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ABSTRACT
In this paper we present a performance comparison between
multiple description coding and unequal loss protection as
tools to encode a layered source. We address a rate-distor-
tion-based multiple description coding scheme and a state-
of-the-art unequal loss protection algorithm based on Reed
Solomon FEC codes. The comparison is performed using as
a case study JPEG 2000 coded images transmitted over lossy
packet networks. Complexity aspects are also considered.
The simulation results show that both schemes allocate the
same amount of redundancy for any given encoding out-
put rate to protect the transmitted information. Whereas
MDC, besides being computationally less intensive, achieves
a smoother performance degradation, the ULP scheme yields
superior performance in terms of the expected PSNR.

1. INTRODUCTION
In modern multimedia scenarios, users may want to down-

load or stream multimedia data using terminals equipped
with different capabilities in terms of power consumption,
memory, computational resources and visual resolution. The
contents may be accessed using broadband networks such
as DSLs, optical cable or WiMax, but also full mobility
GPRS/UMTS or beyond 3G networks. Consequently, scal-
ability is a key feature. The multimedia data quality should
be matched to the visual and computational resources of
the terminal at hand. Moreover, the signal received after
transmission on unreliable networks should exhibit grace-
ful degradation capabilities, so as to enable the decoder to
achieve different quality levels, depending on the amount of
correctly received information.

Let us consider the case where data are transmitted on
a non prioritized network, with all packets encompassing
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the same loss probability, and retransmission is unfeasible
due to delay constraints or network flooding problems (such
as in broadcast or multicast applications). In such a situ-
ation, it is important that all the received packets can be
exploited at the application level. This is not the case of
packets built on top of a layered source, where the loss of
a base layer packet prevents one from exploiting the sub-
sequent ones, even though correctly received. In multiple
description coding (MDC) [3], non hierarchical representa-
tions of the source are generated, yielding mutually refinable
information. The quality at the receiver side only depends
on the number of successfully received packets, and not on
the particular subset or arrival order. Such nice features
reduce the compression efficiency, due to the need of insert-
ing redundancy among the descriptions. This redundancy
is generally measured in terms of the extra rate required by
the MDC scheme, compared to a single description reference
system achieving the same performance. However, a more
sensible comparison should address other error resilient sys-
tems, implementing different policies to trade redundancy
for robustness, e.g. unequal loss protection (ULP) using
forward error correction (FEC) codes.

In this paper we compare the rate-redundancy-distortion
performance of MDC and FEC-based methods. This prob-
lem is not trivial, due to the high number of involved vari-
ables and parameters. We select a sensible case study, i.e.
the transmission of progressively encoded images over packet
lossy networks, and address for comparison state-of-the-art
MDC and ULP methods, suitable for layered sources.

The ULP scheme of [6] is one of the most popular algo-
rithms to implement the graceful degradation concept. It
is based on Reed-Solomon (RS) codes, which are unequally
allocated to data fragments obtained from a progressive or
layered source. The code rates to be employed are obtained
as the result of an optimization procedure, aiming at max-
imizing the expected peak signal-to-noise ratio (PSNR) at
the receiver side, given the packet (description) loss prob-
ability and the source rate-distortion (RD) characteristics.
The principle in [6] has been applied in several similar works.
For example, in [4] a low complexity system is proposed,
which uses equal loss protection (ELP) to guarantee a basic
quality level, and then applies the rate allocation of [6] on
the rest of the bit stream, achieving a trade off between ELP
and ULP performance. As the code allocation procedure in
[6] is very demanding, a feasible, yet slightly sub-optimal



algorithm has been proposed in [9]. The same algorithm is
applied in [8], where it is recognized that ULP is very sen-
sitive to variations of the estimated loss rate. A cross-layer
control mechanism is implemented so as to make the opti-
mization task aware of the actual network conditions, even
though the complexity of the optimization task is likely to
prevent this mechanism from working in real time. We then
decided to adopt the algorithm in [9] as a term of comparison
of ULP and MDC, for both the rate-redundancy-distortion
performance and the computational complexity.

