
Using SELinux security enforcement in Linux-based
embedded devices

Björn Vogel
nomiko e.V.

Bochum, Germany
Bjoern.Vogel@uni-dortmund.de

Bernd Steinke
Nokia Research Center

Bochum, Germany
Bernd.Steinke@Nokia.com

ABSTRACT
This contribution describes how Security Enhanced Linux
(SELinux) is enabled on a Nokia 770 Internet Tablet. It
will refer to a procedure done under a Debian [1] Testing
(Etch) Environment. The procedure will also be possible un-
der other Linux distributions but since Maemo is built upon
Debian, this approach is the most preferrable way to extend
Maemo Linux. An SELinux enabled device will provide the
possibility of a convenient configuration of the device. Dif-
ferent stakeholders can define detailled access control to the
components they maintain. This ensures the interests of
the stakeholders by providing the benefits of a Linux based
embedded device.

Keywords
selinux, security, embedded system

1. INTRODUCTION
Nowadays, the acceptance and the need of mobile systems is
growing constantly. Nearly everyone is equipped with some
kind of system storing some of his personal data like phone
numbers, important contacts, appointments and other in-
formation. These systems can be mobile phones, PDAs,
and other embedded systems which are growingly intercon-
nected. Along with these interconnections the kind and
amount of available services are growing as well. These
growing amount makes it necessary to allow several service
providers to maintain the settings for their services, since
in the majority of cases the user is not interested in getting
involved in this configuration process. The other way round,
providers are interested in a protection against specific mod-
ifications of configurations of e.g. GSM/UMTS network set-
tings by the user. So, with the increasing amount of used
services and the need for access to configure these services,
this means that many different actors need to have access
to the device and each actor needs his specific area of access
which is protected against manipulation by other actors.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Mobilware ’08, February 12-15, 2008, Innsbruck, Austria.
Copyright c©2008 ACM 978-1-59593-984-5/08/02... $5.00

Another trend is the usage of Linux-based operating sys-
tems. The benefits such as the flexibility, the stockpile of
solutions and the open source paradigm open up advantages
for both manufacturers and customers.

On the other hand, the classical Linux systems are not ca-
pable of providing the security mechanisms required by the
new demands of these multi-user environments. In this con-
text SELinux offers the possibility of a more fine grained
multi domain access control.

In special, Security Enhanced Linux (SELinux) [12] is an en-
hancement for the standard Linux Kernel, which implements
fine-grained Access Control based on the FLASK concept
[13], [14]. The FLASK concept architecture was developed
in the early ’90s by the NSA and others. It which provides
Mandatory Access Control.

In contrast to the classical Linux access control with its
owner, group, others-mechanism, SELinux attaches a spe-
cial collection of security attributes to each subject and ob-
ject within the system. It uses the mechanisms of Role Based
Access Control (RBAC) and Type Enforcement (TE) to de-
cide access requests.

Until now, there was no embedded device running SELinux
and so it will be described how a first proof-of-concept was
created on a Nokia 770 Internet Tablet (N770). The N770 is
one of the first completely Linux-based mobile computers. It
is running Maemo [10], a Debian based Linux distribution.

2. PROBLEM DESCRIPTION
Although SELinux is currently available for and within most
of the bigger Linux distributions (like Debian, Fedora Core,
Ubuntu, etc.) SELinux is currently not included within the
Linux distribution of the Nokia 770 Internet Tablet. The
distribution used by this device is Maemo. It is slightly
changed to the specific design properties of the N770.

One main difference between PC Systems where SELinux
is mainly used and the Nokia 770 Internet Tablet is the
changed boot procedure. There is no boot loader like lilo
[6] or grub [4], which provides the capability of passing boot
options to the kernel. This is a problem since SELinux can
be switched on and off via boot parameters, and when it is
turned on (enabled) it is possible to set the mode it should
run in. The first one is the enforcing mode. This is the mode
where SELinux enforces all given policies without any com-

fezzardi
Text Box

ziglio
Typewritten Text
MOBILWARE 2008, February 13-15, Innsbruck, Austria
Copyright © 2008 ICST 978-1-59593-984-5
DOI 10.4108/ICST.MOBILWARE2008.2927

promises. This enables full functionality and the maximum
of security which can provided by SELinux. This mode is
very restrictive and should only be used when the policy set
used is proven 100 percent correct and working. During de-
velopment this is a demand that can not be guaranteed. So
another mode should be used, which is the permissive mode.
The permissive mode indeed does regards the policy and still
checks the policy for every access, but decisions whether an
access should be granted or not, are not enforced. If an ac-
cess is actually denied within the policy, permissive mode
SELinux only generates an error message telling that the
access should be denied according to the policy, but grants
it anyway. So, no access is denied, but all accesses that ac-
tually should be not allowed by the policy generate error
messages, helping in policy configuration. For more com-
fortable configuration this bootline parameter is generally
passed to the Linux kernel by the boot loader. The Maemo
boot loader is not capable of this, so a solution had to be
found.

