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ABSTRACT
Network Coding (NC) is a hot topic nowadays. Even though
it has proven its applicability to wireless networks, there are
still some questions whether network coding is feasible for
small devices. To answer this question an implementation
of the Partial Network Coding (PNC) buffer scheme is done
on a wireless sensor and the results are described within this
paper. Originally PNC was presented in [4] and this paper
validates the findings of the original work by implementing
it on the OpenSensor Board (OSB) [3]. The OSB is devel-
oped at Aalborg University in collaboration with Technical
University of Berlin. On this simple sensor board PNC is
implemented and tested.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign; C.4 [Computer Systems Organization]: Perfor-
mance of Systems

General Terms
Measurement, Performance, Reliability

Keywords
Partial Netork Coding, Network Coding, Wireless Sensor
Networks

1. INTRODUCTION
A Wireless Sensor Network (WSN) consists of spatially

distributed autonomous devices using sensors to coopera-
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tively monitor physical or environmental conditions at dif-
ferent locations. A WSN can be used with advantage to
collect data in large areas where it is impossible to use tra-
ditional wired or wireless networks e.g. consider a sensor
network deployment in a remote and inaccessible environ-
ment where sensors are measuring and storing data in the
network over long time periods. A Data Collector (DC) may
appear at any location and time in the network and try to
retrieve as much data as possible [1].

To make WSN deployments economically and technologi-
cally feasible, it is necessary to minimize the cost, size, mem-
ory and battery energy consumption of the sensors. Due to
these constraints, one sensor can store only a small amount
of data collected from its surroundings, making the data ex-
traction process difficult for DC, as DC has to contact more
sensors to get the required amount of data.

In current WSNs, the process of extracting data is as fol-
lows: DC contacts a sensor in the border of the WSN, which
in turn routes the query into the network. The sensors in
the network then reply the query with sensed data, which is
routed out from the network through the sensor contacted
by DC. This method has a lot of disadvantages, namely
a big routing overhead will occur on the sensors near the
contacted sensor, which will increase the number of trans-
missions. Furthermore if some sensors in the network have
stopped functioning since last data retrieval, it is no longer
possible to guarantee that the query is received by all sen-
sors, which will increase the probability of lost data.

To overcome the described drawbacks the goal should be
to make as few transmissions as possible decreasing the bat-
tery energy consumption for each sensor. This requirement
brings NC into the picture, where sensed data, when queried
by DC, is coded. Each sensor listens to the send packets,
and encodes this content into its own packets. The sensors
can then use these coded packets, to decode the information
relevant for them. This will in general decrease the number
of internal transmissions, because the necessity for retrans-
missions decreases.

PNC is a special case of NC, where the sensed data is
distributed within the WSN before data collection. This in-
creases the number of internal transmissions in the network,
but reduces the number of transmissions when DC extracts
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data. Furthermore it also creates redundancy, because of the
distribution of data. The saliently feature in PNC is, that
the sensors in the network does not have to decode packets
while they are distributed in the network, e.g. to remove
deprecated data, which unnecessarily would increase energy
consumption.

Memory used

Robustness

Without PNC

With PNC

1: The gain when using PNC, where robustness is e.g. the
amount of redundancy in the WSN.

In Figure 1, the gain when using PNC is illustrated, by
means of memory required for storing data, but other fac-
tors exists, e.g. number of transmissions required for data
retrieval from DC, energy consumed in the WSN when con-
tacted by DC, etc.

In the following the paper introduces the details in PNC
and it explains the main motivation to use it in a WSN.
The paper gives a short introduction to NC and PNC and
how this have been implemented on the OSB, see Figure 2,
to test the performance of PNC. The tests performed with
the developed system are described with the corresponding
results, followed by a conclusion on whether PNC can be
used in a real environment.

2: The OpenSensor Board.

2. PARTIAL NETWORK CODING
A key deficiency of the conventional NC is the lack of sup-

port for removing obsolete data. Conventional NC has first
to decode and then re-encode buffer elements which is time
and energy consuming [2]. As a result, PNC is introduced.
PNC introduces a method for easy removal of old packets.