As for MDC, we have selected the algorithm proposed
in [11], due to its good performance, flexibility in generating
any number of descriptions, and compatibility with standard
co-decoding tools. Moreover, also this algorithm is designed
so as to maximize the expected PSNR at the receiver side,
given the description loss probability and the source RD
characteristics; therefore, it is directly comparable to [9]. In
[11], the algorithm is applied to Gaussian data. Here, we
modify it in order to make it suitable for JPEG 2000 data,
obtaining a practical MDC coding tool, named RD-aware
multiple description coding (RDMC).

From this brief discussion, it can be noticed that few MDC
algorithms are suitable for a sensible comparison with ULP.
Nevertheless, some effort in this direction has already been
spent. In [5], a comparison between MDC and FEC is pre-
sented, using a memoryless Gaussian source and address-
ing rate-distortion (RD) performance bounds. The authors
come to the conclusion that MDC outperforms ULP in case
delay constraints are present, and a feedback is available on
the channel conditions. However, the generalization of such
results to real-world data is not trivial, as MDC performance
bounds are known not to be strict [12]. In [2], a method is
proposed to generate two unbalanced descriptions of video
streams, and some general features of ULP are highlighted,
such as the presence of a cliff effect. However, no numerical
performance comparison is presented.

The rest of this paper is organized as follows. In Sec. 2
we describe the RDMC encoder and decoder. In Sec. 3, we
present experimental results focusing on the comparison of
RDMC and ULP applied to JPEG 2000 data. Finally, in
Sec. 4 we draw our conclusions.

2. THE RDMC ALGORITHM
In the MDC method proposed in [11], the data RD curve

is exploited to generate an arbitrary number N of descrip-
tions. The data source is first encoded at N rates taken
from a encoding rate vector R = [R1 ≥ R2 ≥ · · · ≥ RN ]
thus generating N streams. Such rates, which are variables
of the optimization problem, are subject to the constraint∑

N

i=1 Ri = Rt, with Rt being the total available rate. Then,
the encoder groups the data source into an arbitrary num-
ber of so-called subsets (data sets) so that each subset will
be available at a different coding rate among descriptions.
The rates themselves are selected so as to maximize the ex-
pected PSNR at the receiver side and the constraint on the
total available rate. The interested reader can find further
implementation details in [11].

In this section, we adapt the subset selection procedure in
[11] to the JPEG 2000 case. In particular, we use JPEG2000
codeblocks (CBs) as the basic data units. Let us assume that
we are able to define N ! CB subsets Sl, l = 1, .., N !, which
are balanced in the RD sense (i.e. when subsets are encoded
at the same rate, each of them yields the same contribution

to the recovered image distortion). Then, subset S1 is en-
coded along descriptions using a permutation π1 of rates R,
and so on for subset S2 (π2), . . . , SN! (π(N!)).

In the case of JPEG 2000 data, an issue to be solved is the
identification of subsets of CBs that are equivalent from the
RD standpoint. Even though the data RD curve is made
available by the JPEG 2000 encoder, and consequently, in
principle, explicit RD evaluation and exact CB classification
is possible, this would lead to a computationally intensive
procedure, which could hardly be integrated in a real time
system. Therefore, we avoid explicit RD computation, and
instead we rely on some assumptions, which allow us to iden-
tify a static pattern allocation of CBs to the descriptions.
Our basic assumption here is that, for each level of wavelet
decomposition, the detail subbands are made of CBs having
roughly similar RD characteristics; as a consequence, CBs
belonging to such subband groups can be considered equiva-
lent from the RD standpoint. The same assumption is made
for the lowest frequency subband. This simplifies the rate
allocation procedure to a great extent, as CBs belonging
to equivalent sets can be simply split into the descriptions,
according to a permutation of the encoding rate vector R.
Fig. 1 shows an example for N = 4 descriptions.

Description 1 Description 2

Description 4Description 3

R1 R2 R3 R4

Figure 1: RDMC allocation for N = 4 descriptions.

If a subband group does not contain enough CBs, not
all the rate permutations will be employed. In general, the
description generation can be summarized as in Procedure I.

