internet.
Some of the key features of the WebDAV include overwrite
prevents (using exclusive and shared locks), metadata (properties)
and copy/move remote files, as well as versioning [1] and access
control lists [2]. WebDAV is supported by major operating
systems by default, as well as web servers like the Apache HTTP.

2.4 Comparison
Comparing the three given protocols, we see many similarities
and a few key differences, which are summarized on Table 1.

Table 1. Brief protocol comparison

 UPnP AV Atom WebDAV

Underlying
protocol

HTTP HTTP HTTP

User
authentication

Not
supported

Any HTTP auth
[12]

Any HTTP
auth [12]

Server/peer
addressing

Dynamic
(requires
discovery)

Static (IP
address / DNS
name)

Static (IP
address /
DNS name)

Media files
specified in

Content
Item

Entry Document

Collections of
media files

Container Feed Collection

Nested
collections

Yes Limited Yes

Metadata DC &
DIDL

XML similar to
DC, extensible

XML based,
extensible

Our target was to use the common features of all the protocols, as
much as possible, and for the not so compatible features find the

least common denominator. Those were taken into consideration
in the architectural design of our Sharing Middleware.

3. SHARING MIDDLEWARE
3.1 Concept
Users have their content distributed in many different
repositories/services, which are accessible via different protocols,
such as the ones mentioned previously. Uploading content to
those services would require that the client supports the needed
transfer protocols and has all the essential configurations, such as
server IP address, credentials, etc. In a simple example, we can
assume a user that generates content with a mobile smart phone
and would like to upload it to different devices/services, so that it
can be further shared with others. Depending on the sharing
situation and target device, there are many different protocols that
should be supported. For example:

• Home environment: In the home environment consumer
electronics devices usually support the UPnP AV protocols.
Thus, sharing in the home would mean that the mobile client
needs to upload content using UPnP AV, to a network
attached storage device, or other consumer electronics
device, and allow other users to access it from there.

• Internet domain: In the Internet domain, many online photo
albums and blogs allow content upload using Atom. Thus,
sharing content, via online services, with a group of friends
would require support of Atom on the client.

• Enterprise domain: Distributed storage is widely supported
over the WebDAV protocol. So, this is one more protocol
that would be required in a mobile device, in order to make
content sharing possible in this environment.

On top of that, we have to also consider the access
bearer/interface to be utilized by each protocol, on the specific
sharing use case. For example, UPnP can be used in the home,
over the WLAN infrastructure, but can also be used in WLAN ad-
hoc mode, between two devices in physical proximity. Internet
based services can be accessed via WLAN Internet hot-spots,
wherever there is coverage, as well as via cellular network, e.g.
using General Packet Radio Service (GPRS).
Similarly, another client that would need to download content
from these repositories also needs to implement these protocols,
in order to be able to browse and fetch the media items. Figure 1
shows just a few examples of possible protocols / services used
while sharing content between two end-point devices.

Creator

CE Device On-line Photo
Album

Enterprise
Remote Storage

Visitor /
Content consumer

Upload

Download

UPnP

Atom
WebDAV

UPnP Atom WebDAV

P
ro

xi
m

ity
(e

.g
. A

d-
ho

c
W

LA
N

)

U
P

nP

Figure 1. Example of content sharing protocols

A mobile application that would need to implement all these
protocols would essentially become very complex. Adding the
transfer protocol support in the mobile platform, as shared
libraries, would allow multiple applications to use the available
modules, but still it would require that applications are
specifically aware of them, and have been designed with the
knowledge of their respective APIs.
In our Sharing Middleware, we are introducing a new layer,
between applications and content sharing protocol libraries, which
provides a generic API to applications, for using any kind of
underlying content transfer protocol, as shown in Figure 2.

