
Middleware-Based Solution to Offer Mobile Presence

Services

Victoria Beltran and Josep Paradells
Wireless Network Group – Telematics Department

Technical University of Catalonia
Mod. C3 Campus Nord, c\ Jordi Girona 1-3, 08034

Barcelona, Spain

{vbeltran, josep.paradells}@entel.upc.edu

ABSTRACT
Presence information is a subset of context that originated in

Instant Messaging and Push to Talk applications. Presence

information expresses all the determining factors behind

communication between users, such as their availability,

willingness, environment, and preferences, among other things.

Applications can use presence to take intelligent decisions about

the start and continuation of users’ communications. Due to the

growing trend towards integrating presence-aware applications

into mobile networks, including cellular ones, software developers

and users need efficient and scalable platforms upon which to

deploy and use presence services. We propose a fully distributed

platform to manage all user presence. It is a middleware based on

a proxy server that retrieves and aggregates presence from

different sources, applies high-level rules set by the user about

presence privacy and communication adaptation, and implements

strategies to reduce the amount of presence traffic sent on wireless

links.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures

General Terms
Management, Documentation, Performance, Design.

Keywords
Context, Middleware, Presence, Proxy, Mobile.

1. INTRODUCTION
Presence information is a well-known concept on the Internet and

is widely used by applications such as Instant Messaging and

Push to Talk, in which the user can discover the willingness of

other users in his buddy list to communicate with him, through

the presence states of online, offline, busy or absent, among

others. This basic understanding of presence is evolving towards a

much more generic and flexible concept that includes all context

that allows a user or application to adapt and control

communications in a more efficient and personalized manner.

Presence includes a wide range of information about a user, such

as his localization, the activities that the user is doing at a specific

time, ambient conditions, communications preferences and

devices on which the user is available and even information

expressed by abstract terms such as “intention” and “will”.

Presence is a powerful tool that offers a world of attractive

possibilities for self-expression, letting our friends and contacts

know how we are and seeing in an instant how they are. We are

thereby able to choose the most suitable time to contact our

buddies since we know when they are most available, and the

condition in which we will find them. In this way we can avoid

failed call attempts that sometimes end in voicemail, which in turn

allows us to save money. Another significant motivating factor for

using presence systems is our innate social curiosity that leads us

to observe the activities and states of people relevant to us.

Furthermore, presence can play its most useful role in the daily

life of people whose working day is mainly taken up with

meetings or appointments, since presence can help us to automate

and organize our daily schedule. A presence-based application

should only permit a user to communicate with another user by

the services specified in the presence document of the latter. In

addition, this communication should have the characteristics

indicated in that presence document, such as user devices called

or content types allowed. This property of presence systems

allows us to control the way we communicate with other people

by publishing appropriate presence information. For example, we

can determine which communications to accept depending on the

relevance of the requesters, redirect calls to secretaries or

delegates when we are busy, know in real time where our

employees are during a business trip and know exactly when

collaborators have finished a meeting, writing a report or having

lunch.

The concept of presence is understood as a type of context

information, and there are many opinions about context and its

use in pervasive computing. Context is defined as any information

that can be used to characterize the situation of an entity.

Although some definitions lead to an unclear differentiation

between presence and context, presence should be understood as a

specialized subset of context in two aspects: the object and the

objective of the information. Context characterizes all relevant

entities in any kind of interaction between a user and an

application. This information helps applications to build all kind

of intelligence that is aware of the user’s environment. On the

other hand, Presence is used to characterize entities that can affect

the management of communications with a user. This information

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2887

create-net
Typewritten Text

allows applications to take intelligent decisions about the start,

continuation and end of user communications.