Current research in PNC described in [4] and [5] focuses
only on the data collection part, and not the distribution
of packets among sensors before data collection. It there-
fore assumes that every packet generated by a sensor in a

WSN has arrived (without NC) to each sensor before data
collection. PNC for data collection then benefits from the
fact that it is assumed that the newest packets are always
the ones which are of interest by DC. This is not ideal, and
other schemes are needed to distribute packets between sen-
sors before data extraction.

A small example should help to understand PNC. In the
following it is assumed that the buffers in the two sensors
are given as follows:

s1 :


f1 = β1,3 × c3 + β1,2 × c2 + β1,1 × c1,
f2 = β2,3 × c3 + β2,2 × c2

ff
s2 :


f1 = β1,3 × c3 + β1,2 × c2 + β1,1 × c1,
f2 = β2,3 × c3

ff
.

Here cjs are packets, and βi,js are random coefficients.
They together form a buffer element denoted fi. Note, the
amount of memory used to represent a buffer element is in-
dependent on the number of packets encoded, because all
operations resides in a Galois field. The packets with the
same indices are the same on both sensors, where the ran-
dom coefficients and buffer elements are different, e.g. β1,1

on s1 is not equal β1,1 on s2.
To continue the example, if the maximum number of pack-

ets in a buffer element N , i.e. the full cardinality, is N = 3,
then, when a new packet c4 arrives at the two sensors, the
buffers become

before
s1 : {f1 = [c3, c2, c1], f2 = [c3, c2]}
s2 : {f1 = [c3, c2, c1], f2 = [c3]}

after
s1 : {f1 = [c4], f2 = [c4, c3, c2]}
s2 : {f1 = [c4], f2 = [c4, c3]}.

This demonstrates the salient feature of PNC, that is, re-
moving obsolete data without decoding.

To be able to decode N packets, the rank of the decoding
matrix (further explained in Section 3) should be at least
N . Therefore, whenever DC is querying at least N sensors
it should be guaranteed to receive N buffer elements which
all contains N encoded packets. Then, if (with high proba-
bility[4]) the coefficient vectors are linearly independent, DC
is able to decode. In the example this clearly does not hold
since none of the buffer elements in s2 has the cardinality N
after the arrival of c4.

To achieve that a given sensor always have a buffer el-
ement with cardinality at least N , a distributed scheme is
required on each sensor to manage the buffer elements; this
maintaining problem is the challenge in PNC. In the follow-
ing section this maintenance problem is translated into an
initial distribution problem which is simpler and easier to
achieve.

Buffer Scheme
To achieve the ability to ensure that each sensor always are
able to transmit a buffer element containing the linear com-
bination of at least the N newest packets, it is proved in
[4], that by using a full cardinality of N +

√
N and a buffer

of size B =
√

N + 1, being the number of buffer elements
in each sensor; then a sensor can always provide a buffer
element with cardinality at least N when queried. These
values are described in the following.

In conventional NC, a full cardinality equal N means that
N packets can be decoded after collecting N buffer elements.
In PNC, this value is increased by a sub-linear overhead

√
N ;

resulting in, that at least N +
√

N buffer elements have to
be received to guarantee that N packets can be recovered.



As mentioned, by initializing the buffer elements in a
clever way, it can be ensured that (at least) one buffer el-
ement in a sensor have a cardinality of at least N . This
initialization is performed in each sensor by selecting cardi-
nalities, in a way such that each cardinality is picked exactly
once, from the set

k̂ ∈ [
√

N, . . . , N − 2
√

N, N −
√

N, N, N +
√

N| {z }
√

N+1

].

Now, a buffer element given initial cardinality k̂ should not
encode the first N+

√
N−k̂ packets, but encode the following

k̂ packets. This ensures that, after the arrival of N +
√

N
packets, the distribution of cardinalities in the buffers still
satisfy the uniform property.

Consider the following example where N = 4. This gives
the full cardinality 6, a buffer of size B = 3, and that
each sensor will pick its initial cardinalities from the set
k̂ ∈ [2, 4, 6]. If buffer element f1 picks k̂ = 2, f2 picks k̂ = 4,
etc., then after the arrival of the first six packets, the buffer
in a sensor will look like

s1 :

8<: f1 = [c6, c5], 4 +
√

4− 2 = 4 p.s.
f2 = [c6, c5, c4, c3], 4 +

√
4− 4 = 2 p.s.

f3 = [c6, c5, c4, c3, c2, c1], 4 +
√

4− 6 = 0 p.s.

