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ABSTRACT

This paper investigates the development of accurate and efficient

classifiers to identify misbehaving users (i.e., “flashers”) in a mo-

bile video chat application. Our analysis is based on video session

data collected from a mobile client that we built that connects to

a popular random video chat service. We show that prior image-

based classifiers designed for identifying normal and misbehav-

ing users in online video chat systems perform poorly on mobile

video chat data. We present an enhanced image-based classifier

that improves classification performance on mobile data. More im-

portantly, we demonstrate that incorporating multi-modal mobile

sensor data from accelerometer and the camera state (front/back)

along with audio can significantly improve the overall image-based

classification accuracy. Our work also shows that leveraging multi-

ple image-based predictions within a session (i.e., temporal modal-

ity) has the potential to further improve the classification perfor-

mance. Finally, we show that the cost of classification in terms

of running time can be significantly reduced by employing a multi-

level cascaded classifier in which high-complexity features and fur-

ther image-based predictions are not generated unless needed.

1. INTRODUCTION

In this work, we follow common definition in previous research [8,

1, 26, 7, 27] and define flashers (or misbehaviors) as users who

expose their bodies and show obscene content to others such as

males/females showing their lower body part or females exposing

their chests.

While prior research has described successful image-only clas-

sification for online video chat users [8, 1, 26, 7, 27], our focus in

this paper is to investigate first whether these classifiers developed

for online webcam-based video chat users are sufficiently accurate

for mobile video chat users. The main property that was exploited

in the design of previous classifiers based on online data was the

relationship between a face and user behavior: online users who

displayed a face were found to be correlated with normal behavior,

whereas online users who did not display a face were found to be

associated with flashing behavior.

In the new realm of mobile video chat, is the presence or absence

of a face still as strong an indicator of a normal or misbehaving

user? Prior work has shown that there is a wider diversity of scenes

captured by the mobile video chat camera compared with a desktop

webcam used by online video chat users [23]. As we will show, this

greater diversity breaks down the relationship between the presence

of a face and normal behavior. That is, in a mobile setting, we find

that there are many more kinds of normal behavior that do not show

a face yet not necessarily involve flashing behavior. In addition,

there are other challenges introduced by the mobile environment,

such as the appearance of partial faces and motion-blurred scenes

that rarely occur in desktop milieus (see Figures 1 and 2 for some

examples). We show later that previous face-centric classification

achieves the lowest accuracy when operated over mobile video chat

data among the various techniques explored in this paper.

Therefore, our focus in this work is to investigate whether ad-

ditional sensing modalities can be leveraged to improve mobile

flasher classification performance. Today’s smartphones provide a

wealth of contextual data from their mobile sensors, such as three-

axis acceleration, orientation, light intensity, audio, front/back cam-

era state, and image snapshots. We characterize which of these mo-

bile sensors helps to meaningfully improve the accuracy of classifi-

cation, and show that by fusing together classifiers based on images

as well as key mobile sensing modalities like acceleration, camera

state, and audio, the resulting fused classifier is substantially more

accurate than the basic image-only face-centric classifier. More-

over, we demonstrate that by integrating multiple consecutive pre-

dictions within a session by our image-based multi-sensor classi-

fier, accuracy can be further improved.

Besides accuracy, another key focus of this research is to im-

prove the efficiency of classification, namely reducing the running

time of the fused classifier. This is particularly helpful for mobile

devices that are comparatively resource-constrained. We present in

 
 

 
 

 

 

The existence of “flashers”, or misbehaving users who expose

their private body parts, has been a serious problem in online video

chat services which support random video chat among strangers.

As the number of mobile users increases, this problem is also prop-

agating to mobile video chat applications. A recent study has pro-

vided the first insights into user behavior at scale in a mobile video

chat application, assessing a variety of correlative factors that occur

between mobile sensor data and two types of user behavior, namely

normal and flashing user behavior [23]. However, that study did

not address the problem of detecting flashers with high accuracy

and high efficiency. This paper describes the design, development

and evaluation of flasher detection classifiers that uniquely incor-

porate multi-modal mobile sensor data to substantially improve the

classification accuracy and efficiency of random mobile video chat

users, based on a large scale data set derived from a popular video

chat service.
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Figure 1: Examples of mobile phone-captured images that contain objects or background but no human.
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Figure 2: Examples of low-quality images captured by mobile phones.

this paper a multi-level cascaded classifier that achieves efficient

classification while largely preserving accuracy by carefully lim-

iting execution of high-complexity classifiers and further imaged-

based predictions within a session.

In summary, the major contributions of this paper are as fol-

lows. First, we show that prior image-only face-centric misbe-

havior classifier performs poorly on real-world mobile video chat

data. Further, we demonstrate that an enhanced image-only classi-

fier can meaningfully improve performance. Second, we show that

a fused image-based multi-sensor classifier that incorporates the

enhanced image classifier along with accelerometer, camera state,

and audio can achieve significantly improvements on accuracy, pre-

cision and recall. Third, we present a session-based classifier which

leverages multiple consecutive image-based multi-sensor predic-

tions (i.e., temporal modality) and further improves classification

performance. Finally, we demonstrate how cascaded classifier can

be applied to our image-based and session-based classifiers and

proposed a two-level cascaded classification to balance efficiency

and accuracy. We quantify the tradeoffs between classification ac-

curacy and efficiency.

In the remainder of this paper, we first describe related work,

then present our real world mobile data set and the system used

to collect the data set. Next, we introduce the classification algo-

rithms developed for each of the modalities, namely image (basic

and enhanced), audio, and orientation (accelerometer + front/back

camera state), and session-based classification algorithm as well as

the cascaded classification algorithm. We then present a detailed

evaluation of the accuracy, precision, and recall of different classi-

fiers, and finally the tradeoffs between classification accuracy and

efficiency in the cascaded classifiers.