Presence is the base from which a range of advanced applications

that are innately associated with the mobility of users can be

deployed. Mobile devices are personal and pervasive; the user

always keeps them close, in a manner always-on, and stores

personal information in them, such as a diary or favorite media. A

seamless integration of presence-aware applications into mobile

environments should be achieved. To this end, interoperable and

scalable platforms are necessary to manage and exchange presence

information in restricted networks. Today, there is an

interoperability problem between presence systems despite

presence information is focused on allowing personalized and

intelligent communication between different users. Currently

every solution uses proprietary implementations, so two users of

different domains are not able to communicate with each other

and the potential of presence is not exploited. Consequently, the

IETF Working Group is looking to extend the SIP (Session

Initiation Protocol) in order to provide a standard platform for

instant messaging and presence. This platform is denoted by the

acronym SIMPLE, or SIP for Instant Messaging and Presence

Leveraging Extensions. The SIMPLE presence model is a

subscription-based framework in which watchers send

SUBSCRIBE messages to presence servers of interesting

presentities, in order to keep up to date on the presence of those

presentities. A presentity is an entity which has presence

information associated and announces its presence by sending

PUBLISH messages to its presence server. The presence server is

the logical entity in charge of binding presentities to watchers and

notifying watchers of proper presence changes via NOTIFY

messages.

In addition to the interoperability problem carried over from the

beginning of presence-enabled applications, the implementation

of presence systems is being restrained by relevant unsolved

issues. There are important open questions about user privacy.

Where is the limit between the curiosity of watchers and the user

privacy? Can users trust service providers to use their presence

information appropriately?. These questions represent a barrier to

the use and acceptance of presence systems, and users need

flexible, context-aware and adaptable privacy models. Moreover,

when presence applications are integrated into mobile

environments, many more issues will have to be faced in the form

of devices with high constraints, multiple access technologies and

unreliable communication channels. Moreover, we have to take

into account the amount of traffic generated by presence-enabled

applications which send and receive periodic updates of

subscriptions and user presence. This situation gets worse when

mobile presence applications interact with Internet-designed

applications since the latter do not take into account the volume of

presence traffic. This excessive traffic entails two problems:

overconsumption of bandwidth and battery power in user devices.

Therefore, presence platforms adapted to the restrictions of mobile

environments are needed in order to provide efficient and scalable

mobile presence applications.

In this article the authors propose an innovative platform for

managing users’ presence that consists of a middleware as a

personal proxy of the user. Our solution is fully distributed,

network-independent and offers enough flexibility to add

advanced functions based on presence. The rest of the article is

structured as follows. We start with a brief overview of similar

research work. Section 3 explains the operation of the middleware

in more detail, followed by some design issues described in

Section 4. In Section 5 we briefly describe how presence

documents are built, and finally we give some conclusions.

2. RELATED WORK
Presence management is a beginner research field and it is

difficult to find similar works that share our objectives. The entire

related work only shares some features of our approach and then a

deep comparison is not possible. However, following we describe

some studies that deal with presence or context information.

Some studies about the integration of context and presence in

wireless networks have focused on managing and storing this

information in client mobile devices. Examples are [1] and [2].

The first offers a software platform installed on mobile devices to

manage context, in which the device stores and controls all

presence about buddies. In [2] a complex context-aware system is

specified to control users’ access networks and applications, in

which buddies’ presence is completely managed by user devices.

Both examples are unaware of the consumption of network and

device resources due to context management. Therefore, these

solutions are not scalable as the number of buddies, or the amount

of context associated with them increases. In our approach, the

majority of intelligence is placed on the personal proxy which is

in charge of reducing traffic load. The use of a proxy allows us to

optimize network and device resources. The authors in [3]

