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ABSTRACT
Thanks to the large diffusion of small wearable devices there are
several systems designed for indoor localization. Among the pro-
posed solutions, RF-based systems have been deeply investigated
due to their flexibility and limited costs. When these systems are
employed as assistive tools, they should be dependable, recognizing
autonomously when they are affected by a fault. In this paper, we
present a method to provide multiuser localization with concurrent
fault detection. We focus on two possible sources of faults: natural
hardware (e.g., empty battery, faulty components) and human-made
(e.g., device not worn). The presented methodology relies on two
independent measurement systems and on a model based fault de-
tection apparatus, checking for discrepancies in the behavior of the
subsystems. This method is implemented to provide dependable
localization in fragile people (such as elderly or people with small
impairments) dwellings. We present examples of simulations in a
large environment, and an implemented case-study. The collected
data confirm the validity of the approach.
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Categories and Subject Descriptors
B.8.1 [PERFORMANCE AND RELIABILITY]: Reliability, Test-
ing, and Fault-Tolerance; C.4 [PERFORMANCE OF SYSTEMS]:
Reliability, availability, and serviceability

1. INTRODUCTION
Indoor human localization and tracking is a growing technology,

boosted by the development of small, wearable, cost effective, low
power devices. Localization systems are the basis for context-aware
services, advertising, navigation and other commercial activities.
This implies they are an important actor in Smart Cities and Smart

Environments, bounding real world to virtual spaces (social net-
works, websites, etc.).
Nonetheless Indoor Localization Systems are being widely used
also as assistive tools in many environments. In these settings they
are usually designed to support (or restore) independent life. One of
the most important needs is certainly the need for security, which
stands at the second level of Maslow’s hierarchy [15], being highly
important for all the human beings. This applies both to fragile peo-
ple (such as elderly, people suffering from small impairments), who
need their family to be watching over them, and to their families,
who want to be sure that their loved ones are in safe conditions. An
assistive system, able to share the position of a fragile person to
his/her relatives, can play a significant role, being a tool to satisfy
these needs. Moreover is not uncommon for fragile people living
alone, to experience serious consequences due to domestic falls or
accidents.
This work refers to Indoor Human Localization (IHL) systems for
fragile people, where dependability features are needed and often
other assistive systems are already deployed. The main idea is to
exploit already-in-place sensors, as a source of redundant informa-
tion about the person’s position. Crossing this information with the
one from the IHL system, through a model based analysis, enables
to identify both systems faults. While most of the design effort
for dependability is usually devoted to manage faults generated by
components of the system (e.g., hardware or software, technically
named natural faults), in this work we will focus also on those
generated by the users, also called human-made faults. In this paper
we present the method, the design and a reliable implementation
of such IHL system, where natural and human-made faults can be
detected.

2. RELATED WORK
In order to improve the reliability of localization systems, differ-

ent approaches have been implemented. In this section first we will
introduce indoor human localization techniques from the literature,
then we will report the approaches carried on to improve reliability.

2.1 Indoor Humans Localization
Nowadays several technologies for IHL, based on various physical

principles, are available. Torres-Solis et al. [26] classify IHL sys-
tems based on the measured quantity: photonic energy, sonic waves,
mechanical energy, magnetic fields, atmospheric pressure and ra-
dio frequency (RF) waves. This last physical quantity is widely
used, in cost-effective and flexible systems, by leveraging different
methods. Focusing on RF-based methodologies, the main sampled
quantities, observed to perform localization, are: Angle of Arrival,



Time of Flight, Differences in Time of Arrival, Received Signal
Strength (RSS) [26, 8, 11]. Depending on the observed quantity it
is possible to adopt a method based on Lateration/Angulation (com-
puting a precise position in space from three or more measurements
of distance/angle from known locations [8]) or on Fingerprinting
(defining specific areas in the environment and identifying the target
presence in one of them [8]). Looking at different technologies
inside the RF category, system can leverage Radio Frequency Identi-
fication (RFID), Wireless Local Area Network (WLAN), Bluetooth,
Wireless Sensor Netwok (WSN), Ultra Wide Band (UWB), TV
broadcasts (UHF) or mobile phone communications (UMTS, GPRS,
etc.) [8].

2.1.1 Sensor Fusion
Wireless RF technologies, presented in the previous section, rely

on an uncontrolled and highly shared medium: many possible hap-
penings (e.g., interference, shadowing, multipath) inevitably lead to
inaccuracies and errors. The most diffused approach to increase the
accuracy of localization, is to leverage two or more physical quan-
tities and combine them to obtain improvements both in precision
and reliability [8]. Nonetheless, even if leveraged in less systems,
Sensor Fusion can also provide a certain level of resilience to faults
affecting one of the measure systems.

Dead reckoning systems, usually based on the integration of accel-
eration measurements coming from an IMU (Inertial Measurement
Unit), are subject to estimation error accumulation: in most of the
proposed approaches the system controls drift, either by considering
other physical quantities such as RF [10], atmospheric pressure [22])
or relying on a priori knowledge [28] and landmark identification
[27].

In other systems, RF and UltraSounds (US) are used together to
improve the final precision, or to overcome environmental issues.
The Cricket localization system [18] leverages the difference in time
propagation between RF and US signals to estimate the distance
to a known emitter. This enables the designers to implement a
signal transmission protocol and a processing algorithm capable to
ignore the data affected by noise (e.g., multipath, reflections), thus
obtaining a better estimate than using RF or US independently.

