
Accessing Speech Documents on Smartphones
Marcel-Cătălin Roşu

IBM T. J. Watson Research Center
19 Skyline Dr

Hawthorne, NY 10532
1 914 784 7242

rosu@us.ibm.com

ABSTRACT
This paper introduces BBSearch, which is an experimental system

for exploring the challenges of ubiquitous access to recorded

speech data. BBSearch applies information retrieval techniques to

transcripts obtained by automatic speech recognition and it aims

to provide a uniform user experience across platforms. To provide

identical search functionality and document ranking, BBSearch

applications use the same IR library for indexing and retrieval,

namely Apache Lucene. For Java-enabled mobile platforms,

BBSearch uses our J2ME Lucene port, called LuceneME.

This paper explores the resource requirements of LuceneME when

used for Boolean searches and for supporting the podcast

navigation GUI. On a BlackBerry smartphone, a diverse set of

queries against a 70-hour corpus complete in less than 3 seconds

and use less than 2MB of memory. The results of the evaluation

validate our design and warrant expanding BBSearch to less

capable cellphones, larger corpuses, or with more complex search

capabilities.

Categories and Subject Descriptors
H.4.3 [Information Systems]: Communications Applications –

information browsers; H.5.1 [Information Systems]: Multimedia

Information Systems – audio input/output; H.5.2 [Information

Systems]: User Interfaces – graphical user interfaces, input

devices and strategies, interaction styles, natural language.

General Terms
Experimentation, Performance, Human Factors.

Keywords
Speech archive, search, smartphone, Lucene.

1. INTRODUCTION
In “As We May Think”, published in 1945, Vannevar Bush calls

for a new relationship between what we call the knowledge

worker and the sum of its knowledge [4]. Central to this

relationship are the ‘memex’ and the human’s ability to access its

storage by association. Decades later, PCs made the ‘memex’

device a reality. More recently, smartphones became the always-

on/always-with device of the modern knowledge worker, with

close to 120 million units shipped in 2007 and with the top

vendors predicting growth rates above 50% for 2008.

The increasing computational and storage capabilities of

smartphones made us explore the feasibility of a mobile ‘memex’

device. The emergence of podcasting as a tool for disseminating

news and lectures, the advances in speech-to-text technologies,

and the natural usage patterns of smartphones made us focus on

enabling ubiquitous access to speech archives.

This paper introduces BBSearch, which is an experimental system

designed to support ubiquitous access to recorded speech data,

such as news podcasts, college lectures, or everyday life

experiences [14]. To provide the best user experience for the

available computing platform, BBSearch consists of several

platform-specific implementations. All BBSearch applications aim

at providing (1) the same search functionality, (2) identical

document ranking algorithms, and (3) similar user interfaces. In

addition, all applications use the same archive format, which

enables archive sharing across platforms. Our focus is on PCs and

Java-enabled smartphones, due to their high popularity among

knowledge workers. On PCs, one application is browser-based

while the other one is built as an extension of an existing podcast-

management tool [3]. For Java-enabled smartphones, there is only

one application, which runs on BlackBerry devices.

Figure 1. Search Results on BlackBerry 8800

BBSearch introduces a podcast-specific user interface for

navigating search results (see Figure 1 and Figure 2), which is

designed for easy and precise access to the desired recording(s).

Although podcasts are easier to generate than text documents,

they are significantly more difficult to access other than

sequentially. The visualization of the search results is designed for

easy global (within the result set) and local (within a podcast

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

MobiQuitous 2008, July 21–25, 2008, Dublin, Ireland.

Copyright © 2008 ICST ISBN 978-963-9799-27-1

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

timeline) navigation. Figure 1 and Figure 2 show the ranked

search results (top 10) on a BlackBerry smartphone and PC,

respectively. Each horizontal ‘time line’ represents a podcast, with

the positions of the search terms marked by colored vertical bars.

The design of the smartphone user interface takes advantage of the

trackball or four-way navigation key to enable one-handed

operation. On the screen shown in Figure 1, vertical movements

change the current podcast selection, which is highlighted with a

different color. Horizontal movements chance the position of the

oval-shaped cursor on the selected podcast. For each podcast, the

search term associated with the marker closest to its cursor is

displayed. The PC user interface uses only the mouse cursor for

navigation; no podcast in the list is highlighted and podcasts are

not associated a cursor. Mousing over a marker is necessary to

displays the corresponding search term (see Figure 2). On both

platforms, the markers associated with required (AND) and

optional (OR) terms are displayed with different colors to enhance

visibility.