9=; ,

where p.s. is the number of packets skipped until packets
are encoded into the buffer element. The bold buffer ele-
ments are the ones which satisfy the property that at least
N packets are coded in the buffer element. Now, for every
new packet arriving to the sensor, the property of having
at least one buffer element with cardinality greater then N
still holds. This is illustrated by continuing the example.
Assume that three more packets arrives; then the buffer el-
ements become as follows:

c7 arrives −→ s1 :

(
f1 = [c7, c6, c5],
f2 = [c7, c6, c5, c4, c3],
f3 = [c7]

)

c8 arrives −→ s1 :

(
f1 = [c8, c7, c6, c5],
f2 = [c8, c7, c6, c5, c4, c3],
f3 = [c8, c7]

)

c9 arrives −→ s1 :

(
f1 = [c9, c8, c7, c6, c5],
f2 = [c9],
f3 = [c9, c8, c7]

)

This behavior can be generalized by the following dataRe-

placement() algorithm which can be used to maintain the
buffer elements after the initial configuration. The algo-
rithm gets the packet to be encoded, and either encodes
with the already encoded packets, or copies the coded ele-
ment replacing the existing buffer element.

1 dataRep lacement (cnew )
2 {
3 f o r ( i = 1 ; i <= B; i++)
4 {
5 β = GetRandomCoe f f i c i en t ( ) ;

6 i f ( G e tBu f f e r E l emen tCa r d i n a l i t y (fi ) < N +
√

N )
7 fi = β × cnew + fi ;
8 e l s e
9 fi = β × cnew ;

10 }
11 }

3. MAP BUFFER ELEMENTS TO DECOD-
ING MATRIX

If it is assumed that all sensors coefficient vectors are lin-
early independent, then the N +

√
N packets can be restored

by solving a set of linear equations, after collecting N +
√

N
buffer elements, given that all buffer elements contains a lin-
ear combination of all N +

√
N packets. This is not always

the case as it must be assumed that not all sensors have all
packets. If the number of buffers to retrieve is denoted W ,
clearly W ≥ N +

√
N .

A decoding matrix G is given as

G =

264 β1,1 · · · β1,N+
√

N

...
. . .

...
βW,1 · · · βW,N+

√
N

375
If a row is added to the matrix, and the rank is increased,
the buffer element retrieved is said to be innovative.

When sufficient buffer elements are retrieved, i.e. when

rank(G) = N +
√

N , the extraction of packets can be solved,
because the number of unknowns are equal to the number
of equations. The packets can be extracted by solving the
equation

F = Gm,

where F is the information vector containing the buffer ele-
ments, i.e. F = [f1, . . . , fW ], and m is the vector containing
the original packets.

The following mapping of buffer elements into the decod-
ing matrix, tweaks this approach, as it is only guaranteed
that the buffer elements received have the cardinality N (and

not N +
√

N as above). A mechanism is therefore needed
to map the buffer elements with varying cardinality into the
decoding matrix and still ensure decoding.

It is possible to receive more buffer elements than the
actual size of the matrix. Therefore a mechanism is needed
to determine which of the buffer elements to choose, to make
it possible to decode the N elements in the buffer elements
with highest index.

Assume that the buffer elements contains the indices marked
in Table 1, and that N = 4. Here the buffer elements to put
into the decoding matrix would be 1, 2, 4, 6, and 7. The
reason for this is the following; there cannot be found four
(N = 4) buffer elements which only contains the newest
four indices (only 2, 4, and 6 holds this property). There-
fore the number of indices included in the decoding matrix
is increased, and the new dimension of the decoding matrix
is now 5. A linear system can now be created with five equa-
tions and five unknowns, which is given in the matrix next
to the table.