A very similar approach is presented by YunFei et al. [17]: their
system leverages the time difference between US and RF propaga-
tions to estimate the distance from a device with a known position.
Furthermore, they include a signal integrity monitoring, leveraging
measurement redundancy. This allows them to identify situations
with inaccurate estimations and, in case, to send the user a feedback.

The positioning system reported by Do et al. [9] is based on three
different technologies, crossing information coming from WLAN,
GPS and cell towers. The system is deployed on a mobile terminal,
where the data are collected, processed and the result is available
to the user. The aim is to locate the user seamlessly, in indoor or
outdoor environments, trying to rely on the most accurate measure-
ments available. The system also comprises a communication policy
between the terminal and the remote localization server, trying to
minimize the requests when a good localization can be provided by
the terminal itself.

2.1.2 Dependability in localization
A dense literature has been developed about methods to exclude

wrong measurements thanks to redundancy, when dealing with lo-
calization and lateration. Sturza developed a method in 1988 [25],
and since then several techniques improved or leveraged those prin-
ciples, but mainly in GPS (Global Positioning System) applica-
tions and outdoor environments. Three conventional versions of
receiver autonomous integrity monitoring (RAIM) methods are the

chi-square test, the horizontal protection level test (HPL) and the
multi-hypothesis solution separation test (MHSS) [9].

Do et al. [9] used these techniques within an hybrid TV-GPS-
WLAN localization system, facing multi-faults conditions. The
proposed solutions are the variants of the three algorithm listed
before, modified in order to include an iterative fault detection and
exclusion.

In indoor settings, anyway, there are few examples of works
explicitly devoted to dependability. YunFei et al. [17] use the same
principle (of redundancy) to identify faulty measurements. They
keep trace of the estimation precision, looking for biases in a specific
precision parity matrix. This is used not to exclude the measure from
the estimation procedure, but to warn the user that the measurements
are not reliable.

3. SYSTEM DEFINITION AND MODELING
Before going into methodology and implementation details it is

necessary to introduce some definitions.

3.1 Definitions
The model of the system and the concepts of Fault, Error, Failure

refer to the terminology proposed in Avižienis et al. [7]. In our
work the system is an indoor entity, constituted by hardware, soft-
ware and humans, interacting with the environment. The system
has a structure made of interacting components, and a behavior de-
scribing what the system does to implement its function and can be
represented as a set of states. Perceived by the users (e.g., humans,
other systems, etc.), the behavior represents the service the system
is providing.

3.1.1 Fault, Error, Failure
When we observe a deviation from at least one state in the system

behavior with respect to the correct sequence of states, that deviation
is an error. It is worth noting that potentially many errors may not
be observable and may not cause a service failure: this could be
due to temporary masking (the environment has not stimulated the
system) or thanks to the application of a fault tolerance strategy. Any
error has a cause, which is called fault. A fault first causes an error
in an internal service state (i.e. a component of the system) but the
observable state is not immediately affected. The error affects other
system states, till the observable state is reached and the system
service fails. A system service failure is when the delivered service
deviates from the correct service, violating the functional specifica-
tions. In this work we exclude the possibility service failures due to
inadequate or incomplete specifications, thus failures are caused by
faults only.
In this work we assume that the development phase is fault-less,
thus we will focus on operational faults (i.e. those occurring during
the system’s use phase). Furthermore, it is important to distinguish
between natural faults, caused by natural phenomena, and human-
made faults, caused by human actions.

3.2 System Structure
The system is composed by the following components.

IHL subsystem: this system estimates the target people’s positions
in the indoor environment.
Anonymous Interaction Detection (AID) subsystem: a system
able to provide localization events detected by ubiquitous (general
purpose) sensors placed inside the house.
Fault Detection subsystem: Information gathered from both IHL
and AID subsystems are collected by the fault detection subsystem,
which is able to process them to detect when a fault condition is
verified.



3.3 System Specification
The mission of the presented system architecture is to provide

dependable IHL. The case study is an indoor positioning system able
to detect the position of one or more fragile persons inside a building.
Caregivers are able to get the position of the monitored persons.
Both inhabitants and caregivers are users, the service provided is
the fragile people localization, to achieve ”mutual reassurance" in
an independent living framework.

3.3.1 Functional Specifications
The system provides the target people’s positions. The localiza-

tion targets must be inside a specific space (a part or the whole
building).

3.3.2 Non-functional Specifications
The system implements a method for concurrent fault detection.

In particular, this system evaluates its operational health during
normal functionality, to detect a fault when it occurs. It is worth
noting that the system is only able to detect faults, not to tolerate
them. Thus, we can state the system is self-checking (and not fault-
tolerant). Furthermore the fault is detected, but its source is not
generally identified.

3.3.3 Other Requirements and Hypotheses
After defining specifications, we introduce few other conditions

and hypotheses:
- The development phase is flawless and does not introduce any
fault.
- The IHL subsystem should have coverage on the whole indoor
environment where the persons are tracked.
- Users do not temper the system components, nor act purposefully
when their action causes a fault.