Clearly, whereas the assumption of equivalent CBs is very
reasonable for the highest decomposition levels, especially
for smooth images, it becomes less sound for lower frequency
subbands, and especially for the lowest LL subband. An-
other sub-optimality arises when the number of CBs for
each subband group is too low to implement all the N ! rate
permutations. For all these reasons, this heuristic alloca-



Procedure I: Description generation
Given the number of DWT decomposition levels, L
Given the number of descriptions, N
For i = L downto 1

Consider the 3 higher frequency subbands
OR (if i = 1) the residual LL subband

Identify the number of CBs Y
Evaluate the subset cardinality X = Y/N !
If X ≥ 1

1. Group X CBs into subsets (e.g. in raster scan
order, band by band)
2. Assign to the N descriptions the subsets encoded
according to the rate permutations so that
each description contains a different representation
(in terms of rate) of any subset

If X < 1 or Y/N ! 6= ⌊Y/N !⌋
Assign to the N descriptions the yet not assigned
CBs encoded according to subsets of the N !
rate permutations

end for

tion algorithm does not guarantee that the descriptions are
strictly balanced. The divergence of our heuristic alloca-
tion algorithm from the theory in [11], with the consequent
unbalance, may be more evident when dealing with a large
number of descriptions, along with a small number of CBs
(stemming from either small image dimensions or large CB
size, or both). The balance characteristics of the system
are not discussed here for brevity. It can be shown that,
although in some situations the heuristic allocation actually
leads to unbalanced description sets, normally the unbalance
is slight and can be neglected for all practical purposes.

At the decoder side, all the received descriptions are merg-
ed into a single bitstream, where, for each CB, the best rep-
resentation is selected, which can be identified by simply
determining the CB length. The resulting stream is then
JPEG 2000 decoded. If all the descriptions are received, all
the CBs representations at the best possible quality, identi-
fied by rate R1, are available; thus, the quality in this case
(central quality) is simply given by the distortion of a JPEG
2000 stream encoded at rate R1. It is worth noticing that
a standard JPEG 2000 decoder, not equipped by any pre-
processing (merging) capability, is still able to decode any
single description.

In [1], descriptions are built starting from JPEG 2000
streams encoded at two different rates. Analytic compar-
isons of RDMC with [1] are not reported here for brevity.
However, we have shown that, using N = 4 descriptions,
when more than one description is received and for several
redundancy levels, RDMC outperforms the two-rate scheme.
We have also compared RDMC with the scheme reported
in [10] for JPEG 2000. In order to enable direct compar-
isons with the results reported in [10], we have used the
same settings, i.e. the Lenna image of dimension 256 × 256
pixels, the (5, 3) filter bank and 3 levels of wavelet decompo-
sition. The redundancy of RDMC is tuned so as to obtain
the same side quality (i.e. when only a subset of descrip-
tions is received) of the benchmark algorithm (≈ 23.6 dB).
Under these conditions, RDMC yields a central quality of
35.5 dB against 27.4 dB of [10] encoded at the same overall
rate (≈ 1.25 bpp). From these results, we can conclude that
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Figure 2: Expected PSNR [dB] vs. p(loss); RDMC
and LC/ULP

RDMC is one of the best state-of-the-art MDC algorithm
for JPEG 2000 data and N > 2.

3. COMPARING RDMC AND ULP
The goal of the experiments reported in this section is

to validate the graceful degradation capabilities of RDMC,
and to provide comparisons with the ULP scheme in [9] (la-
beled LC/ULP in the following) applied to the same layered
source. The simulation settings are:

• JPEG 2000 codec engine from the OpenJPEG libraries
[7], generalized to support the encoding/decoding pro-
cedure of an arbitrary number of descriptions (for the
RDMC scheme).

• Lenna image of dimension 512 × 512 pixels @ 1.2 bpp
(similar results hold for different images, resolutions
and coding rates, even though they are not reported
here for brevity).

• DWT with (9,7) filter bank and 4 decomposition levels.

• Header information accounted for in the total available
rate.

• Both algorithms designed so as to maximize the ex-
pected PSNR at the receiver side.