The graphical representation of the search results, i.e., the markers

representing the search terms and their absolute and relative

positions on each podcast line, assist users in navigating within

the result set. In addition, markers guide user navigation within a

podcast: the user can hear a search term being uttered in context

by clicking on the time line on or immediately before the

corresponding marker.

BBSearch applies information retrieval (IR) techniques to

transcriptions obtained by automatic speech recognition (ASR).

The current prototype supports Boolean searches, expressed as

terms combined with AND, OR and NOT operators. The

transcripts used in this work are generated off-line, using

transcription technology developed in the Human Language

Technologies group in IBM Research.

On smartphones, the BBSearch application described in this paper

performs searches locally: the archive and its index are stored in

the cellphone’s flash memory. The maximum size of the personal

archive is determined by the size of the flash card and by the

podcast format and compression factor; the indexing overhead is

negligible, i.e., the index is about three orders of magnitude

smaller than the data. Existing cards can accommodate a few

hundred hours of speech data.

BBSearch departs from the traditional approach of accessing

remote search capabilities via a mobile browser, as one of our

goals is to run BBSearch applications on lower-end cellphones.

We expect the capacity of affordable flash cards to increase much

faster than the affordability of data-capable smartphones and

associated data plans. For data-enabled smartphones, the

traditional approach has the benefit of allowing access to much

larger archives while the BBSearch approach is expected to allow

faster access to information with lower battery consumption. To

determine which approach is more desirable, a quantitative

evaluation of the two approaches using realistic usage traces is

necessary but such study is outside the scope of this paper.

For indexing and retrieval, BBSearch uses the same IR library

across all platforms, namely Apache Lucene [1]. As a result, PC

and smartphone applications support the same search

functionality, rank results identically for consistent user

experience (see Figure 1 and Figure 2), and can share archives

(including their indexes).

The main Lucene distribution is written in Java 2 Standard

Edition (J2SE). For the smartphone application, we create a new

port to Java 2 Micro Edition (J2ME) for cellphones, called

LuceneME. In addition, we extend Lucene with a transcript-

specific analyzer and tokenizer, which store in the index the words

and their timestamps.

The focus of the paper is to analyze in detail the resource

requirements of the BBSearch implementation for the smartphone.

This is motivated by the challenges of embedded and mobile

platforms, such as cellphones; namely, their reduced computing

resources when compared to PCs, and their limited, if any,

capabilities for handling overload conditions. The data we collect

on a BlackBerry helps us understand the scalability bounds of

running IR applications on smartphones. We seek to answer

questions like (1) what other types of J2ME-enabled phones can

be used for BBSearch, (2) what is the maximum size of an archive

that can be safely searched on a given cellphone, and (3) is it

realistic to expand BBSearch with resource-intensive capabilities,

such as wildcard, fuzzy and proximity searches. To the best of our

knowledge, no similar systems have been analyzed from this

perspective.

Our evaluation uses a 70hr corpus of enterprise podcasts and a

collection of representative queries. All searches in our synthetic

benchmark execute in less than three seconds and use less than

2MB of memory. Retrieving the timestamps of the search terms is

much faster than the execution of the Boolean searches and it

scales well with the index size and the number of hits.

In this paper, we do not formally evaluate the usability of the

podcast navigation interface, but we briefly describe the feedback

received on the browser-based interface. Also, we do not analyze

the impact of ASR errors nor do we explore ways to compensate

for them.

The following section provides some background on Apache

Lucene and describes LuceneME. Section 3 describes the

BBSearch applications. Section 4 describes the corpus used in the

evaluation and Section 5 describes the results of the evaluation.

Section 6 discusses related work. Section 7 summarizes our

results and describes future extensions.