Figure 2. Sharing Middleware Simplified Design

The applications get from the Sharing Middleware a list of
available content repositories, which we call Sharing Accounts,
and simply decide to which one they want their items to be
uploaded to. A sharing account, which is configured by the user,
contains the required information for accessing a content
repository, such as the location of the server, the authentication
details, protocol to be used, etc. A simple upload request, by the
application to the sharing middleware, along with the binary
items, their respective metadata and target sharing account would
be all that an application needs to do for uploading content,
without being aware of the specifics of lower level transfer and
transport protocols. Vice versa, another mobile device could
request from its sharing middleware to browse and download
content from a content repository, using any of the supported
technologies.

3.2 Functional Requirements
A few key requirements were set for the design of our Sharing
Middleware. The most important ones are briefly stated here.
The clients (high-level sharing applications) should be able to:

• Use the middleware API to send and retrieve media
files and their associated metadata descriptions to/from
a content repository.

• Use the middleware API to access the contents of a
repository stored on a remote location accessible via the
Internet, Local Area Network, or proximity network the
device is connected to.

• Browse the contents of several Sharing Accounts
combined as one, for aggregating different content
repositories in a common view.

• Send the sharing middleware configuration parameters
of a Sharing Account to another client (invitation),
enabling the second client to access it.

The Sharing Middleware should be able to:

• Access Sharing Accounts which are implemented using
server-based or serverless file transfer techniques.

• Handle temporary network discontinuation, and thus
offline state handling between the device and a remote
server. Reason is that under some cases, e.g. poor
network coverage, mobile devices might not have
continuous connection to the content repository.

• Extend its functionality by dynamically adding new
sharing plug-ins and services as DLLs that are loaded
automatically, when initializing the middleware.

• Provide interfaces, to the client applications, as C++
pure abstract classes which are easy to use.

3.3 Architecture
An overview of the Sharing Middleware architecture is shown in
Figure 2, depicting the sharing services API that provides uniform
access for a number of applications to a set of sharing
mechanisms. Also shown is the plug-in API that is used to
provide the sharing middleware with uniform access to a number
of sharing protocols, each wrapped in dynamically registered
plug-in. The plug-ins in turn utilize the data transport services
provided by different access bearers.

3.3.1 Design Principles
The Sharing Middleware architecture was designed to be an
extensible and flexible framework for both developing
applications based on Sharing Middleware and for extending the
middleware itself. The architecture should facilitate adding
functionality and support for new protocols in the middleware
aiming at compatibility with clients designed for earlier versions
of the middleware. The class hierarchy for Sharing Middleware
resulted from our comparison and analysis of different protocols
suited for content sharing, followed by identifying the primary
classes that needed to be represented in our framework, such as:

• item of shared content
• collection of shared content
• metadata of shared content
• address of shared content
• access rights (for shared content)
• sharing protocol (for content transfer)
• sharing service (client-side)
• sharing service provider (remote)
• sharing account (on a service provider)
• access credentials (for a sharing account)

While grouping the attributes and operations of each of the
classes into a common base and its derived classes, the focus was
on finding a small useful common subset for the base class. As an
example, fields from the Dublin Core Metadata Element Set were
the most common subset of metadata in our comparison and were
thus included as the attributes of the metadata base class.

The middleware architecture includes a plug-in interface that
enables DLLs implementing particular sharing protocols to be
added to an installation of middleware without a need for
recompilation. Two kinds of plug-ins are supported – sharing
plug-ins and sharing services. These two differ in that a sharing
plug-in is specific to a single sharing protocol, while a sharing
service adds functionality on top of sharing plug-ins. For
example, a sharing service could provide a local cache for content
uploading, or in a more advanced case encapsulate automatic
selection between sharing protocols and access bearers.

3.3.2 Top-down View
Figure 3 shows the two kinds of primary resources managed by
the Sharing Middleware, sharing plug-ins and sharing services,
deployed as plug-in DLLs. Symbian OS has a plug-in
mechanism/framework which we use to make a sharing service
and plug-in available to applications. For each such DLL
detected, a sharing plug-in object (implementing the interface
MSharingPlugin) and a sharing service object (implementing the
interface MSharingService) are registered to the RSharingRoot
object and available to applications via the respective methods
getServices() and getPlugins().