Another main problem is that SELinux decides access re-
quests upon types. These types have to be attached to the
files permanently in some way. Within the current SELinux
implementation this is realized by writing this information
into the Extended Attributes (xattr) [7] of a file or directory.
These attributes are supported for the ext2, ext3, jfs and xfs
file systems. Unfortunately the N770 is using the jffs2 file
system which is officially not supported.

Furthermore, Maemo does not bring along all needed ap-
plications and application changes needed to run SELinux
properly. For example, there are some new applications like
the command line tool newrole, which will be required to
change the role when using text shells.

Also some applications need source code changes to have
SELinux-specific information available. For example, to see
the types attached to the files mentioned before, the ls user
land application is originally not able to show this informa-
tion.

3. SOLUTION: PORTING
3.1 File system modifications
This section describes which modifications were made to the
Maemo O/S 2006 development root file system which was
used as a basis and expanded to have SELinux capabilities
available on the N770. A list of packages that were cre-
ated by downloading and recompiling the corresponding De-
bian (Etch) packages from the Debian homepage [2] follows.
The packages were recompiled within the scratchbox [11],
a cross compilation toolkit. The scratchbox was supplied
with an appropriate compiler (cs2005q3.2-glibc-arm) and a
rootstrap for the N770 (Maemo Dev Platform v2.0 armel-
rootstrap.tar [9]). Not all of the packages listed below are
absolutely necessary to enable SELinux. They are only men-
tioned for a more convenient development process, so it is
not the minimum set of packages needed. The packages are
the following

• bash: To have a real ”bash”-shell available on the
device. Other packages required a real bash since in-
cluded scripts did not work with the shell built in the

busybox which is the standard in the Maemo root file
system.

• checkpolicy: This is the SELinux policy compiler,
which is needed to compile policies to the binary form
used by the kernel. This is an essential package, since
it is a needed part of the SELinux infrastructure.

• coreutils: As the name lets presume, a collection of
core utilities for Linux. Contains programs like ls,

cp, mv, rm, echo, etc. Some of them needed changes
or enhancements for SELinux. For example bin/ls

and usr/bin/id which both obtained the new option
-Z to show SELinux specific information (for id: user
context; for ls: attached file contexts).

• find: To have a real find-program available. The
busybox-built-in find lacked of some parameters that
where needed by scripts from the checkpolicy package
to work correctly.

• libacl: Access control list shared library. Required by
coreutils.

• libattr: Shared library to enable support for xattr in
file system. Required by libacl.

• libdb: Berkeley v3 Database runtime Libraries.

• libpam0g: Required by policycoreutils, although PAM-
Authentication is not used.

• libpam-modules: Pluggable Authentication Modules
for PAM. Needed by passwd, although PAM- Athenti-
cation is not used.

• libselinux1: Essential SELinux shared libraries, pro-
viding an interface for security-aware applications.

• libsemanage1: Shared libraries, providing an inter-
face for SELinux management. Used by SELinux pol-
icy manipulation tools.

• libsepol1: SELinux policy library for changing policy
binaries.

• libslang: S-Lang programming library

• login Replacing the busybox-built-in login program by
fully functional one.

• m4: Implementation of the traditional UNIX macro
processor. SELinux policy compilation bases upon m4-
macros.

• make: GNU version of the make utility. Used for
SELinux policy compilation.

• mc: GNU Midnight Commander: a text-mode full-
screen file manager for easier navigation. Not abso-
lutely necessary, but very helpful.

• passwd: Programs to maintain password and group
data; needed to have fully functional passwd programm
available, which is aware of shadow password support.

• policycoreutils: Contains the core policy utilities
that are required for basic operation of an SELinux
system. These utilities include load policy to load
policies, setfiles to label filesystems, newrole to
switch roles, and run init to run /etc/init.d scripts
in the proper context. Requires python and the ac-
cording selinux/semanage extensions.