Fig. 2 reports the expected PSNR achieved by RDMC and
LC/ULP, as a function of the probability of description loss
p, and for several values of N . The goal of this first set of
simulations is to compare the average performance of the
two methods, designed so as to achieve the same number of
descriptions. In the case N = 4, the average performance
of the two methods is equivalent, whereas when N = 8,
LC/ULP exhibits an average performance gain of about 0.5
dB for most values of p. The performance of RDMC satu-
rates for N ≥ 8. On the other hand, LC/ULP does not ex-
hibit this saturation phenomenon (at least, in the addressed
range of N values). For N = 32, LC/ULP exhibits a PSNR
gain with respect to RDMC of about 1 dB for low values
of p, and about 2 dB in the range of moderate to high p
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Figure 3: PSNR [dB] vs. percentage of received
data. RDMC and LC/ULP, 8 descriptions

values. We can conclude that LC/ULP, on average, yields
better end-to-end PSNR values than RDMC given the same
p and total rate. More insight in the performance of the two
algorithms can be gained considering their behaviour when
not all the data are received. To this end, Fig. 3 reports the
PSNR achieved by either algorithm and N = 8, as a func-
tion of the percentage of data received. The different curves
refer to several p values, input to the algorithm to drive
the optimization task. When all data are received and for
the same p, both algorithms yield approximatively the same
PSNR (e.g. about 40 dB when p = 0.17). This means that,
given a probability of description loss, the two algorithms
allocate approximatively the same amount of redundancy.
However, the methods differ in the way that such redun-
dancy is exploited to achieve robustness. In fact, the dif-
ference between the redundancy exploitation strategies can
be appreciated by comparing the algorithms’ performance
when not all data is received. We can notice that the per-
formance of RDMC increases gracefully with the percentage
of received data, whereas the curves related to LC/ULP ex-
hibit more abrupt variations. As a matter of fact, the quality
achieved by RDMC steps up for each further description re-
ceived, allowing for 8 different quality levels (being N = 8,
each description amounts to 12.5% of total data). For ex-
ample, when p = 0.17, a single description yields PSNR ≈
20 dB and two descriptions yield PSNR ≈ 26 dB. A qual-
ity threshold of 30 dB is reached when 3 descriptions are
received (37.5% of data). Even though the PSNR improve-
ments are not constant, each description received achieves a
PSNR gain of 2.5 dB on average. Notably, the first received
descriptions get the highest PSNR improvements; this al-
lows one to quickly achieve a satisfactory performance with
a limited percentage of data received. In fact, each received
description yields a quality improvement, and a number of
quality levels equal to N is made available to enable graceful
performance degradation. On the other hand, we note that
LC/ULP is not able to achieve a PSNR value larger than
14 dB (corresponding to the image variance σ2) unless at
least 25% of data is received. In fact, the code optimiza-
tion is such that the reception of a single description is not

sufficient to guarantee the decoding of even a coarse qual-
ity version of the image. The threshold PSNR = 30 dB is
achieved when at least 50% of data is received. This cliff
effect, typical of channel coding, is even more evident if the
p used to tune the encoder is as low as 0.01. In this case,
LC/ULP allows for only 4 quality levels, and the coarsest
one, corresponding to PSNR ≈ 22 dB, requires the recep-
tion of 62.5% of data (5 descriptions out of 8). The threshold
PSNR = 30 dB is reached with 6 descriptions received (75%
of data). On the other hand, RDMC designed for p = 0.01
achieves 8 quality levels, and still exhibits a typical graceful
degradation behaviour. For example, the quality achieved
with 50% of data received is about 24 dB, whereas LC/ULP
yields PSNR = σ2 in the same conditions.