3.4 Components Modeling
When designing a self-checking system, a possible approach is to

identify and describe all the possible faults and errors. This process,
though, provides only a little flexibility and it is improbable for
it to detect a fault not identified. An alternative approach can be
designing a model-based self-checking system. Indeed, as stated by
Isermann [13], it is possible to detect a fault by using the dependen-
cies between different measurable signals; to this aim it is necessary
to build a model of the dependency itself. Given the measured
real-world quantities and a model, reproducing the expected system
behavior, it is possible to generate features (e.g., states, parameters
or residuals coming from the system model). If their values do not
comply with the nominal characteristics of the system, a fault is
detected [13]. This approach enables to build a description of error
not only more flexible (being able to detect faults in a more general
way), but also, in certain conditions, more synthetic. To exploit
these advantages we preferred the model based approach.

Before modeling the components functionality, let us describe
the environment. Since we are dealing with the indoor localization
problem, we can define the space of interest (Home space) H ⊂ R

2

(extendable to R
3) as a subset of the whole space H̃ excluding

W ⊂ H̃ , the set of points inside walls and, more generally, in
unreachable positions.

3.4.1 IHL model
Once defined the environment we must provide a description of

the IHL subsystem functionality. In the problem we have addressed,
the localization system is supposed to provide the person position
in the house space H . Since the aim of the system is to provide
the person’s position in the home environment, we can describe its

output x̂L as:

x̂L = xp + ξ xp, x̂L ∈ H ⊂ R
2

(1)

where xp is the actual position of the person and the measured
values are affected by an additive error ξ. It is possible to consider
the output of the IHL system as a set of points L ⊂ H , surrounding
the result position x̂L within a maximum distance δth, granting a
certain precision (e.g., th=90%). Obviously a person can not move
through walls, and this means to exclude not only points belonging
explicitly to walls, but also those which are behind a wall (i.e. in
another room or outside the building), with respect to the estimated
position x̂L:

L �
{
y ∈ H : ||y − x̂L|| ≤ δth,yx̂L ∩W = ∅

}
(2)

Defined L, we can model IHL system fault through the condition:

xp /∈ L ⇒ FL (3)

which states that if the actual position of the person is not inside the
result set L, a fault FL is occurring.

Nonetheless, we have only an estimation of the person’s position,
the real world value xp is unknown in such settings. If the aim is
to provide dependability, verifying the estimation is correct, it is
necessary to gather independent measurements of xp, for example
deploying a second redundant IHL system. This, anyway, means
also to double the costs, with the only advantage of dependability.
Instead of deploying a redundant IHL system, we might leverage
other systems, designed to provide another service, but still able to
furnish the needed information about the person’s position.

3.4.2 Anonymous Interaction Detection (AID) model
Potentially any element of a smart home environment with which

ihabitants interact could be sensorized, so that a specific event can be
recognized. This information (e.g., the usage of an hair drier, or the
weight on a chair sit, the water tap opening/closing, the activity at a
pc workstation, etc.) is not necessarily related to the functionality of
the sensorized system, but still represents a localized event in time
and space generated by a person. These events are in other words
related to the real world person’s position xp, which is necessary to
identify IHL systems faults.

Generalizing and abstracting from the specific sensing technology,
it is possible to identify a common model for these kinds of events.
To keep the generalization valid, we must then accept the fact that
the detected interaction might not be related to a specific person,
thus let us define the detected presence as anonymous. First of all
let us consider that each sensor s ∈ S (S set of all sensors) has a
known position in space xs ∈ H . Other inherent characteristics of
the sensor are surely the interaction range rs (i.e., the maximum
distance ||xp − xs|| at which the activation event can take place),
and a value vs, referred to the sensor (e.g., the power consumption
of the hair drier, the measured weight on the chair, the boolean status
of the tap, the activity performed at the pc workstation). We can
finally formalize this model by describing the sensor s activation
area As as:

As � {∀y ∈ H, ||y − xs|| ≤ rs,yxs ∩W = ∅} (4)

which includes also the condition against walls-crossing, as defined
for IHL.
Furthermore, let us introduce Vs, the set of all the possible values
(eventually an enumeration of discrete statuses or a range) of the
sensor s and V s the set of those that are correlated to a presence
(while dually V s is the set of values read when no interaction has
taken place):

∀s ∈ S, vs ∈ V s ⇒ xp ∈ As (5)



Extending the single sensor case and considering a whole house,
sensorized with a set of sensors S, we can define the active area
A ⊆ H for the whole AID system:

A �
{
As : s ∈ S, vs ∈ V s

}
(6)

Indeed it is necessary to consider also the possibility that a fault
affects the AID system. Focusing only on the information related to
xr , we can define the fault of the AID system FA as:

∀xp ∈ H, ∃s ∈ S : {As ∈ A,xp /∈ As} ⇒ FA (7)

which represents the condition in which the person is not in the
activation area of a triggered sensor.

3.4.3 Fault Detection
With such modeling, it is possible to recognize that an AID system

can provide an information similar to the one we could obtain by
duplicating the IHL system. Thus, when an IHL and an AID systems
are placed in the same environment H , the person must stand in
an area identified concordantly by both the IHL and AID systems.
Thus the following relation can be defined:

∃s ∈ S : {As ∈ A ∧ (L ∩As) = ∅} ⇒ (FL ∨ FA) (8)

Having identified an observable state, which implies the system
behavior to deviate from the expected one, we can define it as an
error E:

E � {∃s ∈ S : As ∈ A ∧ (L ∩As) = ∅} (9)

In case we have more people p ∈ P to track simultaneously
inside the house it is only necessary to consider all the Lp areas:

E � {∃s ∈ S : {As ∈ A ∧ ∀p ∈ P, (Lp ∩As) = ∅}} (10)

3.4.4 Sensors Limitations
The models and the fault detection method introduced in the pre-

vious paragraphs have been designed to show a high generalization.
Indeed, most of the localization and home ubiquitous systems can
fit in those model, although, this brings also some drawbacks. Their
outcome with respect to dependability is that it is not possible to
grant the fault-secureness property[7] in any situation. In the fol-
lowing we will present the limitations that sensors introduce, and,
where possible, provide a possible approach to mitigate their effects.