propose a generic platform for the provision and management of

context in mobile environments in which the intelligence is placed

in servers rather than in user devices. Our study shares some of

the objectives of this solution, including simple user devices and

user-controlled context management, reasoning, privacy, and

exchange. However, it does not deal with presence information

about the buddy list of the user or adapt his communications

depending on his presence. The authors in [4] describe a platform

for managing presence that relays on top of an OSA PAM

(Presence and Availability Management) core and has ParlayX

and SIMPLE interfaces. A PAM solution does not seem flexible,

since it is based on CORBA, and the study also uses centralized

servers, which can lead to scalability issues. Regarding cellular

environments, the 3GPP has defined the integration of presence

information into its specification IP Multimedia Core Network

Subsystem (IMS) in UMTS. This system has been designed to

converge data and voice over cellular networks and provide IP-

based real-time services in UMTS. It is fully based on SIP

protocol, and particularly on SIMPLE to manage users’ presence

and thereby offer cellular presence-enabled services. The

standardization of presence applications into IMS is controlled by

the OMA (Open Mobile Alliance) organization. The centralized

platform that IMS provides to deploy operator-side presence

systems has several drawbacks: scalability, billing, privacy and

implementation problems. The presence traffic is managed by

centralized mainframe servers that can become bottlenecks as the

number of users grows, since presence applications generate large

amounts of signaling traffic in updating users’ presence. This

amount of signaling traffic can make users reluctant to use cellular

presence services since, for the moment, cellular operators do not

offer affordable data rates to residential users. As far as privacy is

concerned, users have to leave their presence information in

operators’ hands and they may not trust that this information,

which can contain personal data such as lists of activities, diary

entries and engagements, will be handled correctly. In addition,

OMA specifications to implement presence-enabled services in

IMS have resulted in a large and complex set of documents that

are hard to implement. Our solution is only comparable with a

subset of the functionality of IMS related to presence functions.

The previous problematic issues in IMS are solved in our solution

implicitly thanks to the fully distributed nature of the proposed

middleware. Each user has a personal proxy in his home or

working place, not into centralized domains, and in addition, the

proxy applies several techniques to reduce the amount of presence

traffic over wireless links. This approach makes user growth and

application of user-dependent privacy rules scalable and allows

presence applications’ rates cheaper. In [5] a variation of IMS is

proposed in order to distribute presence hierarchically, thereby

achieving more intelligent and personalized presence composition

and privacy. Nevertheless this work only eases, but not resolve,

some problematic issues in IMS. The authors in [6] show the

need for interoperability between Internet-based and cellular

applications. This study proposes a system based on subscriptions

and managed by a central element that mediates between

applications and users in cellular and Internet networks. Far from

providing interoperability, this article describes a system to notify

events between cellular and Internet networks. In order to reach

interoperability between presence systems, these systems should

implement the SIMPLE protocol which is being adopted as the

presence standard by the research community. For this reason, our

solution is fully SIMPLE standard. In [9] the authors state that

presence information is the way of connecting Internet and

cellular services and outlines an approach based on ontologies.

This approach consists of a presence middleware that integrates

and combines different user services in order to offer more

advanced and personalized functions to users. The middleware

combines rules, events and presence information to make

decisions. We have a common idea with the authors: the building

of intelligence from a set of presence attributes and rules to

improve user services. However we do not share their purpose and

architectures’s technology.

3. PRESENCE MIDDLEWARE
In the present study we propose a fully distributed solution for

deploying presence-aware applications that consists in a

middleware acting as a personal proxy in the home or office of the

user. This approach implements the IETF SIP/SIMPLE presence

model and its main task is the intelligent search and management

of presence to allow applications to adapt their behavior based on

this information. In addition, this model gives enough flexibility

to apply fine-grained rules about user presence privacy,

communication adaptation and traffic optimization strategies.

Although some middleware functionality is placed in user devices,

the majority of functions are installed on a computer, a proxy,

connected to Internet by a wired network, which functions as the

intermediary point for any presence exchange with the user. This

proxy can run on any computer owned by a user or can be a box

offered by an operator or company which will be responsible for

the majority of its management. In any case the proxy provides an

API to give the user the ability to set his static- or context-

dependent preferences with regard to privacy or communications.

This approach permits us to offer a single point in charge of

collecting, storing, managing and publishing user presence, so

users do not have to carry out these functions in any of their

devices. This approach allows more efficient and lighter user

devices and device-independent access to user presence. Presence

information is available even when the user is not connected to

any device and then this information is always-on. What is more,

the proxy aggregates user presence from different sources in a

consistent way, that is, the proxy creates a correct single view of

user presence removing any contradictory, redundant or stale

information.