Figure 3. Relations of sharing root, services and plug-ins

3.3.3 Sharing Plug-ins
A sharing plug-in object is used as a wrapper to an
implementation of a particular sharing protocol, such as Atom or
UPnP. The methods of a sharing plug-in object provide a set of
generic CRUD operations on a remote media store accessible by
multiple clients. For each sharing plug-in object, a corresponding
sharing service object is accessible via the SharingRoot object.

The clients of a sharing plug-in are the objects that constitute the
sharing middleware data model (see 3.3.5) representing shared
media files and collections. These objects, used by applications

via the sharing API services interface, utilize the services of a
sharing plug-in to synchronize their internal state with that of a
remote media store accessible via the sharing plug-in.

Figure 4 shows the interfaces derived from MSharingPlugin and
inherited by concrete plug-in objects providing wrappers for
concrete sharing protocol implementations (for Atom and UPnP
protocols only in the diagram).

All sharing plug-in objects implement the interface class
MSharingPlugin, which provides a common subset of the
functionality provided by all sharing plug-ins. Finally, an
interface class is defined for implementations of each protocol
used for media sharing. This allows advanced applications
needing the features particular to a certain sharing protocol and
not available through the common API operations to use features
specific to that protocol.

Figure 4. MSharingPlugin and derived classes

Meanwhile, providing different layers of specialization for
different protocol plug-ins, of the sharing middleware, allows
applications utilizing them to ignore the specifics of each sharing
protocol as much as possible, yet able to distinguish between
characteristics or instances of sharing protocols. By always using
the most generic sharing middleware interface appropriate,
applications can be made as future-proof as possible with
additional plug-ins and new versions of the middleware, as
support for new sharing technologies is added.

For plug-ins that implement the MDiscoverableSharingPlugin
interface, the set of resources available for sharing may be
different from time to time and takes some time to update. The
device discovery is performed transparently and that takes place
in the background.

3.3.4 Sharing Services
A sharing service object is used to manage collections of media
entries accessible via a particular sharing plug-in. The client of
each sharing service object is a sharing application using it to
access a set of shared media collections.

All sharing service objects implement the interface
MSharingService, and may additionally implement other
interfaces derived from it. The set of available media collections
and media entries available via a sharing service that implements
the interface MDiscoverableSharingService is likely to change
from time to time, for example as a result of the client device
entering a LAN with a UPnP CDS compatible media server.

3.3.5 Data Model
The data model objects are used to represent sharing items and
supplementary information in the memory of the device. Any
changes made to a sharing item via a data model object are local
only, until the method Update() is used to commit the changes by
transferring the state of the local copy to a remote server/peer.
The method Read() can be used similarly to transfer the state of
the remote representation of a sharing item to the local copy of
the sharing item.

Figure 5 shows relations between the classes that constitute the
data model used for accessing media content via the sharing
middleware. Each set of shared media files having access
credentials and a set of metadata fields in common is represented
as a collection object implementing the interface MCollection. A
collection object may contain any number of sharing items, each
implementing the interface MSharingItem.

+Open()
+Close()
+GetServiceL()
+GetPluginL()
+RegisterServiceL()
+UnregisterServiceL()
+GetAccounts();

«singleton»
RSharingRoot

1*

+IdentifierURI()
+SetIdentifierURI()
+SetServiceName()
+ServiceName()
+GetCollections()
+CreateCollection()
+DeleteCollection()
+GetAccounts();

«interface»
MSharingService

1
*

1
*

+setAccoundId(in accountId : int)
+getAccountId() : int

«interface»
MCollection

+MSharingItem(in uri : TDesC)
+Uri() : TDesC
+setMetadata(in metadata : const MSharingMetadata&)
+Metadata(out metadata : MSharingMetadata&)
+Update()
+Read()
+isSynchronized() : bool

«interface»MSharingItem

1

*

+setTitle()
+Title()
+setCreator()
+Creator()
+setDescription()
+Description()
+setUpdated()
+tUpdated()
+setId()
+Id()
+displayValues()
+promptForValues()
+externalize()
+internalize()