The reason why the matrix is wanted as small as possible
(not lesser than N), is to increase the probability of decod-
ing. Assume that all buffer elements received only contains
the newest N indices, then decoding is not possible if the
matrix have dimensions N +

√
N , because the rank cannot

be greater then N . Opposite; if all buffer elements con-
tains the N +

√
N newest packets, then the decoding matrix

should keep this dimension.
Another issue is the complete lack of an index in the buffer

elements. An example is in Table 2 (N = 4), here the packet
indices 4 and 5 are not included in any of the buffer elements.
A packet loss is unavoidable, but some of the indices can be
decoded with success. If the buffer elements 1, 3, 5, and 6 are



Indices: 1 2 3 4 5 6 7
Buffer elm. 1: x x x x
Buffer elm. 2: x x x x
Buffer elm. 3: x x x x
Buffer elm. 4: x x x
Buffer elm. 5: x x x x
Buffer elm. 6: x x
Buffer elm. 7: x x x

(a)

G =

2664
x x x x

x x x x
x x x

x x
x x x

3775
(b)

1: Example of mapping indices from buffer elements into the
decoding matrix. (a) The table illustrates which indices are
in which buffer element. (b) The buffer elements containing
the newest indices which can construct a quadratic decoding
matrix are chosen.

Indices: 1 2 3 4 5 6 7
Buffer elm. 1: x x x
Buffer elm. 2: x x x
Buffer elm. 3: x x
Buffer elm. 4: x x x x
Buffer elm. 5: x x
Buffer elm. 6: x x

(a)

G =

264 x x x
x x
x x
x x

375
(b)

2: Example of packet loss in the received buffer elements.

chosen, then the indices 2, 3, 6, and 7 can be decoded, which
is considered better then nothing. The resulting matrix is
shown next to the table.

The following algorithm takes both issues into account,
and fulfills the task;

1. RemoveDuplicates()

If the same buffer element is received more then once,
remove the duplicated buffer elements.

2. DetermineNumIndicesInEachBufferElement()

Determine the number of indices in each buffer ele-
ment, and place them in an array.

3. MapIndicesToMatrixColumns()

Run through each buffer element and locate the newest
indices; map these indices to the matrix.

4. DetermineMatrixDimension()

Determine the matrix dimension to decode and store
the new matrix dimension.

5. RemoveUnusedPackets()

Remove all buffer elements which does not comply with
the new dimension.

6. Insert the sufficient number of buffer elements which
are not removed.

The decoding matrix is now created, and it is possible to
decode at least the N newest packets (assuming no packet
losses).

4. TEST SETUP
The system developed consists of several entities; these

are

• Test Administrator (TA): Maintains overall control
of the test setup.

• DC: Collects packets in the WSN.

• OSB: A sensor in the WSN.

The OSB is a wireless sensor board developed at Aalborg
Univerity in collaboration with Technical university Berlin.
The main idea behind this sensor board is to create a fully
open platform in terms of hardware, software and teaching
material. It features two external connections; the Radio
Frequency (RF) interface, and Serial Communication using
RS232 standard (RS232) or Bluetooth interface. The RF
interface is used for communication between sensors and
between WSN and DC. Administration of the sensors are
performed using the RS232 interface, where each sensor in
the WSN is connected to TA, from where the test is admin-
istered, see Figure 3.

The TA can e.g. describe, in detail, which packets are gen-
erated where and at which time. When TA informs a sensor
to generate a packet, it is encoded into the PNC adminis-
tered buffer on the respective sensor, and send to a subset of
listening sensors within its range which will drop the packet
according to a set Drop Packet Probability (DPP).

RS232

s4

s1 s2

s3

s6 s5

Test
Administrator

3: TA connected to sensors s1 – s6 using serial communi-
cation; RS232.

The DC is given as the union of a PC and an OSB:

• OSB in Data Collector (DCOSB), because of its radio
interface and its ability to perform Gaussian Elimina-
tion (GE) solving the linear system.

• PC in Data Collector (DCPC), because it can display
measurements live as seen in Figure 4.

5. ENERGY CONSUMPTION TESTS
The energy measurements evaluates which parts of the

system that can be optimized to decrease the energy con-
sumption. This can be used to determine the energy con-
sumption when e.g. the WSN is scaled into a larger network.

The results are found having all entities set with N = 4.
The tests performed are made by separating each function-
ality in both OSB and DCOSB, which are:

1. Energy consumed when OSB transmits a data packet.



4: The Data Collector application showing the decoding
matrix and the result of the decoding.