2. APACHE Lucene and LuceneME
Lucene started in 1997 as an IR library written in J2SE Java by

Doug Cutting. Adopted by Apache in 2001, Lucene is now a

much larger opensource project, which includes Lucene ports to C

and C#/.Net. The widespread adoption of Lucene on PC platforms

and the popularity of Java-enabled cellphones motivate the

LuceneME port. The work described here uses Lucene 2.1.0.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

Figure 2. BBSearch UI on PC

2.1 Apache Lucene
Lucene uses a reverse index. A Lucene index consists of one or

more segments. Each segment consists of multiple files, in the

multifile index structure, or of one file, which encapsulates the

above index files of the segment, in the compound index structure.

Multisegment indexes and the compound index structure enable

scaling Lucene applications to cluster-distributed indexes

containing millions of documents. For faster access, Lucene

caches in main memory part of the term dictionary, which is the

most frequently accessed region of an index segment.

The logical view of an index is a collection of Lucene documents

(or ldocs). Each ldoc is identified by numerical ID and consists of

a non-empty collection of fields, where a field is a (name, value)

pair. For instance, (title, “Lucene in Action”), (ISBN, 1-932394-

28-1), (body, “One of the key factors…..<<the rest of the words in

the book>>”) could be fields in the ldoc representing [8].

Fields can be indexed, stored or both. Typically, fields like ‘body’

and ‘title’ are indexed and fields like ‘FilePath’ or ‘URL’ are only

stored. Content searches use the indexed fields and yield the list of

ldocs that satisfy the search query. Next, for each ldoc in the list,

its stored field(s) are retrieved. Before being indexed, fields are

analyzed.

Lucene analysis consists of converting text into tokens. More

specifically, an analyzer extracts the words from the text

discarding punctuation; some analyzers eliminate common words,

perform lowercasing or more complex operations, such as

stemming or lemmatization. Lucene includes an extensible

collection of analyzers. Analyzers break a field value into a stream

of tokens. After analysis, token values (words) and their positions

in the document (sequence numbers) are stored in the index.

A Lucene query is a data structure that can be constructed by the

application, using the Query API, or it can be generated by the

QueryParser, from a string representation of the query. Parsing

uses the same analyzer as indexing. A Lucene query is executed

by the Lucene core. For instance, the smartphone application

builds and executes its queries locally while PC applications

compose their queries as strings and send them to the server for

parsing and execution.

We extend Lucene with a transcript-specific analyzer and

tokenizer, which allow us to replace in the index the word

positions with the timestamps in the audio transcription (in tens of

a second). As a result, timestamps can be retrieved using the

SpanTermQuery Lucene API, which is optimized to take

advantage of the index layout. For each word, its timestamps are

stored sequentially, in increasing order of document ID and,

within a document, in increasing timestamp value. Section 6

describes the performance benefits of this approach. The

transcript-specific analyzer and tokenizer consist of about 1500

Java lines of code.

2.2 LuceneME
For LuceneME, our goals were (1) to port every Lucene feature

that could possibly be useful on cellphones while preserving

efficiency, (2) to preserve the index format, and (3) to minimize

the number of changes to the retained code in order reduce the

effort of leveraging future Lucene improvements. The porting

effort is driven by three factors.

First, Lucene uses many J2SE features (classes, interfaces and

exceptions) not included in the most popular Java runtime for

cellphones, which is the Java Platform Micro Edition in the

Connected Limited Device Configuration (CLDC) with the

Mobile Information Device Profile (MIDP) or J2ME/MIDP1. For

instance, the ArrayList, HashMap and HashSet classes and List,

Iterator and Set interfaces are not available in J2ME/MIDP. In

most cases, code using the missing features is rewritten to use

those available. For the cases where the required code changes

1
 See [19] for a list of Java-enabled cellphones.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

were substantial, LuceneME adds minimal implementations of the

missing features and the original code is left largely unchanged.

Second, the clone() method is missing from the Object class in

J2ME/MIDP because CLDC uses KVM, which is a simplified

Java VM designed for resource-constrained devices. Substituting

for the lack of a clone() method resulted in many code changes, as

our attempts to find an elegant and simple solution to this problem

failed. For instance, access methods for the compound file

structure frequently use object cloning to hide its underlying

structure from the rest of Lucene, which is designed for the

multifile index structure.

Third, we remove from Lucene features considered unnecessary

on smartphones, such as handling parallel indexes or query

parsing. We took a conservative approach to removing features,

given that eliminating unnecessary classes or interfaces often

requires changing the remaining code. Table 1 briefly summarizes

the porting effort.