2. RELATED WORK
Desktop-based random video chat services such as Chatroulette

[6], Omegle [20] and MeetMe [13] recently succeeded in gaining

popularity, with tens of thousands of people online at any time dur-

ing the day. Previous works [26] [7] [27] [11] have extensively re-

searched about detecting misbehaviors in such services. SafeVchat

[26] fuses multiple facial evidences (faces, eyes, upper body, etc.)

into a probabilistic model using Dempster-Shafer Theory to clas-

sify normal and misbehaving users. A fine-grained cascaded (FGC)

classifier was proposed to speed up compute-intensive processing

(such as Dense SIFT, HOG) for classification [7]. This cascaded

classifier is limited to local optimization, as it cannot handle the

huge combinatorial number of feature set permutations. Also FGC

uses “normal” prediction as the default stopping condition without

taking into account the confidence of predictions. In our work, we

improve this approach by using global optimization over a com-

pact set of key features and an improved stopping condition based

on the confidence threshold at each stage. EMeralD [27] proposes a

more coarse-grained two-stage classifier (a rule-based pre-classifier

as the front stage and a high complexity binary logistic regression

model as the back stage) to achieve low computation and high ac-

curacy in misbehavior classification. There are also some works

[4] [22] that aim to understand teenage usage in an online video

chat application, while others focus on analyzing video chat usage

within a family [1] [14] [21].

There are very limited studies on user behavior in mobile video

chat. An outline of mobile video chat issues and challenges is pre-

sented in [9]. MVChat [23] has analyzed large scale data obtained

from a random mobile video chat application to understand normal

and misbehaving users. However, this study only reports demo-

graphic information and correlation statistics, and did not proceed

to the next step of developing and evaluating behavioral classifiers

operating on actual mobile video chat data.

Audio samples collected by mobile phones have been widely

studied to provide phone contexts and to support new services.

SoundSense [12] presents a scalable sound prediction architecture

and applies it to an audio daily diary application and a music de-

tector application. SwordFight [28] uses audio tones exchanged

between phones to localize each other and support a real-time mo-

bile motion game.

A layered probabilistic representation of Hidden Markov Mod-

els has been used to fuse multimodal sensing at multiple levels of

temporal granularity to recognize office activities [19] [18] [17].

And to reduce the computation required for sensing and process-

ing, researchers have conducted studies to explore some policies

based on expected-value-of-information (EVI) for selective percep-

tion [18] [17].

We have obtained the code for the latest misbehavior classifier

sent to Chatroulette. This state-of-the-art algorithm is summarized

in Algorithm 1 and referred to as the “CR” algorithm. It is an en-

hanced version of flasher classifier combining works of SafeVChat

[26], EMeralD [27] and FGC misbehavior classifier [7] to tradeoff

efficiency and accuracy. Chatroulette reports that such an approach



reduces their number of server instances by a factor of three from

over 100 servers to somewhat over 30 servers. The CR algorithm

extracts one facial descriptor at a time and then checks whether

that feature satisfies any predefined normal user association rules

related to the existence, number of instances, and spatial relations

of specific features. For example, the FaceRule checks whether

there are two or more faces detected or whether the face width is

more than 2/7 of the longest diagonal between the face center and

four image points; the EyeRule checks whether a pair of eyes has

been detected, and whether both eyes are sufficiently small (less

than 0.03 of image size) and close to each other. If one rule is not

satisfied, the CR algorithm will generate another feature and exam-

ine it with a new rule until the feature set exhausts. These features

and their association rules are ordered according to their relevance

in identifying normal users, with the most relevant features/rules

listed at the top. This algorithm produces up to 13 labels, with la-

bels such as Face (1), Eyes (2), Upper Body (3), etc. Based on

these labels, it is then up to Chatroulette to decide how to classify

whether a user is normal or not. We are not privy to the exact

split point employed by Chatroulette. However, we present later an

exhaustive analysis of all possible split points and choose the best

split point as our CR baseline classifier.

Input img: snapshot image to be classified;

Output 1 ∼ 13: “Normal user” prediction confidence from

high to low;

faces ← FaceDetect (img);

if FaceRule(faces) then
return 1

else

eyes ← EyeDetect (img);

if EyeRule(eyes) then
return 2

else

upbs ← UpbDetect (img);

if UpbRule(upbs) then
return 3

else

mouths ← MouthDetect (img);

...
end

end

end

Algorithm 1: CR algorithm: State-of-the-art classification algo-

rithm for flasher detection in online video chat.

A variety of algorithms for fusing multiple classifiers have been

studied in the literature and are available for use in the Weka toolkit

[25]. These include the J48 Decision Tree [16] [24], Random For-

est [3], AdaBoost [29], Bootstrap aggregating (Bagging) [2] and

Naive Bayes [15] [24]. We analyze the performance of these fused

classification algorithms in a later section.

3. DATA COLLECTION
In order to understand real-world normal vs. flashing behavior at

scale and have better control over data collection, we built an An-

droid based, Omegle compliant, random mobile video chat appli-

cation and deployed it in the Google Play market. This application

has enabled us to collect hundreds of gigabytes of user behavior

data from thousands of real users.

To support our study, we collected multi-modal sensor data to

better capture user behavior during mobile video chat. First, the

application monitors user actions such as start/end of session, cam-

era state changes, and text messages typed during a chat session.

Also our system stores data periodically collected from sensors

such as image snapshots, three-axis acceleration, gyroscope and

audio. To avoid interfering with the video chat, we selected the

following sample frequencies and duty cycles for data collection.