2. Energy consumed when OSB receives a data packet
and encodes it into its buffer.

3. Energy consumed when OSB receives a query request
from DC and transmits the buffer elements having the
minimum cardinality 4.

4. Energy consumed when DCOSB sends a query request
packet and decodes the buffer elements received.

5. Energy consumed when DCOSB decodes the buffer el-
ements received.

When performing the decoding on DCOSB, six buffer ele-
ments are received, which creates a 6× 6 decoding matrix.

A comparison of the energy consumed are shown in Fig-
ure 5. Note that the first three tests are energy consumed
on OSB, and test four, and five are on DCOSB.

The results are discussed in the following.
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5: Energy increase for each operation in PNC compared to
idle operation.

It is clear, that the generation of a data packets consumes
energy. It is assumed that this is primarily due to the trans-
mission of the packet using the RF module. More interesting
are the two tests where the OSB receives a packet from the
RF module, because the energy consumed decreases below
idle operation when receiving.

On DCOSB the energy consumed for decoding is signifi-
cant. This can be seen, as test four and five illustrates the
decoding with and without the query request sequence. The

decoding is performed on a 6×6 matrix, and it is valid to as-
sume that the energy will increase as the matrix dimensions
grows, making the operation the most energy consuming.

It is worth noting, that the decoding operation is the most
energy consuming, and that this is one of the reasons why
PNC benifits over traditional NC, as the decoding is omitted
on the power limited sensors, and instead placed on the more
powerfull DC.

6. PACKET LOSS TEST
This test evaluates the performance of PNC in an envi-

ronment with packet losses.
To do this test, the packets are distributed uniformly

throughout the WSN, by having the packets distributed
from a sensor that is not getting a query request from DC.

The test is performed with ten test runs for each DPP.
Ten runs is not enough to get reliable results, however it
give some tendency of the results. The test is performed for
DPP in the interval 0 < DPP < 25%, because an increase
of DPP will require additional (not available) sensors.

Figure 6 shows a graph of the result. The dotted points are
the average values of the number of sensors to query before
decoding is possible, and the grey area shows the highest
and smallest number of sensors contacted. Finally, the line
is a first order regression of the dotted points to estimate
the tendency.
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6: Number of sensors to contact versus packet loss.

It is seen from the test that PNC can be used to extract
the newest data from a WSN with packets loss probabilities
up to 25%.

Comparing the results to a WSN that does not use PNC,
it would be harder to gather the six newest data packets.
DC would have to contact all the sensors within the entire
WSN to determine the newest packets in the network.

7. CONCLUSION
The test shows linear tendency in terms of the probability

to lose packets and the number of sensors to contact required
to decode on the DC. The ideal PNC scheme states that at
most N +

√
N sensors should be contacted to decode the

packets; the evaluation shows that in average, if N +
√

N
sensors are contacted, then decoding is possible if the packet
loss is under 15%.



The ideal scheme where DPP is zero shows the minimum
number of sensors to be contacted for decoding. In this work
it is assumed that each sensor contacted delivers two buffer
elements, which the sensors can if the number of packets
received or generated are even (because

√
4 = 2).

The test suite created to test a WSN still makes assump-
tions in some points to make the setup simple. The main
problem when creating a real implementation, is the iden-
tification of which sensed value is the newest. Currently
TA administers this by informing each OSB which packet
index it should use for the generated packet, but in a real
scenario this centralized approach is not possible. Instead
a distributed packet index creation is needed, which intro-
duces further problems.

The sensors can of cause estimate which packets are newest
relative to when they generate a packet and receive a packet
from neighbours, but problems may arise when the DC ar-
rives, because DC have the ability to probe sensors not
within range, making the relative indices problematic.

If each sensor have their own index source, the mapping
of sensor id and this index can be used to uniquely identify a
packet, but no mechanism controls which packets are newest,
only the newest packet per sensor can be identified.

Nevertheless, this work has shown the feasibility to im-
plement PNC on very simple communication platform such
as the OpenSensor Board, which main computation entity
is a five dollar DSP. Furthermore a PNC testbed has been
establish which will be used in the future to look into the
indexing problem of the newest sensor data.
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