Natural interaction with home devices, appliances and interfaces,
as we presented in the AID modeling, is related to the person’s action
in the environment. Obviously a person is not always interacting
with the environment: This forces us to accept the condition that a
person can be (and be localized) inside an area where no interaction
takes place. This fact has a consequence on the system properties,
since it makes impossible to guarantee the fault-secureness. For
example if a fault of the IHL system occurs for the i-th target, as
long as he/she does not interact with the AID system, no fault is
identified.

Another possibility is that the “faulty” i-th target actually moves
(its real world position xi, not x̂i), close to the j-th target, who
actually “shadows” the i-th target presence, by making the system
consider any activation as made by j, even if actually made by i.
Even if this might seem to limit the significance of the concurrent
fault detection we want to put in place, it is important to remark that
time period between two AID system events depends on the persons’
activity and on the sensors type and dissemination. The higher the
sensors density and the finer the granularity, the more precise is the
spatial resolution of the events; the more active the person is, the
more frequent the interaction events are.
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Figure 1: Sensor delay τd and persistance τp representation.

3.4.5 Interaction versus Presence
When needed, it is anyway possible to employ presence sensors. It

is somehow similar to an IHL duplication, but a Presence Detection
(PD) system might have a lower cost and/or other services/purposes.
In that case the sensors activate not due to an interaction, but just
passively because of the persons presence. If so we can extend what
previously observed for interaction:

∀s ∈ S, ∀xp ∈ H xp ∈ As ⇔ vs ∈ V s (11)

In these conditions it is possible to consider not only (8), but also
the dual condition:

∃p ∈ P : {∀s ∈ S : As ∈ A ∨ (Lp ∩As) = ∅} ⇒
⇒ (FL ∨ FA)

(12)

defining that any active area Lp should have an intersection with at
least an active sensor’s area As, otherwise FL or FA occurs. The
related error formulation is:

E′ � {∃p ∈ P : {∀s ∈ S : As ∈ A ∨ (Lp ∩As) = ∅}} (13)

3.4.6 Temporal Formulation
The formulation of the previous paragraphs has an instantaneous

connotation. In real world though, there are also issues related
to sensors temporal dynamics, which can affect significantly the
behavior of the activation. This imposes the modeling to introduce
a temporal connotation to evaluate properly their activation.

First of all not all the quantities are time-dependent. We have to
introduce the time t and:

Lp(t) �
{
Lp|x̂p=x̂p(t)

}
A(t) �

{
As : s ∈ S, vs(t) ∈ V s

} (14)

where x̂p(t) is the position of the p-th person estimated by the IHL
system at time t, and vs(t) is the value of the s-th sensor at time t.
Let us define the delay and the persistence of a sensor. The delay τd
is the time, since the stimulus beginning the sensor needs to activate,
the persistence τp is the time lapse during which the sensor remains
active even without stimulus (Figure (1)).

An emblematic example of the temporal issues is represented
by PIR sensors, but the principle can be applied to any presence
sensor with non-instantaneous timing. They are sensors s ∈ SP

triggering immediately for changes in position ẋp(t) ∈ As, but they
deactivate after τp seconds since a person has stopped (in their area
of activation) or has left. Thus they have no delay, but persistence
τp: ⎧⎨

⎩
ẋp(t) 
= 0 t > t0 (a)
xp(t) ∈ As t0 ≤ t < t1 (b)
xp(t) /∈ As t ≥ t1 (c)

⇒

⇒
{
As ∈ A(t0 + τ) 0 ≤ τ ≤ (t1 + τp)

As /∈ A(t1 + τ) τ > τp

(15)

which models the behavior of a person in movement (clause (15.a)),
inside the area of the s-th sensor from t0 to t1 (15.b) and exiting
after (15.c).



Furthermore, to model a person stopping at time t2 (16.b-c),
inside the area As (16.a); we can add the following:⎧⎨

⎩
xp(t) ∈ As ∀t (a)
ẋp(t) 
= 0 t < t2 (b)
ẋp(t) = 0 t ≥ t2 (c)

⇒

⇒
{
As ∈ A(t2 + τ) 0 ≤ τ ≤ τp

As /∈ A(t2 + τ) τ > τp

(16)

Given (15-16) it is possible to state that, in an environment fully
covered by PIR sensors, a person is surely located inside the area
of the last active PIR sensor which contained him/her. Indeed
if a person moves from an area As to another, ẋp(t) is not null,
activating the sensors. Finally, we can state that, if the person p’s
last active PIR area Asp(t) and the current location area Lp(t) have
no intersection, a fault has occurred:

∃p ∈ P : {Asp(t) ∩ Lp(t) = ∅} ⇒ (FL ∨ FA) (17)

Similarly to previously defined errors/faults, we can identify the
error E′

PIR:

E′
PIR � {∃p ∈ P : Asp(t) ∩ Lp(t) = ∅} (18)

While, on the other hand, Equation (10) must be modified in order
to consider the sensor’s persistency:

EPIR � {∃s ∈ SP : As ∈ A(t)∧
∧ As ∩ Lp(t− τ) = ∅, 0 ≤ τ ≤ τp} (19)

Formulations similar to this can be described for other sensors. In
the following, we will leverage this PIR sensors modeling to detect
faults in experimental settings.