The accelerometer and gyroscope data are sampled at 5Hz; peri-

odic image snapshots are captured every 30 seconds with a resolu-

tion of 160x120 pixels; a 10-second audio is recorded for every 40

seconds at 8 kHz. Finally, in our system, each user is assigned a

unique UserID and the system also generates a unique SessionID

for each video chat session. All the behavioral and sensor data

are logged along with the corresponding timestamp, UserID, and

SessionID information. Institutional Review Board (IRB) approval

was obtained for all data collected in this study. Users who down-

loaded our application were required to give their informed consent

during installation.

4. FLASHER DETECTION ALGORITHMS

4.1 Image-based Classification

4.1.1 CR Performance on Mobile Video Chat Data

To detect flashers in mobile video chat, we choose as our baseline

the CR algorithm, which is state-of-the-art for desktop-based video

chat services. As mentioned earlier, CR generates 13 classification

labels, and a split threshold is used to determine how many features

need to be detected for a user to be classified as normal. Figure 3

shows the accuracy of CR using different split thresholds. There is

a slight peak at 8, which achieves the best accuracy of ∼63%.

Figure 3: Classification accuracy of the CR algorithm on mo-

bile video chat data using different split thresholds.

We posit the following reasons to explain the relatively limited

performance of the CR algorithm:

(1) As shown in Figure 1, mobility results in much more diverse

image content. The CR algorithm relies on facial features to pre-

dict whether a user is normal or misbehaving. In the online case,

the absence of a face implies a misbehaving user with a very high

confidence. However, in mobile video chat, we notice that there

are a large number of video sessions that do not contain any faces

and at the same time do not contain any objectionable content. In-

stead, they focus on the background or interesting objects around

the users. An earlier research work showed that in a mobile video

chat application, nearly 40% of video chat users show “others” type



of content which does not include a human [23]. Also, due to the

lack of front camera on some low-end Android devices, some users

cannot show their faces while chatting.

(2) Mobility also results in poor quality images that are blurred.

Further, the distance between a user and the mobile camera is much

shorter than that for desktop webcam-based users. Along with a

limited wide angle camera, this results in many partial faces in the

images (see Figure 2).

(3) Facial feature association rules defined in the CR algorithm

are not as applicable on the mobile platform. For example, the Eye-

Rule in the CR algorithm tries to detect a valid pair of eyes, where

the distance between the eyes is fixed between 20 and 70 pixels.

But since the mobile phone allows the user to put the camera close

to their face, the faces can be much larger on the screen than typical

webcams, resulting in larger distances between the eyes (Figure 2,

third image). Also, the UpbRule in the CR algorithm looks for an

upper body whose size is bigger than 40% of the image size. For

the same reason of closeness between the mobile camera and the

user, this rule is less applicable for mobile video chat images.

4.1.2 Enhanced Image-based Classification

Based on the observations above, we propose an enhanced image-

based classifier, which improves upon the CR algorithm in two

ways: 1) incorporates new features to detect images that do not

contain any humans; and 2) improves the accuracy of facial feature

detection on mobile video chat data. In particular, we incorporate

the following five features:

Face size and proportion: Because of the short distance be-

tween user and the mobile camera, faces in mobile video chat tend

to be much larger, occupying most of the screen space. So, we filter

out all faces whose sizes are less than 1/6 of the image.

Pair of eyes: In low-quality mobile video chat images, it is dif-

ficult to detect a single eye. So, we focus on detecting only a pair

of eyes that are close to each other and located in the same horizon.

Skin proportion: Skin proportion is a good feature to separate

images containing humans from pure background content. We con-

vert images to the YCbCr color space, which has been shown to be

robust against large variations in lighting conditions and effective

in skin detection [5].

Number and distribution of SIFT points: Scale-Invariant Fea-

ture Transform (SIFT) is well-known for object detection and was

previously used for flasher detection [7]. Our analysis shows that

images that do not contain humans tend to have either very few

or a very large number of SIFT points and these points are typi-

cally scattered randomly. On the other hand, images that contain

humans seem to have a medium number of SIFT points and those

points are mostly concentrated around the facial area. We use the

standard deviations of SIFT points’ x and y positions to capture the

distribution of SIFT points in an image.

Color histogram distribution: Images with only background

content have very simple color hue, and generate sharp peaks and

long tails in their color histograms. This pattern can be used to

differentiate between images containing human from images con-

taining only simple background. In our experiment, we use sixteen

bins to measure R/G/B color histogram and calculate the standard

deviations for the histogram distributions.

4.2 Sensor-based Classification
Mobile devices are equipped with a variety of sensors, such as

accelerometer and gyroscope. In addition, newer smartphones are

equipped with two cameras, both front and back. Those sensors

can offer some useful contextual information about user behav-

ior during a video chat. The question is which sensors and how

they can be leveraged for flasher detection. Since many of our mo-

bile video chat users have older Android phones that do not have

gysoscope, our investigation focuses on the three-axis accelerome-

ter data, which are available across all smartphone platforms.

Our preliminary analysis indicates that normal or misbehaving

users’ video chat content is highly correlated with the position that

a mobile camera focuses on. This can be estimated by phone ori-

entation along with active camera position (front or back). Further-

more, during a chat session, normal users tend to keep their phones

stable, while flashers’ phones have more slight vibrations.

In this work, for each snapshot image, we collect acceleration

data for the two seconds before and two seconds after when the

snapshot is captured. After applying a smoothing function to the

four-second accelerometer data, we calculate the mean and stan-

dard deviation values along the three axes. These values are com-

bined with the active camera (front or back) information to repre-

sent phone orientation and vibration during video chat.