• procps: Utilities to browse the /proc filesystem; like
ps, which was extended to show selinux contexts via
option -Z.

• python2.4-selinux: Python bindings to SELinux
shared libraries. Required by policycoreutils.

• python2.4-semanage: Python bindings for the ma-
nipulation of SELinux binary policies, used for policy
compilation and file system relabeling. Required by
policycoreutils.

• selinux-policies: A basic policy providing ruleset for
minimal functionality of SELinux-enabled N770. This
package was modified like described in section 3.3 -
SELinux policy changes for N770.

• ssh: To have a fully functional and SELinux-aware
SSH-daemon available.

• sysvinit: Important package since a SELinux aware
init program is needed to bring started programs to
correct context.

• tar: To have a fully functional tar available on device.

These packages were all cross-compiled within the scratch-
box from Debian (Etch) sources. No changes were made to
these sources, except when mentioned.

Things look different on kernel source code. There were
modifications that were necessary and these will be described
next.

3.2 Kernel changes
There were two things to do to make the kernel SELinux
ready. First, the support for xattr had to be compiled into
the kernel and second, SELinux options hat to be switched
on.

Since the main SELinux capabilities are already included in
the official 2.6.16 kernel sources, the changes that need to
be made to the kernel sources are changes of the jffs2 file
system drivers. SELinux needs to have xattr enabled for
the used filesystem. This capability is not provided for the
jffs2 file system in the official kernel sources. To have xattr
available for the file system of the N770, these changes were
derived from a patch [5].

The kernel was installed within the scratchbox as described
under [8]. Then the patch was applied and the kernel was
recompiled with altered kernel configuration as described in
figure 1. It shows the differences between the kernel configu-
ration n770 defconfig in the original maemo kernel sources
and the configuration used to enable SELinux. ’<’ marks the
old line within the kernel configuration file, ’>’ marks the
new line, ’>’-lines without corresponding ’<’-line were not

present in the original configuration. Recompiling the kernel
after patching the jffs2 driver changes and using the altered
configuration is sufficient to make the kernel SELinux ready.

3.3 SELinux policy changes for N770
This section describes the SELinux policy changes used within
the device to show the proof of concept. The starting point
of this policy is the Debian package ’selinux-policy-default’.
It brings along sample policy files for a basic configuration
and many commonly used programs where each program
has its own configuration files.

3.3.1 Reducing policy size
The first step that was required for an embedded device was
the reduction of the amount of provided configuration files.
It was checked which programs are running on the device
and which configuration files were definetely not needed. In
case of doubt the configuration files were left untouched,
since they do not disturb and to ensure nothing important
is missing. These files were removed to reduce the total
amount of rules and so the total size and computiation com-
plexity of the later compiled binary policy. The motivation
for this step is that embedded and mobile devices in general
do not sport large amounts of memory and disk space avail-
able. So, on the one hand reducing the amount of configu-
rations reduces the amount of rules created by the SELinux
compiler and so the size of the binary representation of the
policy and on the other hand it provides a clearer view to
the files used for the policy.

3.3.2 Reworking the policy rules
The second step was the elimination of denied messages
that appeared during accesses when working with the N770.
These accesses were not covered by the policy. The compiled
packet policycoreutils contains a script named audit2allow

that can be used to convert denying SELinux audit messages
to rules that will allow the operation that caused the error
when the created rule will be included in the policy. This
script was very useful to eliminate errors during bootup,
runtime and shutdown. This may be a comfortable pro-
cedure, but should be used with caution and implementing
rules without more precise analysis what is allowed with this
rule can lead to security holes.

3.3.3 Telling SELinux jff2s xattr support is available
Until now it was only possible to assign a static context to
the whole jffs2 file system at mount time as possible with all
mountpoint of unsupported file systems. So, another impor-
tant thing to do was to tell SELinux that it should use xattr
for jffs2 since it did not know yet, that xattr support is now
also available for jffs2. To do so, the lines marked with ’>’
had to be added in usr/share/selinux/policy/beta1.0/

fs use, lines marked with a leading ’<’ then had to be re-
moved:

fs_use_xattr jfs system_u:object_r:fs_t;

> fs_use_xattr jffs2 system_u:object_r:fs_t;

fs_use_xattr reiserfs system_u:object_r:fs_t;

and in usr/share/selinux/policy/beta1.0/Makefile a
”jffs2 | ” has to be added to the regular expression of the