Fig. 4 reports the PSNR achieved by the algorithms and
N = 32, as a function of the percentage of data received. We
can draw considerations similar to those made for N = 8. In
particular, RDMC yields 32 quality levels, whereas LC/ULP
yields a variable number of quality levels (8 for p = 0.17, only
4 for p = 0.01). With RDMC, the reception of one further
description yields an average PSNR improvement of 0.78
dB. If p is 0.17 (0.01 respectively), the threshold of PSNR=
30 dB is achieved when 50% (75%) of data are received,
corresponding to 16 and 24 descriptions. The performance
of LC/ULP exhibits a steeper behavior. If p is 0.17 (0.01
respectively), the threshold PSNR = 30 dB is achieved when
about 60% (90%) of data are received, corresponding to 19
and 29 descriptions.

From the reported performance comparisons, we can draw
some conclusions. First of all, LC/ULP is significantly more
efficient than RDMC if the expected PSNR performance is
considered as quality metric. However, it is subject to a cliff
effect, which impairs its graceful degradation performance.
This is due to the “all-or-nothing” decoding property of era-
sure codes, and makes the system behavior very sensitive to
variations of the p parameter with respect to the value used
to setup the encoder. This fact may be detrimental in highly
non stationary environments such as wireless networks.

On the other hand, RDMC exhibits graceful degrada-
tion properties to a larger extent than LC/ULP. In fact,
it matches the MDC paradigm that each received descrip-
tion yields an improvement to the quality of the decoded
data. When all data are received, both algorithms achieve
the same performance, meaning that the total amount of
redundancy is almost the same for a given total rate.

Clearly enough, other LC/ULP systems can be devised,
which are optimized not in the expected PSNR sense, but in
order to achieve a number of intermediate quality levels. We
can expect that the behavior of such a LC/ULP scheme be
closer to that of an MDC system, i.e. the expected PSNR
is impaired and graceful degradation is achieved to a larger
extent. However, it is worth noticing that neither RDMC
nor LC/ULP are optimized in this sense. The study and
comparison of MDC and ULP schemes with optimization
function other than the expected PSNR is left to future re-
search. From a practical standpoint, one could ask whether
it is meaningful to have a large number of quality levels for
image coding applications. The answer depends on the ap-
plication details (e.g. transmission conditions, overall band-
width, image resolution etc.). As a rule of thumb, whereas
as many as 32, hardly distinguishable quality levels may do
not make much sense, especially for small image resolutions,
4 or 8 quality levels are surely beneficial to enable graceful
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degradation when packets are received from many differ-
ent sources (as in peer-to-peer networks) and the network
scenario is heterogeneous. When p = 17%, 50% of data
is successfully received, and 8 descriptions are generated,
both RDMC and LC/ULP guarantee a quality of approx-
imately 34 dB. When the probability of description loss is
lower (p=1% or 9%), with N = 8, and only a subset of data
is received, RDMC achieves better performance.

Concerning the comparison of the computational com-
plexity of RDMC and ULP, even though a thorough com-
plexity analysis is beyond the scope of the present paper,
RDMC is definitely less complex than ULP at both the en-
coder and the decoder side. In fact, ULP requires the im-
plementation of a demanding code assignment optimization
as in [6, 9]. At the decoder side, ULP requires RS decoding,
whose complexity is quadratic with the code length. RDMC
can be obtained by modifying the rate allocation and Tier-2
modules of a standard JPEG 2000 encoder. In fact, af-
ter the wavelet decomposition, N RD-optimized streams of
the transformed image are generated, and then subsets are
combined from such streams. The DWT and Tier-1 stages
are evaluated only once for each image (as in a standard
JPEG 2000 encoder), so that no modification to these stages
is required. In fact, the RDMC encoder requires a JPEG
2000 encoding at the highest considered rate (lower rates
are embedded in the higher ones), and a splitting of CBs
into the descriptions. The sub-optimal algorithm employed
in this paper adopts a deterministic splitting pattern, which
does not require any optimization procedure.

4. CONCLUSIONS
We presented a performance comparison of a multiple de-

scription coding scheme with an unequal loss protection al-
gorithm based on Reed Solomon FEC allocation. The study
reveals that both schemes allocate the same total redun-
dancy given the same total output rate. Multiple descrip-
tion coding, besides being computationally simpler, achieves
a smoother performance degradation as the number of lost
information increases, whereas LC/ULP yields superior per-
formance in terms of expected PSNR.
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