4.3 Audio-based Classification
Besides image-based and sensor-based features, we also investi-

gate the potential of using audio data to classify normal vs. misbe-

having users in mobile video chat. We first labeled our audio data

using six different categories: 1) Deep Breath; 2) Music; 3) TV; 4)

Quiet; 5) Talk; and 6) Others (ambient noise with unrecognized au-

dio). Figure 4 shows the number of normal and misbehaving users

in the six different audio categories. We see that users who “Talk”

are usually normal users while “Quiet” users are more likely to be

misbehaving.

Figure 4: Number of normal vs. misbehaving users in different

audio categories.

A lot of research has been done to predict audio categories by

analyzing audio signals and has achieved very promising results

[10] [12]. Our audio class prediction algorithm is based on these

earlier works and consists of the following four steps.

The framing step segments each 10-second audio clip into non-

overlapping 64-ms frames. In the feature extraction step, we ex-

tract the following features from each audio frame: (i) Root Mean

Square (RMS) that captures the overall energy; (ii) Spectral en-

tropy that indicates the frequency pattern of the audio frame: a

high entropy resulting from flat spectrum strongly suggests silent

audio; (iii) Zero Crossing Rate (ZCR) that measures sign change

rate of a signal, which is effective in speech recognition and mu-

sic information retrieval; (iv) Bandwidth: ambient sound typically

has a small bandwidth and music consists of a wider mixture of

frequencies; and (v) first 13 Mel-frequency Cepstral Coefficient



(MFCCs) that is a better approximation for human auditory sys-

tem and has been proved to be effective to identify finer-grained

audio categories. For inter-frame feature extraction, we consider

n consecutive frames. We average the features extracted from the

individual frames and calculate the standard deviation to measure

feature changes among the frames. Finally, for audio category

prediction, we feed the features into a J48 classifier to make a pre-

diction for each frame window. The audio class that receives the

majority vote among multiple frame windows is picked as the final

prediction for an audio clip. The only exception is that, once an

audio frame is determined to be in the “Talk” category, the whole

audio clip is assigned to the “Talk” category.

4.4 Session-based Classification
Our analysis also indicates that people tend to behave consis-

tently during a video chat session, and seldom switch between nor-

mal and flashing behaviors. Motivated by this observation, we pro-

pose a session-based flasher detection mechanism that leverages the

temporal modality and takes as input the classification results of

multiple image snapshots and their corresponding sensor readings

to generate a more reliable normal vs. misbehaving user prediction

for a whole session.

Our session-based classification algorithm works as follows. For

each snapshot image and its corresponding sensor data, our image-

based multi-sensor classifier gives a binary prediction (Normal vs.

Misbehaving) along with a confidence value. A value in the range

of [0, 0.5) (or (0.5, 1]) indicates misbehaving (or normal), and the

lower (or higher) the value, the higher the likelihood that the user

is misbehaving (or normal). We apply a 6-bin discretization on the

binary prediction and confidence values, specifically,

strong_normal : normal + conf ∈ [0.75, 1]

medium_normal : normal + conf ∈ (0.65, 0.75)

weak_normal : normal + conf ∈ (0.5, 0.65] (1)

weak_mis : misbehaving + conf ∈ [0.4, 0.5)

medium_mis : misbehaving + conf ∈ (0.25, 0.4)

strong_mis : misbehaving + conf ∈ [0, 0.25]

Then, for each session, we calculate the number of occurrences

in each bin. We also measure the min, max, mean, and standard

deviation of all the prediction confidence values in a session. All

these features are fed into a Naive Bayes classifier to generate the

final prediction for each session.

4.5 Cascaded Fusion Classifier
Given multiple features, one straightforward classification ap-

proach is to simply combine all features together. However, this

is wasteful, since not all features are necessary when classifying a

specific instance. For example, a user can be classified as normal

with high confidence when a face is detected. Motivated by this

observation, we propose cascaded classification. As illustrated in

Figure 5, a cascaded classifier consists of a sequence of classifiers

ordered by certain criteria (objective function Fobj) such as average

acquisition time or accuracy. Samples that need to be classified pass

through the classifiers in stages. At the i-th stage, a new feature fi
is extracted (acquisition time ti) and used by classifier Ci (alone

or with previously extracted features) for classification. If the clas-

sification confidence of Ci on a sample is above the confidence

threshold σi, the classification process stops and the decision made

by classifier Ci on the sample is accepted as the sample’s final clas-

sification. Otherwise, the sample is passed to the next stage classi-

fier Ci+1 for further processing. Since samples classified with high

confidence at earlier stages do not need to go through later stages,

the overall classification time can be reduced, while still ensuring

high classification accuracy. The challenge lies at the design of the

objective function, which determines the ordering of the classifiers

to be used at each stage.

Figure 5: K-stage cascaded classifier.

4.5.1 Image-based Multi-sensor Cascading

Given each snapshot image and its corresponding sensor data,

our image-based multi-sensor classifier fuses together multi-modal

features in order to make a classification of normal vs. misbehav-

ing users. Specifically, we aim to build a seven-stage cascaded

classifier corresponding to the seven features (face, eye pair, skin

proportion, SIFT number and distribution, color histogram, phone

orientation, and audio category). Using cascaded fusion, the key

is to utilize at earlier stages features that are efficient to compute

and have high classification confidence, thereby reducing/avoiding

more complex feature computations at later stages. The compact

set of features and the relatively small number of permutations

(7!) of the seven features make it possible for global optimization.

To balance between classification accuracy and efficiency require-

ments, we design the following cascaded fusion classifier objective

function:

Fobj = Tsave + α · PK (2)

Tsave =
TK ·NK

N0

(3)

Ti = (Ti−1 − ti) ·
Ni−1

Ni

i ∈ [0,K − 1] (4)

T0 =

K∑

i=1

ti (5)

γ =
T0

T0 − Tsave

(6)

Here, PK is the overall classification accuracy after the K-th stage.