«interface»
MSharingMetadata

1 1

+MSharingAccount(in accountId : int)
+~MSharingAccount()
+AccountId()
+setAccountName()
+AccountName()
+setFirstName()
+FirstName()
+setLastName()
+LastName()
+setNickName()
+NickName()
+setEmail()
+Email()
+setUserId()
+UserId()
+setAccessRights()
+AccessRights()
+setAccessCredentials()
+AccessCredentials()
+setPreferredIAP()
+PreferredIAP()

«interface»
MSharingAccount

*

1accountId

Figure 5. Relations between sharing root, services and items

The data model was designed to handle cache related items in
controlled way. There are two interface classes available for
clients to interact with the middleware, the MSharingPlugin and
MSharingService. The plug-in interface does not keep the track of
the downloaded data. It is the MSharingService that maintains a
cache, however due to data traffic cost, on mobile networks, data
models are only updated upon client request. The cache contains
the Uniform Resource Identifier (URI) to the content item and its
metadata only after a Synchronization of a collection. The media
items are cached once they have been requested for download.

Collections
A collection object can be a container for media entries, other
collections or both media entries and collections. This depends on
whether a particular collection object implements one or both of
the interfaces MEntryCollection and MNestingCollection.

• The UPnPCollection object corresponds to a container
object in a UPnP Content Directory Service [19]. Because
containers in UPnP CDS may include media items and other
containers, interfaces MNestingCollection and MEntryCollection
are both inherited by UPnPCollection.

• The AtomCollection object corresponds to an Atom
feed. An Atom feed is defined in [11] to contain only media
entries as its subelements. Thus, AtomCollection is a collection
object implementing only the MEntryCollection interface.

• The AtomWorkspace object corresponds to an Atom
workspace defined in [8]. Since a workspace in Atom is defined
to contain only Atom feeds, the AtomWorkspace is a collection
object implementing only the interface MNestingCollection.

A UPnP sharing service object acts as a container of the UPnP
collections registered to sharing middleware and available to
applications. Each UPnP collection in turn contains media entries
and/or nested UPnP collections. Similarly, Atom sharing service
object is a container for Atom collections, each containing entries.

Entries
Entries are the objects implementing the interface MEntry. Each
of these objects represents a media entry, consisting of media
content (image/video file) and the metadata of the content.

Metadata
The metadata fields used in the Sharing Middleware API are a
subset of the Dublin Core Metadata Element Set. The format of
the textual metadata fields used with this API is as defined for
fields of the same name in the Atom Syndication Format [11].

Sharing_Accounts
The details of an account on a sharing service are stored in an
object where the account is associated with a set of access rights
and optionally with a set of access credentials. Access rights
describe the permissions that the user has on a sharing service.
Access credentials provide the information needed by a sharing
server/peer to authenticate the user.

3.3.6 Asynchronous Operations
Many of the operations in the sharing middleware API involve
transport or reception of data between the client and a remote
server/peer with relatively long delays, possibility of failure and
in some cases incremental completion. There are classes defined
to support this pattern of deferred return values. Active Objects
are used internally by the Symbian C++ implementation of the
sharing middleware to implement the deferred operation. The
results of a deferred object are reported via different callbacks,
and additionally incremental progress may be reported.

3.4 Interface Example
An example code of how applications could use the middleware,
for downloading and uploading content is given here:
// Open a session to the SharingRoot
RSharingRoot* iSharingRoot=RSharingRoot::OpenL();