Regarding presence-based communications, the proxy is the

intermediary point through which the user is contacted, so

external entities never know the user’s physical address. Thus,

security is increased by allowing users to keep their localization

secret. The described presence middleware is a scalable solution

by nature, close and personal to the user, which provides

interoperability between presence services running on different

networks. Although this middleware can work in any scenario, it

resolves problems of other centralized solutions in mobile

environments and enhances the performance of wireless links. In

mobile networks, user devices usually have scarce resources so

processing costs in these devices have to be taken into account

when presence-based applications are provided. What is more,

presence information is encoded as XML documents that are not

appropriate for mobile networks due to both the processing

requirements needed to analyze these documents on user devices

and the limited capacity of wireless communication channels.

These matters have been considered in the design of the presence

middleware, which focuses on reducing the complexity of user

devices and utilizing wireless links efficiently, which is achieved

thanks to the collaboration between the client and server parts of

the middleware. This collaboration allows us to implement non-

standard solutions between the user device and the proxy in order

to obtain higher performance than the fully standard solutions.

The middleware decreases, as far as possible, the amount of

presence information exchanged with the user, but it also has

enough intelligence to use different optimization techniques

depending on the user’s context. Due to the fact that some

techniques require extra processing on user devices, a balance

between benefits and costs must be found when optimizations are

applied. For this reason, the context of user devices’

characteristics is very useful when deciding which techniques to

apply. This paper focuses on implementation issues but does not

deal with optimization techniques. For further information on

some of these techniques, see [7].

4. ARCHITECTURE DESIGN
The architecture of the proposed presence middleware is divided

into two logical layers: the Management layer and the

SIP/SIMPLE layer. The former contains the intelligence needed to

process and manage presence information and the latter is

responsible for receiving and sending messages related to SIP and

SIMPLE protocols. The following points describe these layers

briefly and figure 1 shows the structure of each one into both

client and server sides of the middleware. The client middleware,

called CPM (Client Presence Middleware), is far simpler than the

server part, since mobile devices usually have limited processing

and memory resources. It offers an API (the two-toned rhombus in

the figure) to all applications of client devices in order to provide

the intelligent functions about presence of the server middleware

in a transparent way. The server middleware, called Server

Presence Middleware (SPM), which functions as the proxy, stores

user presence in a context repository called Context Manager.

The presence information processed by the middleware can be

classified in different groups: Personal Information, Services,

Resource List and User Presence Rules. The first group contains

information that is closely related to the user and may include

mood, activities, willingness to communicate, ambient conditions,

profiles, personal addresses and localization, among others.

Services group includes information about available services by

which the user is contactable, and devices that support those

services. For example, information about a service may include

content types accepted by the service and hardware and software

characteristics of devices where the service is available. The

Resource List includes all presence of the entities which the user

is watching. To simplify we assume that an entity is a person,

although it could be a software entity. For this reason, we name a

resource as buddy and the resource list as buddy list. The last

group contains rules that allow users to build their model about

data privacy and communications with other users, and these are

grouped depending on their purpose. The Request Admission

Rules (RA rules) indicate the communication types that the user is

willing to establish with other users. The Presence Publication

Rules (PP rules) establish the privacy level when user presence is

published and finally the White and Black List Rules accept or

reject, respectively, an unknown (non-authorized) entity that is

requesting to watch the user’s presence.

The presence middleware has been developed on the Java

Platform. The SPM has been programmed using Java Platform

Standard Edition (J2SE) and it has been developed on top of a

SIPMethod Application Server that is JSR-116 (SIP Servlet API)

compliant SIP Application Server runtime engine. Currently, only

a CPM over mobile phones has been developed, and for which

purpose we used Java Platform Micro Edition (J2ME) with CLCD

(Connected Limited Device Configuration) and MIDP (Mobile

Information Device Profile). A Java API, JSR 180 (SIP API for

J2ME) has been used to implement the SIP communication

between CMP and SPM.