Ni−1(i ∈ [1,K]) is the number of samples passed into the i-th
stage for classification. Note that NK equals NK−1 since the last

stage classifies all remaining samples. ti is the acquisition cost for

feature fi. Assuming at the beginning of the cascaded classifica-

tion process, each of the N0 samples is allowed T0 amount of time

for classification, i.e., going through all K stages. As more sam-

ples are filtered out and classified at earlier stages, the total amount

of unused time (Ti−1 − ti) · Ni−1 is divided over the remain-

ing Ni samples, which is less than or equal to Ni−1. Therefore,

Tsave measures the amount of time saved per original sample, and

γ measures the speedup ratio compared with the full-fusion pro-

cess with all features. Finally, parameter α controls the importance



Table 1: Classification Quality Comparison of Different Image Features
Accuracy Normal Precision Normal Recall Misbehaving Precision Misbehaving Recall

CR Algorithm (baseline) 0.630 0.694 0.518 0.608 0.765

Face+Histogram+Skin+SIFT+Eye 0.689 0.713 0.646 0.669 0.733

Face+Histogram+Skin+SIFT 0.680 0.700 0.644 0.663 0.717

Face+Histogram+Skin 0.665 0.681 0.637 0.651 0.693

Face+Histogram 0.633 0.644 0.616 0.623 0.651

Face 0.588 0.962 0.195 0.546 0.992

Eye 0.520 0.558 0.249 0.509 0.798

Histogram 0.594 0.600 0.591 0.587 0.596

Skin 0.565 0.570 0.573 0.560 0.557

SIFT 0.568 0.574 0.574 0.562 0.563

ratio between the acquisition cost requirement (average execution

time) and the accuracy requirement.

4.5.2 Session-based Cascading

Given the temporal ordering of data in a video chat session, the

sequence of snapshot images and their corresponding sensor data to

be used for classification is fixed in a session. Thus the key issue for

session-based cascading is determining the actual number of cas-

cade stages to include in order to achieve a good balance between

classification accuracy and efficiency. In other words, our goal is

to explore the impact (or tradeoff) of different number of cascade

stages on the overall session-based classification performance.

5. EVALUATION
In this section, using real-world data collected from our mobile

video chat system, we first evaluate classifier performance on in-

dividual features. We show that by fusing together features ob-

tained from image, audio, and multiple sensors, we can signifi-

cantly improve the classification accuracy, compared with the base-

line CR algorithm, which is state-of-the-art for online video chat

systems. Also, we show that session-based classification further

improves the classification accuracy by leveraging the temporal

modality containing multiple classification results within a session.

Finally, we measure the execution time of different features, and

correspondingly the tradeoff between accuracy and efficiency us-

ing image-based multi-sensor cascading and session-based cascad-

ing methods.

Let Rn and Rm be the sets of normal and misbehaving users

identified by a given classifier, respectively. Let In and Im be the

sets of true normal and true misbehaving users. We consider the

following five different classification quality metrics:

Accuracy =
|Rn ∩ In|+ |Rm ∩ Im|

|Rn|+ |Rm|

Normal Precision = |Rn ∩ In|/|Rn|

Normal Recall = |Rn ∩ In|/|In|

Misbehaving Precision = |Rm ∩ Im|/|Rm|

Misbehaving Recall = |Rm ∩ Im|/|Im|

5.1 Dataset
According to a previous study on mobile video chat [23], most

video chat sessions are short because users keep requesting the next

random user pairing until they have found someone interesting to

chat for a longer session. In our analysis, we focus on these “mean-

ingful" sessions whose durations are more than 90 seconds, which

allow us to collect at least 4 snapshot images and 3 audio clips

for each session and are sufficient for session-based classification

evaluation. From our dataset, we obtain nearly 350 labeled mis-

behaving sessions and 1450 labeled normal sessions. The ratio is

approximately 1 to 4, which is consistent with the finding in [23].

To deal with this skewed distribution and avoid over-training for

the normal category, we then pick a balanced dataset containing

348 misbehaving sessions and 357 normal sessions. For all these

sessions, we only consider the first 90 seconds. And the four snap-

shot images contained in each 90-second session are split into four

subsets. In all image-based classifier evaluation, the four subsets

of data are evaluated separately using ten-fold cross validation and

the average is reported as the overall performance.

When labeling images as normal or misbehaving, we follow a

procedure that is similar to the one used in [23]. Misbehaving

users were identified as displaying naked lower bodies for males

and naked lower and/or upper bodies for females. Two people la-

beled the same data set. If an image received conflicting labels,

then the two labelers would meet to resolve the conflict.

Audio labeling was also performed by two people with a simi-

lar procedure. Apart from our test audio dataset collected from the

mobile video chat clients, we also captured a 10-minute training

dataset for each of the six predefined audio categories described

earlier. After experimenting with different frame sizes, we found

that when window size n = 16, our predictor provides the best per-

formance. This results in each frame window to be approximately

1 second in length (16× 0.064 = 1.024s).

5.2 Image-based Classifier Performance
We begin by examining the best classification performance that

could be achieved using image-only features. The baseline classi-

fier we use is the CR algorithm, which is a face-centric, image-only

algorithm that is currently used by Chatroulette, and is considered

state-of-the-art for flasher detection in online video chat systems.

In our enhanced image-based classifier, we consider five features

(number of faces, existence of eye pair, color histogram statistics,

SIFT feature vectors, and skin proportion). We report the classi-

fication performance using each individual features, as well as the

fused features using Random Forest1.

Table 1 summarizes the classification performance when differ-

ent image-based features are used. In particular, we find that all

proposed features are important factors in improving the accuracy

of the image-based classifier. Compared with the 0.630 accuracy

achieved by the baseline CR algorithm, our enhanced image-based

classifier, which combines all five features (face, eye, histogram,

skin, SIFT), achieved an improved accuracy of 0.689.