3.5 Fault Observability
As introduced in the definition section, faults have two main

phases of existence: in the first they have already happened, but
their effects are not observable yet. Only when a specific situation
verifies then the fault becomes observable as an error, it is stimulated
by the system conditions. In technical terms, a fault remains masked,
and it is not detectable, until the output of the system remains
compliant with the specifications: no error can be observed. In
many situations, the system can be object of a self-test to verify if
error can be detected, but this is not applicable to IHL. Indeed it is
not very reasonable to require the user to move in a specific place
periodically, to perform a kind of self-test. This remark implies that,
in the scenario of this work, it is necessary to wait for the opportune
situation for an error to be observable, and thus for a fault to be
detected.

4. CASE STUDY
As presented in the introduction, the aim of this work is to provide

a dependable localization system inside the home environment of
people with special needs, in order to help them, to feel more secure
and confident, and their family, to feel reassured about their beloved.
This introduces a set of strict needs to be respected while designing
the system.

4.1 User’s Need Centered Design
When designing and implementing such systems, costs are con-

sidered extremely important, as well as installation effort and main-
tenance. A very precise and extensive system, with a price too
high to be affordable by the user is useless. The more services is
possible to provide with the same hardware, the better. Further-
more the system must be accepted by the host person, especially

in terms of not feeling invaded by unpleasant devices. This can
be respected by preferring wireless technology, non visual sensors,
small and/or not visible devices. This philosophy drove our deci-
sions, keeping our aim to build best effort useful system, rather than
a high-performance one.
In this paper, we considered a possible implementation of the whole
system. Its components are an RF localization system for healthcare
indoor environment named LAURA, an off-the-shelf modular wire-
less Home Automation (HA) system, Z-wave, and a Fault Detection
apparatus based on Esper. In these sections we describe the char-
acteristics of all the subsystems, we present the technology chosen
and the reasons which drove the decision.

4.2 The Indoor RF Localization Subsystem
LAURA [20, 21] is a localization system designed for people

tracking in indoor environments. It is based on a 2.4GHz WSN, with
a specifically designed addressing protocol. Originally developed by
Lim et al. [14], the localization method relies on the RSSI between
a mobile node of the WSN and the other location-known fixed nodes
(anchors). It takes advantage of a dynamic and adaptative calibration
by considering the RSS measurements also among fixed anchors.
The raw estimation is then processed through a particle filter, which
uses the given distances to solve the lateration problem, to smooth
the output and to avoid non consistent movements and non permitted
paths (wall crossing).

4.2.1 Subsystem Characteristics
As briefly introduced, the LAURA system has several features

making it an ideal candidate for our settings: it is a critical mission
assistive system, easily deployable, wireless, battery powered and
no configuration is needed, making it particularly suitable for home
environment. However, in the setting presented by Redondi et al.
[20, 21], it still lacks any method to provide dependability.

4.3 The Home Automation Subsystem
Ambient Assisted Living (AAL) and Home Automation (HA)

technologies are nowadays spreading in our cities, changing our
houses into smart homes. This not only brings the comfort and
the services of a pervasive home control, but also provides a great
opportunity to monitor and assist fragile people in their homes.
The market of such products is highy competitive, and several stan-
dards, technologies, companies and solutions are nowadays avail-
able. Choosing the right solution is far from trivial as several factors
are involved in the choice: ease of deployment, invasiveness, in-
teroperability, costs, data rate, network topology, network size and
communication medium. Nonetheless the investment is clearly a
long-term one, so also the chances of survival of the system in the
market, as pointed by Saidinejad et al. [23], should be taken into
account.

4.3.1 HA Systems Analysis and Choice
The main WHANs (Wireless Home Automation Networks) avail-

able nowadays on the market are: Z-wave [4], ZigBee, 6LowPAN,
Insteon, Wavenis, EnOcean [1] and MiWi [12, 19]. Most important
Home Automation Networks (HAN) based on fieldbus technology
are KNX [3] (successor of EIB), BACnet, LonWorks, X10, Profibus,
Modbus, CANOpen, Universal Powerline Bus, CEBus, C-Bus and
1-Wire [23]. Their networks are mainly relying on twisted pair or
power line medium. Some of them, like KNX and X10, have been
specifically designed for residential environment, while others have
general usage, both in industry and HA [23].
Saidinejad et al. [23] present an iterative method for the choice of
suitable HA technology, given a set of constraints, considering also



financial aspects. They report a case study, applying their approach
while deciding which technology to adopt for the implementation
of a smart home for elderly people. The application of their ap-
proach to a more general setting of a reliable system, providing
not-invasive AAL and home monitoring, identified Z-wave and
6LowPAN as good candidates for our case study. Between them we
adopted Z-wave, for the lower costs and its orientation toward home
environments.

4.3.2 Sensor Types
Z-wave [4] has a very large set of different functional devices

(both sensors and actuators) available for customers, providing dif-
ferent choices of manufacturers even for the same device type. To
provide an implementation of two sensor types we selected PIR
(Passive InfraRed) sensors and Door/Window contact sensors.