Table 1. LuceneME - Summary of Code Changes

Lucene 2.1.0 (lines of code) 33,800

Packages removed 1 (queryParser)

Files removed 4

Lines of code modified 600

Lines of code added 1500

LuceneME (lines of code) 31,400

3. BBSearch
BBSearch is designed as a single system spanning multiple

platforms to provide the best experience on the computing

platform available to the user. BBSearch aims to provide a

uniform user experience across platforms, which includes the

same search functionality, identical ranking of the result set, and

similar user interfaces (subject to platform capabilities).

All but the last of these goals are achieved by using the same IR

library for indexing and retrieval on all platforms, namely Lucene.

In addition, the different BBSearch applications can use the same

speech archive index, similar to the way media players on

different platforms play exactly the same .mp3 files, because the

Lucene ports preserve the index format. As a result, BBSearch

users can move speech archives between devices using regular file

copy operations.

BBSearch introduces a podcast-specific user interface for

navigating search results. Namely, the result of a search is a

ranked collection of timelines, one for each podcast, with the

search term positions marked on the podcast timelines. The PC

and smartphone UIs share this representation but handle input

commands differently, as they use different input devices, i.e.,

mouse and trackball/4-way key, respectively. In addition, the

smartphone UI is designed for one-handed operation when

initiating previously stored searches, navigating search results,

and playing the selected podcast.

A podcast is transcribed offline before it is added to the archive.

Therefore, adding a podcast to a speech archive is similar to

adding a text document to a text archive. Transcription time varies

with the tool used, the size of its vocabulary, the desired accuracy

and the computing resources of the transcription server. The tool

used in this project runs on a high-end PC and it transcribes a

podcast in about two times its duration.

A podcast transcript consists of a sequence of timestamped words,

which is passed to the archive manager together with the location

of the podcast. A new Lucene document (ldoc) is created for each

podcast. The transcript, i.e., the sequence of timestamped words,

is tokenized and the result is stored in the ‘body’ field of the new

document. Other fields store the podcast location, title, author and

duration. Typically, these values are extracted directly from the

podcast; if the podcast is recorded in an .mp3 file, the values are

extracted from its ID3 labels. BBSearch runs Boolean queries

against the ‘body’ field. For each podcast in the result set, its title,

author and duration are retrieved from its stored fields and

displayed with the search results.

On PCs, BBSearch consists of a browser-based application and an

extension of BlueBird, a Mozilla-based podcast management tool

[3]. For smartphones, BBSearch consists of a BlackBerry

application, which, except for its UI implementation, is

J2ME/MIDP compatible.

The next section describes the PC applications in detail. The

description reveals some of the challenges that a similar

smartphone implementation would face: the need for a JavaScript

enabled browser and for emulation of mouse pointer capabilities.

3.1. PC BBSearch
The two PC BBSearch applications access speech archives

managed by an application server. The server handles commands

for adding and removing podcasts, and for Boolean searches. The

process of adding podcasts generates a new Lucene document, as

previously described. The process of removing a podcast

translates into a short sequence of Lucene API calls. In the

following, we describe the search functionality.

The two PC applications are very similar. Both use an HTML

form and JavaScript to input and process Boolean queries using

three word lists, for AND, OR and NOT terms, respectively, and a

positive number for the maximum size of the result set (‘N’). The

podcasts in the search result must include all the terms in the

AND list, at least one from the OR list, and none from the NOT

list. In the input form, AND and OR terms are displayed with red

and blue, respectively; the same colors are used in the results

screen to mark the positions of these terms.

The server is implemented as a Tomcat servlet, which uses Lucene

and other open-source libraries to handle podcasts and other

document formats. The server can also be run on the private

desktop/laptop to keep the speech archive local. In this

configuration, the applications access the server over the loopback

interface.

Upon entering a query, the applications validate the input and

construct the query expression string. The query, the AND and

OR lists, and the value of N are sent to the server for processing.