// Retrieve the list of sharing accounts
RAccountArray Accounts=iSharingRoot->GetAccounts();
// Select a service based on the account
MSharingService* SharingService=iSharingRoot-
>GetPluginL(*Accounts[iUserSelectedAccount])
// Create an empty collection
SharingService->CollectionFactory(iCollection);
// Assign the Account with the collection
Collection->SetAccount(*Accounts[iUserSelectedAccount]); //
Assign the SharingService and SharingRoot with collection
Collection->SetSynchroniser(SharingService,SharingRoot);
// Optional - For upload an entry with atom - start
SharingService->EntryFactory(DLEntry); // Create empty entry
SharingService->FileContentFactoryL(FileContent); // Create a
File content descriptor
FileContent->SetFileNameL(KFilename()); // File descriptor
FileContent->SetFilePathL(KFolder()); // Setup the file descriptor
DLEntry->SetContent(*FileContent); //Add FileContent to Entry
(static_cast<MEntryCollection*>(Collection))-
>AddEntry(*DLEntry); // Add the Entry to the Collection
// Optional - For upload an entry with atom - end
// Set the (MDeferredObserver) as observer for the sharing events
Collection->Synchronize(this);
The optional part is used for uploading content to a remote server,
when synchronization is done. If it is omitted the middleware will
only download the list of entries from the remote server.

4. CONCEPT CLIENT OF THE
MIDDLEWARE
Our sharing middleware has been designed to be used by
applications that would require access to different kinds of
sharing and transport technologies. It provides limited user
interfaces and assumes that media view is handled by the client
applications, which uses the functions of the middleware. Here we
present some concepts of how such an application could look like,
for accessing content that is distributed on different devices.
First of all, the middleware would need to have information about
the albums that the user has access to. This configuration could be
done manually, via a user interface (UI), or automatically by
receiving a configuration message containing the required
settings, e.g. over SMS. In the first case, the user would need to
enter to the application, once, the settings and parameters of the
accounts that he/she has access to. As shown in Figure 6, each
account is linked to a plug-in type and depending on this the rest
of the settings are dynamic.

Figure 6. Concept UI for account configuration

For example, in the case of UPnP (or any other plug-in
implementing the MDiscoverableSharingPlugin, as mentioned in
3.3.3) the discovery name of the target device is required,
potential path to the shared collection/container and the interface

(called “Access Point” in S60), through which the connection
should be established.
In the case of an Atom or a WebDAV account, the URL to the
server path, as well as the credentials (username / password) are
required, along with the Access Point. Figure 6 presents examples
of accounts located a) on a home UPnP Media Server, accessed
via home WLAN network, b) on another mobile UPnP device,
accessed via WLAN ad-hoc connection, c) on an Atom-based
Internet photo album, accessed via cellular GPRS, and d) on a
WebDAV remote storage, also accessed via cellular GPRS.
When the application needs to share, by uploading, content to a
repository, it can just query the user to select the destination, by
giving a list of the preconfigured accounts, as shown in Figure 7.

Figure 7. Concept UI for uploading & downloading content

In a similar manner, browsing and downloading content can start
by allowing the user to select the albums to be accessed. It is
possible to request fetching content from multiple albums, no
matter where it is really located, that would appear in a common
aggregated view. In the first phase, the application would request
from the middleware only the metadata and thumbnails of the
items, thus keeping data transfers to the minimum, for low latency
and potential data transfer cost. Only if the user requests to further
download an item, the full binary would need to be retrieved.

5. PERFORMACE OF IMPLEMENTATION
We implemented the Sharing Middleware for Symbian OS, on top
of the S60 v.3.0 platform [13], and tested it on the Nokia N80
device. This specific device is equipped both with a UPnP library
and an Atom library. We had full access to the device’s UPnP
stack and interface which, however, are currently not accessible
via the public Software Development Kit (SDK). Our
implementation work was focused on:

• The core of the Sharing Middleware.
• The creation of wrappers around the existing UPnP/Atom

libraries to work as Sharing Middleware plug-ins.
• The development of a user interface to be used as a

prototype application accessing the Middleware APIs.
On the server side, we used existing servers, such as:

• The UPnP PC server software provided with the N80 device.
We run it on top of a Windows XP based laptop.

• The Flickr [9] online sharing service, which supports the
Atom protocols.

For testing the performance of our implementation we did
measurements by uploading media files, from the Nokia N80
device, to both repositories (the UPnP server and the Atom
enabled Flickr service). In our setup, the laptop and the N80 smart
phone were connected on a WLAN access point, supporting the
IEEE 802.11g standard, which was then connected to the Internet,
via a Symmetric DSL connection of 4Mbps speed.