The PIR sensor detects the motion of a human in a range up
to 5m, with a view angle of 360◦, when ceiling mounted, or a
range up to 10m and an angle of 110◦, when wall mounted. These
different mountings are possible thanks to a replaceable lens, with
two different shapes specifically provided for each setting. The
returned PIR variable (activity) becomes true as soon as a person’s
movement is detected, with a persistence of 10s.
The Door/Window contact sensor (or simply DWS), has a very
common design: it is based on a magnet, triggering a corresponding
reed switch inside the active component of the device. The presence
of a person can be inferred when the sensor status toggles.

4.4 Fault Detection Apparatus
The information collected from the two subsystems is numerical

and has a strong temporal connotation. Time is important both in
absolute (instantaneously) and in term of sequence (of events). This
kind of data stream is not extraordinary complex, nor has the gigan-
tic size that usually characterizes Streams of Complex Event [24],
still the processing engine needs a certain flexibility to implement
the introduced model. Furthermore, we want our approach to be po-
tentially applied or extended to more complex settings (e.g., higher
sampling frequencies, devices and/or subsystems number, problem
complexity). To comply with all these requirements, among the
available Complex Event Processing (CEP) Systems we identified
Esper [2] as a candidate for our study.

4.4.1 Esper
Esper is an open source event series analysis and event correla-

tion engine [2], able to recognize rich situations in event series and
to trigger custom actions. Esper is designed for high volume event
processing, where millions of events coming in would be impossible
to record using classical database architectures. Esper provides a
rich Event Processing Language (EPL) to express filtering, aggre-
gation, and joins, possibly over sliding windows of multiple event
series. It also includes pattern semantics to express complex tem-
poral causality among events (followed-by relationship). One of
the most interesting features is the possibility to use Plain Old Java
Objects (POJOs) almost anywhere during the processing [2]. In our
setting, we have adopted POJO to represent the system model and
EPL queries to implement the Fault Detection apparatus.

4.5 Case Study Specific Requirements
In order to be modeled through the proposed method the case

study system must comply with the following requirements:
Known Sensorized Inhabitant(s): Any person inside the environ-
ment is known since he/she wears an active localization device. The
device is meant to be worn. Anyway, it is possible to remove it to
avoid damages (e.g., under the shower), keeping it in a range of 2m.

Device Coverage: IHL and PIR sensors must cover the whole acces-
sible area. Overlapping sensor areas are permitted.
Model Application: DWS are suitable for instantaneous error defi-
nition (10), while to PIR sensors can be applied (18,19). The final
error is the logic and of all of them.

4.6 Faults Scenarios (FS)
We can define separately Human-made Faults Scenarios (HFS)

and Natural Fault Scenarios (NFS). The most important HFS are:
(a) the inhabitant is not wearing the localization device; (b) the
inhabitant damages the device.
NFS are related to devices and components wearing, etc., we can
report few examples such as: (c) A device (HA or IHL) is not
reachable (e.g., out of the WSN range); (d) A sensor (HA or IHL) is
defective or malicious; (e) The localization mobile device cannot
reach enough anchors to perform a valid localization; (f) A device
(HA or IHL) runs out of power.

Furthermore both the IHL and the HA subsystems are able to
provide specific information used to detect simpler fault conditions:
EL1 - An anchor device is not reachable anymore.
EL2 - Not enough anchors are detected.
EL3 - The user device is not reachable.
EZ1 - Device has run out of power.
EZ2 - Device is not reachable.

These more common (and simpler) errors are managed by the
systems in a different and more traditional way, and, being not
related to the model based methodology introduced with this work,
they will not be further tested.

4.7 Limitations
Considering the application scenario, a home, it is worth to re-

mark that the users population is considered sparse enough to avoid
excessive fault masking. Indeed exploiting PIR sensors, it is possible
to respect the privacy of the user. Nonetheless they are character-
ized by a wide activation area and the impossibility to identify even
the number of detected humans: in densely populated environment
this would result in almost continuous sensors activity, making im-
possible to extract any information. Anyway crowded and densely
populated environment do not belong to our case study, involving
home environment.

5. EXPERIMENTS
To test the presented approach we implemented the whole sys-

tem and set a specific indoor area. After the data collection the
performances of the system were evaluated.

5.1 Environment
The tests were held in some rooms of a Politecnico di Milano

building in Como. As illustrated in Figure 2, nineteen fixed LAURA
anchors and 7 Z-wave devices were distributed along the walls of a
portion of one floor. One device was worn by a tester simulating the
inhabitant, to track his movements.

5.1.1 LAURA Configuration
In order to setup LAURA, we used the IEEE 802.15.4 2.4GHz

frequency band on channel 25, which is Wi-Fi free, preventing
unwanted radio interference between Wi-Fi devices and WSN nodes.
Each device was configured to transmit at a relative power of -7dBm.
This power demonstrated to achieve acceptable results in terms of
accuracy and precision, preventing unstable connections among
nearby anchors.



Figure 2: Testing environment and deployed sensors. In
the map are visible the test areas and rooms (colored ones),
LAURA fixed devices (blue numbered dots) and Z-wave devices
(labeled with capital letters). PIRs (A-D) have corresponding
colored activation areas.

5.1.2 Z-wave Configuration
We used two different categories of Z-wave devices in our environ-

ment. In order to detect human presence, four PIRs were mounted
in three rooms and one corridor. Three DWSs were mounted on top
of doors to monitor their states. Data gathered through these sensors
were transmitted to the HA system.