< # CONFIG_AUDIT is not set

> CONFIG_AUDIT=y

< CONFIG_OMAP_RESET_CLOCKS=y

> # CONFIG_OMAP_RESET_CLOCKS is not set

< CONFIG_CMDLINE="root=1f03

rootfstype=jffs2 time"

> CONFIG_CMDLINE="root=1f03

rootfstype=jffs2 time selinux=1

enforcing=0 audit=1"

< CONFIG_EXT2_FS=m

> CONFIG_EXT2_FS=y

< CONFIG_EXT3_FS=m

> CONFIG_EXT3_FS=y

< CONFIG_JBD=m

> CONFIG_JBD=y

< CONFIG_FS_MBCACHE=m

> CONFIG_FS_MBCACHE=y

< # CONFIG_FS_POSIX_ACL is not set

> CONFIG_FS_POSIX_ACL=y

< CONFIG_JFFS2_SUMMARY=y

<

<

<

> # CONFIG_JFFS2_SUMMARY is not set

> CONFIG_JFFS2_FS_XATTR=y

> CONFIG_JFFS2_FS_POSIX_ACL=y

> CONFIG_JFFS2_FS_SECURITY=y

< # CONFIG_DEBUG_FS is not set

> CONFIG_DEBUG_FS=y

< # CONFIG_DEBUG_LL is not set

> CONFIG_DEBUG_LL=y

< # CONFIG_SECURITY_NETWORK is not set

> CONFIG_SECURITY_NETWORK=y

> CONFIG_SECURITY_SELINUX=y

> CONFIG_SECURITY_SELINUX_BOOTPARAM=y

> CONFIG_SECURITY_SELINUX_BOOTPARAM_

VALUE=1

> CONFIG_SECURITY_SELINUX_DEVELOP=y

> CONFIG_SECURITY_SELINUX_AVC_STATS=y

> CONFIG_SECURITY_SELINUX_CHECKREQPROT_

VALUE=1

Figure 1: Kernel configuration differences

file system list:

< FILESYSTEMS=‘mount | grep -v "context=" |

egrep -v ’\((|.*,)bind(,.*|)\)’ |

awk ’/(ext[23]| xfs| jfs| reiserfs).

*rw/{print $$3}’;‘

> FILESYSTEMS=‘mount | grep -v "context=" |

egrep -v ’\((|.*,)bind(,.*|)\)’ |

awk ’/(ext[23]| xfs| jfs| jffs2| reiserfs).

*rw/{print $$3}’;‘

With this ruleset a basic operation of SELinux on a N770 is
realized.

4. EVALUATION
The goal of this work was to provide a more fine grained
security mechanism on a Linux based Internet Tablet. With
having SELinux available on the device it is now possible
to specify more detailed policies for access operations. A
main difference is for example the possibility of enhancing a
programs rights beyond the ones of the user. In contrast, in
classical Linux a program launched by the user under nor-
mal conditions usually has exactly the same rights as the
user has. There a several scenarios imaginable, where these
mechanisms aren’t sufficient any more. For example, it is
usually not eligible that any program the user is launching
should have access to all of the files the way the user has;
why should an internet browser be able to read a user’s tele-
phone contacts stored somewhere where the user has access
to?!

Another scenario would be a program provided by e.g. a ser-
vice provider using a secret encryption key the user should
not know. Under classical Linux it is not possible to for a
user to launch an application that can read the encryption
key stored in some file as long as the user is also not able to
do so.

Since the standard Linux security mechanisms where not
touched, SELinux provides an additional protection against
unauthorized operations. The problems of the two scenarios
described above can be elegantly handled using SELinux.
Very private data can be protected by simply assigning a
special type to these files and granting access only to some
programs of the correct domain (type). Since in SELinux it
is possible to transfer applications launched by a user to a
special domain (type), the access rights to files with sensitive
content can be different to the user and the domain the
application is running in. So the program can access files
the user does not have access to.

These mechanisms introduce some overhead in access, com-
putation and reaction time. A performance impact on the
Nokia 770 could subjectively not be noticed. More detailed
evaluations are yet to be done. The last measures made con-
cerning influence of SELinux on system behaviour showed
that there was a performance loss of 7% on a system run-
ning SELinux [15], [16]. This number is heavily depending
on system tuning and usage. It may be better or worse in
some cases but may be also reduced by lean policies. Sev-
eral changes have been made since last measures and further

performance optimization and new measures should be done
as future work.