4.1 Management Layer
On the server side, the HTTP Dispatcher receives HTTP requests

that contain user information such as configuration data,

preferences or rules. This information is put into the user device

(usually by means of a Graphical Interface) and is sent to this

module, which communicates with other modules within the same

layer depending on the type of information received. The

Presence Manager processes and aggregates the presence

published by the user, and also generates presence documents

that are sent to the user’s watchers. In order to create legal

presence documents, it communicates with the Request Admission

Police and the Presence Publication Police modules. These two

modules contain a set of RA and PP rules respectively. These

rules decide by which services the user is willing to communicate

with other users and the privacy level of presence documents. The

presence information associated with the user’s buddy list is

managed by the Resource List Manager module, which is

responsible for processing and aggregating presence notifications

from the buddies. In addition, it creates presence documents about

the buddy list and orders the Resource List Server module to send

these to the user. Finally, the Optimization Handler contains the

intelligence needed to decide the most suitable optimizations

depending on the circumstances of the user, device,

communication channel, preferences and statistics.

On the client side the complexity of the middleware is much

lower. The Presence Manager is in charge of controlling and

updating presence information about the user so that, when the

user makes a change, it is responsible for advising Presence Agent

to publish the presence changes to the SPM. The Resource List

Manager only stores presence about the user’s buddy list and

offers it to applications. Last of all, the operation of the

Optimization Handler is very basic and mainly consists of

configuration information about possible optimization strategies

of the presence traffic.

4.2 SIP/SIMPLE Layer
The single module on the client side is the Presence Agent which

carries out basic tasks related to the storage of user and buddy list

presence and the registration of user localization. It registers the

physical address of the user device in the SPM by REGISTER

messages. Every time user presence has to be published it sends a

PUBLISH message to the SPM, and it also receives NOTIFY

messages sent by the SPM containing presence about the user’s

buddies.

On the server side, the Presence Dispatcher receives SIP/SIMPLE

requests sent by the CPM and resends them to proper modules.

The Register module saves the physical localization of the user

device which is set in the REGISTER messages sent by the CPM

to the SPM. Thanks to this register, other modules in the SPM can

send messages to the user’s devices and external applications can

establish sessions with the user. The Resource List Server is

responsible for sending and receiving all SIMPLE messages

related to the management and maintenance of the user’s buddy

list. Its main tasks are the subscription to each buddy via

SUBSCRIBE messages and the reception of NOTIFY messages

that update the buddies’ presence. In addition, this module keeps

the subscription for each buddy alive, which involves sending

periodic SUBSCRIBE messages to avoid subscriptions expiring.

The Presence Server module receives PUBLISH messages sent by

Figure 1. Communication between the modules of the

Presence Middleware.

the CPM that contain user presence and it also sends NOTIFY

messages to the user’s watchers in order to notify them of changes

in the user presence. In addition, this module controls the state of

the subscriptions associated with watchers. It has to update the

state of each subscription depending on the SUBSCRIBE

messages received and the expiration time for the subscription.

Finally, the Watcher Info Server notifies users of the arrival of a

request to watch their presence from an unknown entity. This

module waits for the decision of the user before permitting the

unknown entity to watch user presence (or not). This module is

called by the Presence Manager when the latter receives a

SUBSCRIBE message from an unknown watcher. Then the

Presence Manager checks if this watcher is in the black or white

list, which would allow it to take a default decision. If the watcher

is in neither of the lists, the Watcher Info Server has to send a

NOTIFY message asking the user for authorization, and later the

user will make his or her decision known via a PUBLISH

message.

5. PRESENCE FILTERING
Whenever the user changes his presence, the CPM sends a

PUBLISH message to the SPM which then notifies each watcher

of the changes done via a NOTIFY message that contains a

suitable presence document. In the following two points, we are

going to see what type of information this presence document

contains and how this information is encoded.