5.3 Audio Category Classifier Performance
Table 3 shows the confusion matrix of our audio category clas-

1We evaluated different fusion techniques and Random Forest
achieves the highest accuracy.



Table 2: Classification Quality Comparison of Multi-sensor Fusion
Accuracy Normal Precision Normal Recall Misbehaving Precision Misbehaving Recall

Enhanced Image 0.689 0.713 0.646 0.669 0.773

Audio 0.606 0.675 0.431 0.574 0.787

Acc. + Camera Position 0.769 0.764 0.787 0.775 0.750

Acc. + Camera Position + Enhanced Image 0.804 0.810 0.807 0.803 0.805

Acc. + Camera Position + Enhanced Image + Audio 0.820 0.822 0.821 0.817 0.818

sifier, i.e., the number of audio instances in each category that

are (mis-)classified into other audio categories. We see that Deep

Breath are often misclassified as Others due to ambient noise in

the background, and the TV category is likely to be misclassified

as Talk, Music or Others since TV audio could contain variants of

these types of sound as well. Overall, our audio classifier achieves

an accuracy of 0.70, and performs well for the two categories that

are most effective for flasher detection (0.95 accuracy for the Quiet

category and 0.73 accuracy for the Talk category).

Table 3: Confusion Matrix of Audio Category Prediction

Deep Breath Music Others Quiet TV Talk

Deep Breath 52 6 131 2 6 19

Music 2 35 5 0 19 12

Others 67 27 1193 104 49 93

Quiet 0 0 7 122 0 0

TV 6 61 55 4 200 73

Talk 10 14 60 2 40 344

5.4 Multi-sensor Fusion Classifier Performance
A major goal of this paper is to understand whether and to what

extent multi-modality mobile sensor data can help improve the flasher

detection performance, compared with previous face-centric image-

only classification. Here, we evaluate the classification quality us-

ing multiple sensors. In particular, we examine the following three

modalities: (1) image: the enhanced image-only classifier devel-

oped earlier that combines face, eye, skin proportion, sift and his-

togram distributions; (2) orientation: the phone orientation-related

features processed from 3-axis accelerometers and camera position

(front/back); and (3) audio: the predicted major audio category as

well as a vector containing the predicted occurrences of each audio

category.

Table 2 shows the classification quality of different sensor modal-

ities as well as the fused results using Random Forest. We find that

the mobile accelerometer and camera sensors used by the Orien-

tation classifier result in a strong gain in accuracy to 0.769 com-

pared to our previous best enhanced image-only classifier of 0.689.

Moreover, we find that when fusing the orientation and enhanced

image classifiers together, we can achieve an additional gain in ac-

curacy to 0.804. Finally, when we fuse all three modalities (mobile

sensor + enhanced image + audio), we observe a final overall accu-

racy gain to 0.820. In addition, we see that normal and misbehavior

precision and recall values are all improved up to 0.82 as we fuse

together more sensing modalities. This demonstrates that combin-

ing contextual information from multiple sensing modalities sub-

stantially improves the overall classification performance of flasher

detection on mobile video chat data.

We also evaluate our multi-sensor fusion classifier’s performance

over different fusion algorithms. We choose to compare five dif-

ferent fusion algorithms (J48 Decision Tree, Random Forest, Ad-

aBoost, Bootstrap Aggregating (Bagging) and Naive Bayes) on our

dataset, using default parameter settings from the Weka toolkit.

Table 4: Session-based Classifier Quality Comparison
First x Image Predictions Used 1 2 3 4

Major Voting 0.815 0.823 0.850 0.848

Normal Dominated 0.815 0.823 0.812 0.807

Misbehavior Dominated 0.815 0.817 0.803 0.780

Average Confidence 0.815 0.838 0.855 0.845

Naive Bayes (our approach) 0.815 0.843 0.854 0.859

While other fusion algorithms’ quality values are mostly below

0.80 and/or unbalanced between precision and recall, Random For-

est achieves the highest accuracy of 0.820 and balanced results over

precision and recall for normal and misbehaving users.

5.5 Session-based Classifier Performance
Here, we evaluate the classification quality of our session-based

classifier. We consider the first x(x = 1, 2, 3, 4) image predictions

in each session, and different policies to combine the prediction re-

sults. The policies include Major Voting, Normal (Misbehaving)

Dominated which predicts the user to be Normal (Misbehaving)

when at least one image prediction is Normal (Misbehaving), av-

erage confidence, and Naive Bayes (used by our proposed session-

based method).

The results are summarized in Table 4. When only the first

image prediction is used, an accuracy of 0.815 is achieved. Us-

ing more image predictions generally improves the classification

accuracy. The most gain is achieved with Naive Bayes (our ap-

proach) and all 4 image predictions, which resulted in an accuracy

of 0.859. We also find policies such as Normal/Misbehavior Dom-

inated perform worse with more image predictions, since they use

partial result (ignore confidence) and focus on local information.

5.6 Classifier Efficiency on Mobile Devices
Flasher detection is a computation intensive task. For example,

using the CR algorithm, Chatroulette needed 30–40 servers running

24/7 to identify misbehaving users in a timely fashion. For mobile

video chat, one option is sending all sensor data back to central

servers for classification, but that incurs significant network traffic

and delay as well as extra workload on the central servers. One key

question that we want to address here is whether our multi-sensor

flasher detection method is feasible for mobile devices.