We transferred, both to Flickr and to the home UPnP AV server,
JPEG images of different sizes, in bundles of 1, 5 and 10 items.
For each bundle, the total size of the contents was measured with
volume of 500kB, 1000kB, 1500kB, 2000kB, 2500kB and
3000kB. This means that we had 3 x 6 = 18 cases. We measured
the total time duration of the transfers in each case. Every case
was executed three times and the mean value of these executions
was used. The final results are shown in Figure 8.

0

20

40

60

80

100

120

500 1000 1500 2000 2500 3000

Total content size (kB)

Ti
m

e
(s

ec
)

Atom (1 item) Atom (5 items) Atom (10 items) UPnP (1 item) UPnP (5 items) UPnP (10 items)

Figure 8. Total upload times, using Atom & UPnP
These initial results show that the total size of the content items
does not really affect the transfer times. The reason is that we
have been transferring very low data volumes, while the
bandwidth available to the device is very high. What seems to
heavily affect the total transfer time is the amount of items
transferred, both in the cases of Atom and UPnP. In the worst case
shown, uploading to Flickr one single file of 3000kB takes only
25 seconds, while uploading 10 files of the same total size takes 5
times more. This is something typical in on-line photo sharing
web-sites, as they are generating multiple thumbnails of the
uploaded images on-the-fly. We measured similar differences, i.e.
up to 5 times longer upload times, when executing similar tests on
a personal computer, with a Windows software client for Flickr.
UPnP transfers are clearly faster, since they are not affected by
external factors (like thumbnail generation on the Internet
services), and they do not require user authentication in the
protected home domain.

6. RELATED WORK
Standalone mobile content sharing applications, for different
environment and use case, have been studied and created by many
researchers. The work of Sarvas et al. [14] created a system for
online picture sharing, based on a client-server architecture,
where the client (Symbian application) was designed to work with
the dedicated server, over the HTTP protocol. Focus was on
content sharing among social groups and friends, assuming that
all content is gathered on a central, Internet-hosted, entity.

Tolvanen et al. [17] studied the support for remote storage clients
on mobile devices. The focus of the work was on how remote
servers could be mounted on the local file system, of a mobile
Symbian device, for providing transparent file access to higher
level applications. Efficient metadata handling was assumed to be
done by some higher level applications and was not a key area of
the work. Their implementation delivered a remote storage
framework using the WebDAV protocol, as well as an enhanced

file browser. Based on this work, a WebDAV plug-in could be
easily created for our Sharing Middleware.

Peer-to-peer content sharing has also entered the mobile
environment, with multiple implementations trying to provide
either clients for existing peer-to-peer networks, or utilizing other
protocols. As an example, in [10] the authors demonstrate the
usage of the Session Initiation Protocol (SIP) for creating a
mobile peer-to-peer system, running on Symbian-based clients.
With the appropriate wrappers, their implementation could also be
used as a sharing plug-in, under our generic middleware.

7. FUTURE WORK
At this phase our Sharing Middleware provides interfaces for
applications to access media repositories, as long as the
appropriate plug-in exists and the configurations have been
entered in the middleware. The selection of the sharing account,
to be used is now done manually, most probably by the user. Our
next step would be to enhance the middleware with the
appropriate knowledge to make selections automatically. Feeding
the middleware with the rich context information that a mobile
device can have (from sensors, positioning systems, proximity
interfaces, etc.) would allow it to suggest the most appropriate
sharing account to the application.

Moreover, we would like to make the sharing experience much
more user centric. Providing to the middleware the information
that a mobile phone has in its contacts book, we would try to hide
the content repositories, from the users, and show people instead.
For example, user A could just select, from the contacts list, the
name of the person (user B) that a video file should be shared
with. The middleware should then try to identify what is the best
way the content can be delivered to user B, taking in
consideration the available devices, their capabilities, the size of
the object to be transferred and available networks.