The activation, which were stored on the Z-wave controller, were
fetched via an ad hoc developed module, named "LEO", through
standard HTTP calls over the Ethernet network. Aiming to be
synchronized with LAURA, sensors’ states were retrieved with a
frequency of 1Hz.

5.1.3 Model Parameters
The model described in the previous sections can be adapted to

the subsystem by tuning a specific set of parameters. In our settings
the localization error of LAURA was studied, determining the value
of δth=3m, which is respected in the 84% of the estimations, as
reported in Figure 3.

Concerning HA sensors, the values of maximum range provided
by the producers of each device were reduced to the 80%: wall
mounted PIRs had a maximum detection distance of 10m, thus
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Figure 3: Estimated Cumulative Density Function (ECDF) for
LAURA localization error. Tests performed to investigate the
accuracy of the LAURA system resulted in the curve here de-
picted. The reported valued of 3m bounds the 84% of the esti-
mations.

Figure 4: Path followed by the testers during experimental ac-
quisitions. The white areas represent the sensorized space.

ri∈P =8m, similarly ceiling mounted ones had a reported range of
5m, which were reduced to ri∈P =4m. Considering doors, activation
areas were assumed to be defined by a radius ri∈D=1.5m.

5.2 Test Protocol
In order to obtain coherent and accurate data, both LAURA and

the Z-wave system had to be synchronized during acquisition period.
Since the sampling frequency is low, we used the Network Time
Protocol (NTP) to synchronize clocks over Internet, assuring a
precision in the order of 100ms [16].

As illustrated in Figure 4, the trajectory for the path was polyg-
onal, connecting predefined points by rectilinear segments. The
inhabitant walked along the predefined path (designed to trigger the
available sensors), with a constant speed. The tester stopped at each
corner, before changing the direction: arrival and departure times at
each point were recorded, in order to reconstruct the instantaneous
position of the person xp. Concerning other environment elements,
no constraint was defined, but changes were annotated. Since PIRs
have time limitations, as mentioned previously in (Sensor Types),
two lingering zones were added, where the tester remained still for
a while in order to be undetected by the PIRs, highlighted in Figure
4 by greater dots (identified by numbers 1-13 and 6). Time and
duration of each single activity performed by the inhabitant and of
any significant environment change, were annotated. The average
test duration was about 3min, the overall duration of the tests was
approximately 18min.

In order to model faults in the environment, two different policies
were applied: Forgotten Device: A fault case was simulated by
forgetting the worn device in a predefined location, while the tester
continued its trajectory around the environment, triggering PIRs
and DWSs. Blinded PIR: A PIR sensor was blinded in order not to
detect the user, although it was active, charged and present on the
network.

5.3 Experimental Results
The first run of experiments were in fault-free conditions. The

collected data revealed no significant fault detection. As reported in
Figure 6a, an initial error condition is risen and few short-duration
error are visible (see first line in the figure). The initial fault is
detected due to the HA system initialization: no sensor has been
activated yet. While the brief fault detections (e.g., around t=120s)
are due to localization inaccuracies, as revealed comparing the ac-
tual position and the estimated position. Since we accepted p=84%
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Figure 5: Simulation Environment: This map reproduces the whole floor where the experiments took place. The virtual sensorization
is extended: red circles (labeled in black) represent localization anchors, squares are door sensors, stars ceiling-mounted PIR sensors,
arrows wall mounted PIR sensors. Three virtual users trajectory are depicted: crosses (+) represent the real position, tracks the
position estimated by the IHL system.
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(a) Fault-free conditions. The brief and instantaneous fault activations
are due to IHL system inaccuracies, which is concordant to the 84%
precision threshold imposed.
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(b) Forgotten device. The device is left (X marker) in position 6 (Figure
4) along the trajectory.
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(c) Blind PIR sensor C. As the tester enters the room (leftmost X, point
5-7 in Figure 4) the Error is risen, then dismissed, as he exits (rightmost
X). Sensor’s C green activation, present in Fig.(6a-6b), here is missing.

Figure 6: Real world experiments, user moving along the tra-
jectory in Figure 4: Fault-free, Forgotten Device, Blind PIR.
Lines represent PIR sensors activity, circles interactions with
DWS, y axes letters refer to sensors as in Figure 2.

when defining δth, it is possible that the estimated position exits the
defined region: anyway, in those cases, the fault has punctual dura-
tion (up to 5s), can be identified or neglected. When we emulated
the forgotten device condition, the system result was an expected
fault detection. As visible in Figure 6b as the inhabitant moves away
from the device, left in position 6 (Figure 4) and activates other
sensors, the fault detection response is sharp and stable. Second, if
we blind a sensor, the system result is again an evident fault condi-
tion. As visible in Figure 6c we blinded PIR A (Figure 2): as the
inhabitant enters the room (path from 5 to 7 in Figure 4), the fault
is detected. In this conditions the fault detection is less sharp due
to the same inaccuracies in localization, as already explained for
fault-free conditions.