Additional efforts should also be spent in patching all user
space and X-Window programs running on the device against
SELinux mechanisms to provide full protection in all use
cases. This means also to rework the policies for all appli-
cations.

Another open point is the detailled analysis of the Nokia
770’s special architecture to find out how the problem with
the DSME tool can be solved.

4.1 Open issues and further open work
A main problem is the special architecture of the Nokia 770
Internet Tablet. A tool called DSME (Device State Manage-
ment Entity) is responsible for the launch of several daemons
on startup. Since this program could not be pulled off the
kernel context due to architectural situation, no correct rules
could be created for daemons that need to be started by this
tool. The tool is interweaved deeply with the architecture
of the N770. Since it’s not currently released under a free
license, no further information on how to get it into correct
context could be provided. The tool is always launched in
kernel context and all daemons launched by this tool are
also.

Having these daemons running in kernel context makes the
policy definition very insecure. The kernel and - even worse
- all programs also running in kernel context, would get all
the rights of the mentioned daemon running in this con-
text. E.g. if a program is accidently running in kernel con-
text and has to access a file of context system u:object r:

very confident t a rule has to be, that a process of
system u:system r:kernel t context is allowed to access a
file of context system u:object r:very confident t. This
would give the kernel and all other programs accidently
running in this context, access to files of type system u:

object r:very confident t, what is not eligible. Elimi-
nating this architectural characteristic with the DSME tool
would simplify rule creation and increase security.

5. CONCLUSIONS
A solution was presented to make a more fine grained ac-
cess control possible on an embedded device running Linux.
SELinux was used as an enabler to overcome the limits of the
standard Linux security mechanisms and to provide a more
flexible way to define access rights to users and applications.

The boot line was hardcompiled into the kernel and so the
enabling and run mode of SELinux is not changeable any
more but by flashing a new kernel. The initual problem of
not being able to pass boot line parameters to the kernel is
even an advantage in regards of security aspects since it is
not possible to disable SELinux but by flashing a whole new
kernel.

The xattr functionality was ported to support the jffs2 file
system of the device to make assignment of types to files
and directories possible. As this assignment is fundamen-
tially required for file access operations to provide SELinux
functionality, this was a major important task to solve.

Also the SELinux specific libraries and userspace program
modifications (like for ls and id) needed to be ported to the
Nokia 770 Internet Tablet. They were cross-compiled for the
device to provide the needed SELinux functionalities.

The SELinux policies provided for Debian systems were
slightly modified to fit the device’s peculiarities.

This work provides the means and describes the specific solu-
tion to realize a protected multiple domain security concept
with fine grained access control on the embedded Nokia 770
Internet Tablet.

Acknowledgment
This work was performed in project E2R II [3] which has re-
ceived research funding from the Community’s Sixth Frame-
work programme. This paper reflects only the authors’
views and the Community is not liable for any use that may
be made of the information contained therein. The contri-
butions of colleagues from E2R II consortium are hereby
acknowledged.

6. REFERENCES
[1] Debian linux website, http://www.debian.org/.

[2] Debian package website, http://www.debian.org/dis
trib/packages.

[3] E2R2 End-to-End Reconfigurability II, http://
www.e2r2.motlabs.com/.

[4] Gnu grub website,
http://www.gnu.org/software/grub/.

[5] Kaigai.gr.jp xattr-patch,
http://www.kaigai.gr.jp/pub/jffs2-xattr-v6-backport-
into-2.6.16.patch.

[6] Lilo websitem, http://lilo.go.dyndns.org.

[7] Linux extended attributes and acls website,
http://acl.bestbits.at/.

[8] Maemo kernel compilation how-to,
http://maemo.org/maemowiki/howto kernelcompi
lation.

[9] Maemo repository,
http://repository.maemo.org/stable/2.0/armel/.

[10] Maemo website, http://www.maemo.org.

[11] scratchbox.org website, http://www.scratchbox.org/.

[12] Security-enhanced linux website,
http://www.nsa.gov/selinux/.

[13] S. Smalley. Flask: Flux advanced security kernel, 2000.

[14] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. The Flask security
architecture: System support for diverse security
policies. pages 123–139.

[15] The unofficial selinux faq,
http://sf.net/docman/display doc.php?docid=14882&
group id=21266#w ww.14, 2005.

[16] K. Wade, C. Sellers, and F. Tombolini. Fedora core 5
selinux faq, http://fedora.redhat.com/docs/selinux-
faq-fc5/#id2965028,
2006.