Meanwhile, we would like to get feedback on how useful this
middleware is for other developers and allow them to build
content sharing applications. So, we are currently studying the
portability of the middleware to the latest S60 v.3.2 platform and
potential public release as open-source.

8. CONCLUSIONS
In this paper we presented the design of a generic content Sharing
Middleware, for mobile devices, that allows applications to
transfer and access content through a generic interface. The
interface was specified after studying the most common, IP based,
sharing protocols, and identifying their common aspects, as well
as normalizing the differences. A proof-of-concept prototype was
built on the Symbian OS, on top of the S60 platform, along with
two sample plug-ins, for UPnP and Atom protocols, that were
tested against existing commercial devices and services.

The Sharing Middleware will eventually make the development
of applications that utilize content sharing capabilities much
easier and faster for the developers, who will not have to deal
with the lower layer protocols. Moreover, support for other
transfer protocols can be added, by creating plug-ins to be loaded
dynamically, allowing further extension of the middleware. That
means that content sharing, from mobile devices, could become
simpler and more intuitive.

9. ACKNOWLEDGEMENTS
The authors would like to thank Seamus Moloney, from Nokia
Research Center, and Prof. Jarmo Harju, from Tampere
University of Technology for critically reviewing this manuscript.

10. REFERENCES
[1] Clemm, G., Amsden, J., Ellison, T., Kaler, C., Whitehead, J.

Versioning Extensions to WebDAV , IETF, March 2002.
[2] Clemm, G., Reschke, J., Sedlar, E., Whitehead, J. WebDAV

Access Control Protocol, RFC 3744, IETF, May 2004.
[3] DLNA compliant devices -

http://product.dlna.org/eng/browse_cat.aspx (2007)
[4] Dublin Core Metadata Initiative, DCMI Metadata Terms,

August 2006.
[5] Iverson, V., Song, Y.-W., Van de Walle, R., Rowe, M.,

Doim Chang, Santos, E. and Schwartz, T. MPEG-21 Digital
Item Declaration, International Organization for
Standardization, 2000.

[6] Comparison of Atom and RSS - http://intertwingly.net/moin-
1.2.1/wiki/cgi-bin/moin.cgi/Rss20AndAtom10Compared

[7] Goland, Y., Whitehead, E., Faizi, A., Carter, S., Jensen, O.
HTTP Extensions for Distributed Authoring -- WEBDAV,
RFC 2518, IETF, February 1999.

[8] Gregorio, J., de hOra, B. The Atom Publishing Protocol,
IETF Draft, IETF, December 2006.

[9] Flickr – http://www.flickr.com
[10] Matuszewski, M., Beijar, N., Lehtinen, J., Hyyrylainen, T.

Mobile peer-to-peer content sharing application. Proceedings
of the 3rd Consumer Communications and Networking
Conference (CCNC 2006), 2006.

[11] Nottingham, M., Sayre, R. The Atom Syndication Format,
RFC 4287, IETF, December 2005.

[12] J. Franks et al., HTTP Authentication: Basic and Digest
Access Authentication, RFC 2617, IETF, June 1999

[13] S60 Platform – http://www.s60.com
[14] Sarvas, R., Viikari, M., Pesonen, J. and Nevanlinna, H.

MobShare: Controlled and Immediate Sharing of Mobile
Images. Proceedings of the 12th annual ACM international
conference on Multimedia. October 10-16, 2004, NY, USA.

[15] Strategy Analytics: Camera Phone Sales Surge to 257
Million Units Worldwide in 2004, April 14th 2005.

[16] Symbian OS – http://www.symbian.com
[17] Tolvanen, J., Suihko, T., Lipasti, J., Asokan, N. Remote

Storage for Mobile Devices. In Proceedings of the First
International Conference on Communication System
Software and Middleware, 2006.

[18] UPnP Forum, UPnP AV Architecture:0.83, June 2002.
[19] UPnP Forum,. ContentDirectory:1 Service Template Version

1.01, June 2002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