5.4 Multiuser Simulation
Due to the lack of available sensors and devices, we took advan-

tage of simulation to provide multiuser highly sensorized environ-
ment tests. The environment is the reproduction of the one chosen
for the experiments, considering the whole floor (ca. 450m2) and
adding users, as visible in Figure 5. The reference persons’ positions
have been generated thanks to a simple walk model, generating a
continuous smooth acceleration and deceleration profile (maximum
speed 0.7m/s), with a smooth random steering policy. Collisions
with walls are avoided by re-computing steering when needed, while
periodically the agent lingers in a location (simulating the human
behavior).
The IHL subsystem service was replicated by generating RF signal
with the following model (being d the distance and #w the number
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(a) Fault-free conditions: few punctual faults are detected, due to local-
ization inaccuracies.
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(b) Forgotten device: the leftmost user in Figure 5 leaves the localiza-
tion device at 100s. As he triggers the device 26 (X marker) the fault
(top black line) is detected.
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(c) Blinded PIR sensor 33. When the rightmost user in Figure 5 enters
the room (X marker), the fault is detected (top line).

Figure 7: Simulation results examples: fault-free, forgotten de-
vice and blinded PIR conditions. Three subjects are moving in
the space, as showed in Figure 5. Lines represent PIR sensors
activity, circles interactions with DWS, y axes letters refer to
sensors as in Figure 5.

of walls crossed by the signal from the emitter to the receiver):

S = S0 − (α log10 (d/d0) + γ(#w) + ε) (20)

and providing them to the LAURA system. The other parameters
were α=3, since we are in an indoor environment[20], and γ=3dBm,
d0=0.04m, S0=-30dBm, ε = ±2dBm, as inferred from experimen-
tal measurements. To make it applicable to simulations, we also
re-estimated the parameter δth=2m.
Finally, the HA system behavior was reproduced, having the refer-
ence position of the persons, by implementing the sensors response,
as presented by the manufacturers (introduced in the Z-wave sub-
system section). In the simulated environment we exploited PIR
sensors and DWSs. Concerning the interaction with DWSs, the
agent entering the activation area of one of such devices had a uni-
form probability (of the 20%) to interact with it, with a limit of two
events (e.g., door opening and close).

Similarly to to real world experiments experiments, we ran simu-

Table 1: Simulation results. Test types: FF - fault free, FD - for-
gotten device, BS - blinded sensor; Results: (TP) true positives,
(FP) false positives, (TN) true negatives, (FN) false negatives
(Se) sensitivity, (Sp) specificity. The presence of faults during
FF runs is due to localization results showing an error larger
the imposed precision threshold δth=2m.

Test TP FP TN FN TOT Se Sp
FF 2 55 1427 16 1500 - 96.28%
BS 1392 0 0 108 1500 92.80% -
FD 550 176 717 57 1500 90.61% 80.29%

TOT 1944 231 2144 181 4500 91.48% 90.27%

lations in fault-free, in Blinded PIR and in Forgotten Device condi-
tions. Three examples of simulation results are shown in Figures 7a,
7b and 7c, displaying the system behavior. The overall testing in-
cluded 4500s of three simulated users wandering simultaneously and
pseudo-randomly in the environment. The dataset was composed
by 15 runs, lasting 5 minutes each, concerning fault-free conditions,
Blinded PIR and Forgotten Device in equal parts. Concerning the
Blinded PIR runs, faults were injected by making a PIR sensor al-
ways off during the run. The sensor was chosen in order to generate
a fault, thus among those activated during the run. For each Forgot-
ten Device run, instead, the position of a random localized device
was fixed after 100s, still letting the agent trigger HA devices. The
system performance was evaluated sample-by-sample (at 1Hz), con-
sidering each available environment state containing an observable
fault, a positive trial. Considering only situations actually leading to
errors, the experiments included 2125 faulty samples. The produced
results are reported in Table 1: the system showed overall sensitivity
of 91.48% and specificity of 90.27%.

6. CONCLUSIONS
In this work we presented the method, design and implementation

of a dependable IHL system, capable of concurrent fault detection.
The system relies on two independent subsystems, whose result data
are jointly checked by a fault detection apparatus. The proposed
method is based on the definition of a model representing each of
the two subsystems, and defining joint consistency conditions. The
validity of the approach is proved applying it to a case study. The
chosen case study subsystems are: LAURA localization system and
a Z-wave based HA.

The obtained experimental results showed the validity of our
approach, correctly reporting errors in fault-free and fault injected
conditions. Furthermore, we generated multiuser data, creating
them based on the knowledge of the environment and the systems.
Results of multiuser simulations show the system correctly detecting
faults also in case of several targets. Both specificity and sensitivity
above 90% represent a satisfying performance. Nonetheless, if
the application requires it, system model parameters can be tuned
to benefit selectively sensitivity or specificity. Concluding, our
approach, even under some limitations in terms of fault observability,
enables the dependable localization of a set of persons inside an
instrumented house, detecting both natural and human-made faults.

7. FUTURE WORK
Further tests will be performed in broader controlled environ-

ments, with more sensors in multiuser conditions. Moreover, a
larger experimental setup will enable more detailed evaluations of
fault stimulation and masking dynamics. It will be interesting to
investigate the system behavior also in an actual home environment.



As introduced in Sensor Types section, also other sensors might
be modeled and leveraged into this system. A further development
of the work presented hereby can consider complex patterns both
in activations of HA sensors and in trajectories described by the
IHL system. This will enrich the information, potentially extending
faults even to specific detectable behaviors of the inhabitant.
The current method is able to extract a set of possibilities correlated
with the identified error but it is currently impossible to identify
exactly where the fault is (both human-made or natural). Future
works will be focused on the correlation between a set of temporal
sequences (system tests) and the faulty component. The approach
we have in mind will be based on Amati et al.[6, 5]. The main
problem will be the real possibility to collect enough data to isolate
the fault.
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