We have implemented all our sensor feature extraction function-

alities using the C language on Android phones and used JNI to

call them. During our experiments, we ran our mobile video chat

application and maintained an active video chat session in the fore-

ground to emulate a practical execution scenario. In the back-

ground, we executed all feature extraction operations with the same

frequency as our image sample rate (one snapshot image every 30

seconds) to mimic real-world conditions. We also built a lightweight

resource measurement Android service that runs continuously in

the background to monitor phone resource usage. We conducted

experiments on two different types of mobile phones: 1) HTC One

: an advanced quad-core 1.7 GHz Android phone with 2 GB of

memory; and 2) Galaxy Nexus: a medium range dual-core 1.2



Table 5: Acquisition Time Comparison of Different Features
Feature HTC One Galaxy Nexus

Face 1.014s 2.373s

Eye 0.404s 1.665s

SIFT 0.226s 0.335s

Skin 0.033s 0.040s

Histogram 0.032s 0.040s

Audio 0.469s 1.673s

Acc. + Camera State 0.003s 0.002s

Total 2.181s 6.128s

GHz Android phone with 1 GB of memory, representative of many

phones with similar capabilities in the market nowadays.

Table 5 shows the average acquisition time for extracting dif-

ferent features on mobile devices. Note that the feature acquisi-

tion time dominates the overall classification time since classifiers

are pre-trained and takes minimum time to execute while features

need to extracted at runtime. We notice that face detection is the

most computationally intensive task, followed by audio and eye

feature extraction. On the other hand, extracting features such as

acc.+camera state, skin proportion, and histogram has only negli-

gibly impact the overall running time on both dual and quad core

phones. Overall, the fused classifier takes almost three times

longer to run on a dual-core over a quad-core phone. The most

important finding here is that our classifier runs reasonably effi-

ciently on both phones (2–6 seconds). Further, we could not detect

any noticeable impact on the quality of the video chat service that

runs concurrently with the classifier. This shows that it is feasible

to run our classifier on the phone itself, thus taking off significant

burden from the servers. We also measure the energy usage of our

fusion classifier. Compared with the large battery drain cost by the

mobile video chat application, the energy used by our classifier is

negligible.

5.7 Cascaded Classifier Performance
Given the execution time measurements obtained above for indi-

vidual features, we can now evaluate to what extent cascaded fusion

can help to further reduce the classifier’s running time while main-

taining certain accuracy requirements. We conduct this evaluation

for both cascaded fusion scenarios: (1) image-based multi-sensor

cascading which is based on a single snapshot image and its corre-

sponding sensor data; and (2) session-based cascading which uti-

lizes multiple images-based multi-sensor predictions in a session.

5.7.1 Image-based Multi-sensor Cascading Perfor-
mance

Given the measured feature acquisition time ti (i ∈ [1,K])
shown in Table 5, we can calculate T0, which is the total amount of

time needed per sample to go through all K stages. In our remain-

ing evaluations, we use the running time measured on HTC One

and T0 = 2.181s as the all-stage execution time per sample.

Our first experiment explores the influence of the confidence

threshold σ on the performance of the cascaded classifier. We are

especially interested in two special cases for optimizing the objec-

tive function: (i) the case where we seek an ordering of the cascade

that maximizes efficiency or time saved (α = 0), which we re-

fer to as “best average saving time” Tsave(BAST ); and (ii) the

case where we seek a cascade ordering that maximizes accuracy

(α = ∞), which we refer to as “best final accuracy” P (BFA).

For all our experiments, we use the same confidence threshold

for every stage. And as mentioned before, Weka generates a bidi-

rectional confidence distribution for binary classification. For ex-

Figure 6: Bidirectional confidence distribution generated by

Weka for binary classification.

Figure 7: Optimal cascaded classifier performance by the (L)

BAST criterion and by the (R) BFA criterion.

ample, Figure 6 indicates that misbehaving prediction has confi-

dence between 0 and 0.5 and the the lower the value, the more con-

fident the prediction; while normal prediction has confidence val-

ues between 0.5 and 1 and the higher the value, the more confident

the prediction. Because of this, we need two distinct confidence

thresholds σ1 and σ2 for misbehaving and normal user classifica-

tion respectively. Since the bidirectional confidence distribution is

nearly symmetric, in our study, for simplicity we define a new fac-

tor named “confidence cutting threshold” ρ which is derived from

the confidence threshold σ:

ρ = | σ − 0.5 | (7)

Then ρ can somehow represent the value for both σ1 for misbe-

having users and σ2 for normal users such that when ρ = 0.3,

σ1 = 0.2 and σ2 = 0.8.

Figure 7 shows the results of our experiments. From the figure,

we make several important observations:

• For the BAST criterion, increasing the confidence cutting

threshold for each stage of the cascaded classifier results in

an optimal cascaded classifier with lower saving time but

higher accuracy. This is because a high confidence threshold

adds a high stopping requirement at each stage, which makes

the overall cascaded classifier more conservative and causes

more samples to proceed deeper into the cascade’s stages.

While for the BFA criterion, there is a same trend found for

speed up ratio but the accuracy goes down when confidence

cutting threshold is very high (ρ = 0.4 and ρ = 0.45). This

indicates for some samples, too many indicators might make

negative contributions for the predictions.



Table 6: Structure and Performance of Optimal Cascaded

Classifier for BAST and BFA when ρ = 0.75

Stage i
BAST BFA

New Features Ni New Features Ni

1 Skin 1810 Acc+Cam 1203

2 Acc+Cam 793 Sift 1203

3 Histogram 568 Skin 848

4 Audio 422 Histogram 651

5 Eye 345 Face 520

6 Face 297 Audio 393

7 Sift 0 Eye 0

• For the BAST criterion, with a reasonable confidence cutting

threshold (ρ = 0.25 or ρ = 0.3), the optimal cascaded clas-

sifier can achieve a final accuracy of about 0.77 and mean-

while reduce average running time by a factor of 6.3. Ta-

ble 6’s columns 2 and 3 illustrate the optimal ordering of the

stages and the flow of samples through this cascaded classi-

fier, where again Ni−1 means the number of samples passed

into the i-th stage, and each run starts with a balanced data

set of 2820 total samples from 705 sessions that are then pro-

cessed through the cascaded classifier.