5.1 Presence Documents
The presence model of [8] includes three components: Person,

Service and Device. Person represents the user with which the

presence is associated and includes personal information such as

state, address, activities, mood, localization, features of the user,

name, address, feelings, etc. Service means a service that is a point

from which to communicate with the user. Device means a

device, a physical environment, where a service is running. A user

can have zero, one or more services at his disposal, through which

he can establish communication with other users, and each service

is associated with the user devices where it is running. According

to this presence model, the SMP generates a XML presence

document divided in three different parts. First, all personal

information about the user and his environment is collected in a

single <person> tag that follows the RPID [13] and CIPID [11]

specifications. For example, RPID can express user availability by

states (offline, bussy, etc.), activities that the user is doing at some

time and place type where the user is. The second part of the

document is composed by a set of <tuple> tags, each of them

representing a service available to communicate with the user

which is encoded by PIDF [10], RPID and PRESCAPS [12]

specifications. Some examples of service properties are state,

contact address, identifiers of devices where the service is

available, and capabilities of the service (such as media type or

SIP event packages accepted). Finally, the third part of the

presence document is the description of the devices that make

possible some service. Devices are represented by <device> tags

and each of them has to be referred at least by one <tuple> tag.

5.2 Presence Filtering
The user is able to set policies about presence privacy and

communication preferences via HTTP protocol. These policies are

called RA and PP Rules, are managed by RAP and PPP modules,

and are useful whenever the SPM decides to notify watchers of

user presence changes. The presence documents sent to watchers

must obey these rules. In figure 2 the process of notification and

presence filtering is outlined. Following a more detailed

description of RA and PP rules is given.

The RA rules restrict the communication types that the user can

establish with other users. Internally, these rules point out which

presence about services is going to be included in the presence

documents sent to watchers. Watchers communicate with a user

by the services included in his document, and in this way, RA

rules force watchers to communicate with the user by certain

ways. The determining parameters of these rules are the watchers

and the user’s presence. Some examples are “I don’t accept

instant messages from team mates”, “I only accept video when I

have leisure state”, and “I accept only audio from my boss when I

am connected on PDA7865 device”. Presence publication allows

us to force the rest of users to communicate with us by certain

ways. In figure 3 we can see a clarifying example where a user,

Alfred, has two devices, a personal phone identified by nokia6280

and a work PDA identified by acerc510. In the top of the figure

the presence tree of Alfred is shown. This tree indicates that his

two devices have instant messaging (IM) and video services.

However, Alfred does not want to communicate with all persons

of his buddy list by the same way. When he is working, he is

pleased with any type of call from his wife, Theresa, but always in

his personal phone. Regarding school friends, he is only willing to

accept instant messages sent to his personal phone. In the case of

his work mates they are only allowed to send instant messaging

and video to his acerc510 device. All these preferences would be

established in the presence proxy of Alfred by the following rules:

“I accept IM and video in nokia6280 sent by Theresa when i have

working state”, “I accept IM in nokia6280 sent by any buddy in

my group School Friend when i have working state”, “I accept IM

and video in acerc510 sent by any buddy of my group Work when

i have working state”. In the bottom of the figure we can see the

Alfred’s presence tree received by Theresa, school friends and

work mates.

The Presence Publication rules allow users to indicate the privacy

level of personal information in presence documents depending

on their presence and watchers. Some examples are: “Do not

publish all my personal presence to my work mates”, “Do not

publish my vCard to my partners” and “Do not publish my

personal presence to any buddy when I am connected to PDA987

and my state is working”.

Figure 2. Flowchart to notify watchers of presence documents

6. CONCLUSION
We have argued for the current and future importance of

presence-aware services in providing advanced functions for the

efficient, personalized and context-aware adaptation of users’

communications. In addition, we have presented a review of the

most relevant issues about the management of presence and

context information in mobile environments. Our contribution is a

fully distributed platform for controlling all user presence in a

scalable and interoperable way. This solution is a middleware that

collects presence about users and their buddy lists from different

sources and adapts its behavior depending on high-level fine-

grained user rules about privacy and communications. A relevant

feature when the proposed platform works on mobile

environments is that it is able to apply strategies to reduce the

amount of presence traffic sent on wireless links. These strategies

vary dynamically depending on the available resources of the

communication channel and user device, and the preferences set

by the user. In order to improve the overall performance we are

currently investigating the impact of this platform on mobile

devices with limited resources, and new communication strategies

between the client side and the server side of the middleware.