The server parses the query string, which builds a Lucene data

structure representing the query. Next, it executes the Boolean

query by interpreting the data structure and it retains the top-N

ranked podcasts. Lucene ranks the documents as they are being

retrieved. For each podcast, the server retrieves the timestamps of

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

all the AND and OR terms received with the query string, using

the SpanTermQuery API. For each podcast, the server also

retrieves its title, duration, and length from the index. Using these

values, the server constructs an HTML fragment and sends it back

to the application. The receiver inserts the fragment in its DOM at

a pre-set node.

Rendering the HTML fragment shows each podcast as a

horizontal time line with the search terms displayed as vertical

colored markers positioned in accordance with the terms’ time

offsets in the recording. When the mouse hovers over a marker,

the text of the search term it represents becomes visible. Clicking

on the timeline starts the podcast at the expected time offset: the

browser-based application starts the Windows Media Player,

while the BlueBird extension starts VLC [20], which is part of the

BlueBird tool.

Internally, the HTML fragment represents each podcast as a

separated section using a <DIV> tag. Within the section, the time

line, the vertical markers and the terms are stacked in different

layers. Markers and associated terms are positioned using

coordinates computed from the timestamps retrieved from the

index; initially, all terms are hidden. The visibility of the terms

and the podcast play offset are controlled by JavaScript methods

attached to the markers and the podcast time line, respectively.

Results are displayed in no more than a few seconds, when

searching a 70hr podcast archive. To start a podcast at an arbitrary

offset, one has to wait until enough of it is downloaded; this can

be take up to a few minutes, depending on the offset, podcast bit

rate and network conditions. While the missing segment

downloads, the podcast plays from the beginning. Once

downloaded, the play jumps at the desired offset. Downloaded

podcasts are cached locally and subsequent accesses start playing

immediately. Access to the desired offset is almost instantaneous

when the server is hosted on the local machine.

A little more than a dozen people tried the browser-based

application. The informal feedback was positive, with virtually

everyone finding the interface intuitive and the application

responsive. One suggestion was to provide more context by

displaying several words surrounding the search term when

hovering over the marker.

The same Tomcat servlet maintains a second archive, for various

document types, such as PDF, Word, PowerPoint, XML, RTF,

ASCII, etc. This second archive was used for an informal

evaluation of the impact of transcription errors on search

accuracy, as described in Section 4. The servlet implementation

consists of about 1000 lines of Java.

3.2. Smartphone BBSearch
Currently, BBSearch runs only on Java-enabled smartphones. This

platform was selected because of its popularity among knowledge

workers, as all BlackBerry smartphones are Java-enabled, and

because of the abundance of cheaper Java-enabled cellphone

models, some of which having enough resources to host a

BBSearch application.

The existing application architecture for smartphones manages

only local archives. Extensions of this architecture with

capabilities for searching remote speech archives are part of our

future work.

The design of the smartphone application focuses on its usability

and performance. This section describes the results related to the

first focus area. Section 5 describes its performance.

The smartphone application enables one-handed operation by

storing the most recent accessed podcasts in a play history and the

most frequent term searches in a search repository; both history

and repository are easy to navigate using only the trackball. The

user interaction is structured around several overlapping screens.

Figure 3 depicts the screen transition diagram.

Home

and
Play History

Content Search and
Search Repository

Search Results:
Global and Local

Navigation

Play/Navigate

Podcast

ESC, to exit or
select from history

ESC, to issue

another search

ESC, to select
another result

S
e
le
c
t
p
o
d
c
a
s
t
fr
o
m
 h
is
to
ry

Select
SEARCH

Select
podcast

Submit

Search form

N
a
vi
g
a
te

re
p
o
s
it
o
ry

Z
o
o
m

c
u
rr
e
n
t
p
o
d
c
a
s
t

Figure 3. BlackBerry Application Screens

On the home screen, users can select between a podcast in the

play history and starting a search. The play history records

previously accessed podcasts; each podcast is described by the last

played position and the positions of the search term(s) used to

retrieve it.

Figure 4. Search Screen

Figure 4 shows the “Content Search…” screen. The layout is

designed for one-handed retrieval and execution of stored

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

searches using the trackball. For reuse, frequent searches are

stored in a repository. The controls in the top row manage the

search repository. When this screen pops up, the focus is set on

the ‘Next’ button, to allow for a quick scan of the search

repository. Clicking the ‘Search’ button initiates a search with the

terms on the screen.