• For the BFA criterion, with the same threshold (ρ = 0.25 or

ρ = 0.3), the optimal cascaded classifier can maintain even

better performance (0.83 accuracy) than our fusion classifier

while achieving a modest 4.4 time speedup in execution time.

Table 6 columns 4 and 5 show the optimal ordering of stages

to maximize accuracy, and the sample flow through the cas-

caded classifier.

Figure 8: Optimal cascaded classifier performance on different

control balance and confidence threshold.

Our second experiment seeks to understand the tradeoff between

efficient and accurate classifications for a wider range of values α
of the defined objective function Fobj , not just the two extrema

of BAST and BFA. We let α range across the values {0 (BAST),

0.001, 0.01, 0.1, 1 (equal weight), 10, 100, 1000, ∞ (BFA)}. Fig-

ure 8 shows the tradeoff function between speedup ratio and ac-

curacy for the optimal cascaded classifier across a range of α, and

also shows different curves that correspond to different confidence

cutting thresholds ρ. Based on this figure, we make the following

observations:

• Each function (ρ constant) exhibits a similar shape wherein

the low α values are clustered together on the upper left, fol-

Table 7: Session-based Cascaded Classifier Performance

Cascade start image id 1 2 3 4

Accuracy 0.848 0.854 0.856 0.859

Aver Image Used for Prediction 1.29 2.17 3.11 4

Speedup Ratio 3.10 1.84 1.29 1

lowed by an inflection point farther down and right that rep-

resents the balance point α = 1, followed by a clustering of

the high α values even further down and to the right.

• Overall, execution time speedups range from a factor of 1.25

to 13.36 times while the final accuracy correspondingly de-

creases from 0.829 to 0.732.

• Similar to our previous observation for just the two extrema,

fixing α across our large range still results in the trend wherein

a lower confidence threshold ρ generates an optimal cas-

caded classifier with a higher factor of time savings and gen-

erally a lower final accuracy only except when ρ is pretty

high (0.95).

Figure 8 helps to quantify the general tradeoff between effi-

ciency and accuracy for our cascaded classifier on different require-

ments. If we wish to achieve a certain efficiency speedup target,

then we can assess by precisely how much the accuracy will be

sacrificed. Whereas, if we wish to boost the accuracy to a given

level (higher ρ), then we will be able to determine the amount of

reduction in the speedup factor of the execution time. For exam-

ple, if we desire to push the edge on speed, then we can achieve

an approximately 13X speed gain, with nearly the same accuracy

at about 0.819. If our goal is to push the edge on accuracy, then

we can obtain a better accuracy of 0.831 - the best that even the

non-cascaded multi-sensor fusion classifier wasn’t able to achieve

- at the cost of earning only a 3X speed gain.

5.7.2 Session-based Cascading Performance

For our session-based classifier, features are derived from the

prediction results generated by our image-based multi-sensor fu-

sion classifier. Since the image sequence is fixed for a session, a

full stage (4 stages in our study) session-based cascaded classifier

have only one possible ordering. So in our evaluation, we focus

on: 1) what performance our full stage cascaded classifier could

achieve; 2) how accuracy and efficiency change when the cascade

starts at later predictions namely a partial stage cascaded classifier.

Table 7 indicates with a full stage cascaded session-based clas-

sifier, we can achieve more than 3X speed gain at the cost of only

1.1% accuracy reduction. Also it indicates by waiting a little longer

to start the cascaded prediction, classification can reach nearly the

same accuracy as non-cascaded classifier at the cost of executing

very small amount of image predictions. For example, if we decide

to start the cascaded classifier after the second image-based pre-

diction is generated, the overall session-based classifier can reach

0.854 accuracy by only requiring 2.17 image predictions which

could achieve more than 2X speed gain.

5.7.3 Multi-level Cascading Performance

Finally, we combine our image-based multi-sensor fusion cas-

caded classifier with session-based cascaded classifier together, build-

ing a two-level cascaded misbehavior classification. In image-based

fusion cascaded classifier, we choose ρ = 0.3 and α = 1 and the

classifier achieves 13.15X speed gain with accuracy equal to 0.819.

In session-based cascaded classifier, the cascade classifier chooses

to start once the second prediction is generated. In total, our multi-

level cascaded classifier reaches 0.843 accuracy while taking only



0.408 seconds for a session prediction which achieves a signifi-

cantly 21X speed up compared with non-cascaded session-based

classification (which takes 2.181 ∗ 4 = 8.724 seconds).

6. CONCLUSIONS
This paper presents a multi-modal fusion framework for accu-

rate and efficient flasher detection in a mobile video chat applica-

tion. First, we show that traditional face-centric image-based clas-

sification developed for online video chat users achieves only 0.63

accuracy when applied to a balanced real world data set of nor-

mal and misbehaving mobile video chat users. We further show

that our enhanced image classifier improves overall accuracy to

0.69. Second, we demonstrate that an image-based multi-sensor fu-

sion classifier that integrates mobile accelerometer data along with

front/back mobile camera position and audio category can substan-

tially improve the overall accuracy to 0.82. Third, we explore the

temporal modality and by leveraging four image-based predictions

within a session, our session-based classifier achieves a further im-

provement to 0.86 accuracy. Fourth, we demonstrate the feasibility

of running the fused multi-modal misbehavior classifier on mobile

devices, and then design and evaluate multi-level cascaded classi-

fier to quantify the tradeoff between efficiency and accuracy. We

show that with a certain configuration, our classifier could achieve

21X speedup gain with a reasonable 0.84 accuracy.
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