7. ACKNOWLEDGMENTS
This work was supported in part by the Spanish Government

through CICYT project [TIC2006-04504] and a grant from the

Ministerio de Educación y Ciencia [FPU AP2006-02846].

8. REFERENCES
[1] Raento, M., Oulasvirta, A., Petit, R., Toivonen, H. 2005.

ContextPhone: A Prototyping Platform for Context-Aware

Mobile Applications. IEEE Pervasive Computing, vol. 4,

Issue 2, pp. 51-59, April 2005.

[2] Inoue, M., Mahmud, K., Murakami, H., Hasegawa, M.,

Morikawa, H. 2005. Context-Based Network and

Application Management on Seamless Networking Platform.

Wireless Personal Communications, vol. 35, Issue 1-2

(October 2005), pp. 53-70.

[3] Sinderen, M.J., Halteren, A.T., Wegdam, M., Meeuwissen,

H.B, Eertink, E.H. 2006. Supporting Context-Aware Mobile

Applications: An Infraestructure Approach. IEEE

Communications Magazine, September 2006, pp: 96-104.

[4] Wegscheider, F., Bessler, S., Gruber, G. 2005. Interworking

of Presence Protocols and Service Interfaces. In Wireless

And Mobile Computing, Networking And Communications,

2005. (WiMob'2005). IEEE International Conference. vol. 4.

pp. 45-52.

[5] Brok, J., Kumar, B., Meeuwissen, E, Batteram, H.J. 2006.

Enabling new services by exploiting presence and context

information in IMS. Bell Labs Tech. J., vol. 10, Issue 4,

March 2006, pp. 83-100.

[6] Gurbani, V.K, Sun, X. 2005. A Systematic Approach for

Closer and Integration of Cellular and Internet Services.

IEEE Network, February 2005, vol. 19, Issue 1, pp. 26-32.

[7] Beltran, V., Sanchez-Loro, X., Paradells, J., Casademont, J.

2007. Optimization of Presence Enabled Services over

Cellular Networks Based on a Personal Proxy. In IASTED

Conf. on Internet and Multimedia Systems and Applications

(EuroIMSA), March 2007, pp. 75-81.

[8] Rosenberg, J. 2006. A Data Model for Presence. RFC 4479.

Internet Engineering Task Force, July 2006.

[9] Shen, Q., Liao, Q.S. 2005. Presence: the Glue of Cellular and

Internet Services. In IEEE International Symposium on

Communications and Information Technology, ISCIT 2005,

pp. 784-787.

[10] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W.,

Peterson, J. 2004. Presence Information Data Format. RFC

3863. Internet Engineering Task Force, August 2004.

[11] Schulzrinne, H. 2006. CIPID: Contact Information for the

Presence Information Data Format. RFC 4482. Internet

Engineering Task Force, July 2006.

[12] Lonnfors, M., Kiss, K. 2007. Session Initiation Protocol

(SIP) User Agent Capability Extension to Presence

Information Data Format (PIDF). Internet Draft, draft-ietf-

simpele-prescaps-ext-08. Internet Engineering Task Force,

Sept 2007.

[13] Schulzrinne, H., Gurbani, U., Kyzivat, P., Rosenberg, J.

2006. RPID: Rich Presence Extensions to the Presence

Information Data Format (PIDF). RFC 4480. Internet

Engineering Task Force, July 2006.

[14] Dey, A. K., Abowd, G.D. 1999, Towards a Better

Understanding of Context and Context-Awareness. Technical

Report GIT-GVU-99-22, College of Computing, Georgia

Institute of Technology, Atlanta GA USA, 1999.

Figure 3. Flowchart to notify watchers of presence

documents