Search results are displayed in two stages. First, a transitory

screen (not shown in Figure 3) displays the ranked set of podcast

as a list of file names. This screen provides a ‘quick’ feedback to

the user. Once term positions are retrieved, the “Search

Results…” screen, which is shown in Figure 1, replaces the

transitory screen. On this screen, the user can navigate between

podcasts and zoom in and out of podcast segments using only the

trackball.

Clicking on the podcast selection transitions to the media player

screen partially shown in Figure 5 and sets the current play

position to match the oval-shaped cursor in the previous screen.

Figure 5 shows a media player that was enhanced to show the

positions of the search terms on the progress indicator. Similar to

the previous screen, the term closest to the current position is

displayed (under the progress indicator).

Upon exiting the player screen, the user is prompted to save the

current podcast and the associated context, which includes the

current position and the search terms. Saved podcasts are added to

the play history.

Figure 5. Enhanced Media Player (top ½ of screen)

To perform a search, the BBSearch application first composes and

runs a BooleanQuery. The results of the query are displayed in the

transitory screen. Next, a background thread issues a

SpanTermQuery query for each search term and the retrieved

timestamps are used to position the markers. After all these

queries complete, the screen shown in Figure 1 pops up.

Except for the user-interface, the application can run on any

J2ME/MIDP phone with the File Connection Optional Package

(typically present). The Lucene port and an initial prototype were

built using IBM’s Device Developer (an Eclipse-based IDE),

which was targeted at a generic J2ME/MIDP environment. For the

next stage, which included the development of the user interface,

we transitioned to RIM’s JDE because the UI component uses

many elements from the proprietary “net.rim.device.api.*”

packages. RIM’s JDE and its simulator for the 8800 were used for

the final development and testing, and for capturing the

screenshots. The implementation consists of about 5,800 lines of

Java (not including the media player).

4. EVALUATION CORPUS
The evaluation of the smartphone implementation uses 350

podcasts from the IBM Media Library [7]. We identify the set of

recordings with manual transcripts made between January 2006

and April 2007, remove the recordings in languages other than

English and those sampled at less than 16KHz, and transcribe the

oldest 350 recordings.

This corpus represents a little more than 70 hrs of podcasting and

it requires 1.68GB of storage after conversion to mono sound. The

podcasts are indexed in the order of their recording date. We

create multiple indexes, comprising the first 25, 50, 75, …

podcasts, respectively, and labeled them ‘IndexNN’, where ‘NN’

is the number of documents in the index (see Table 2). The second

column shows the number of distinct terms in each index. The six

most frequent terms considered representative for this corpus are:

‘business’, ‘people’, ‘different’, ‘important’, ‘technology’ and

‘information’. The third column shows their ranks, which is the

number of documents in the index that contain the term. The least

frequent words (rank one) across indexes include ‘ambient’,

‘disposable’, and ‘diffusion’.

Early in the project, the same corpus was used for an informal

evaluation of the impact of ASR errors on the quality of the

search. Briefly, for each podcast, both the ASR and manual

transcript were indexed in the speech and text archives,

respectively, using one of the PC applications. A collection of

queries were executed against both archives and results compared

visually.

Table 2. Index Configurations

Config. # of

terms

Ranks of six

Frequent terms

Index

Size

Index25 4435 21, 23, 23, 20, 19, 18 120kB

Index50 6280 44, 44, 37, 36, 41, 38 201kB

Index75 7994 67, 65, 55, 53, 64, 59 297kB

Index100 9161 89, 86, 72, 68, 80, 73 377kB

Index125 10079 112, 108, 89, 83, 95, 85 449kB

Index150 11086 131, 129, 105, 100, 109, 100 533kB

Index175 12160 154, 145, 121, 119, 127, 115 629kB

Index200 12904 177, 161, 138, 132, 140, 131 710kB

Index225 13860 197, 178, 155, 150, 158, 149 798kB

Index250 14572 215, 194, 168, 169, 172, 167 895kB

Index275 15330 237, 214, 186, 190, 187, 185 989kB

Index300 15878 259, 235, 200, 207, 204, 204 1.06MB

Index325 16340 282, 251, 212, 222, 218, 221 1.13MB

Index350 16942 302, 272, 226, 237, 236, 236 1.21MB

5. EXPERIMENTAL EVALUATION
The evaluation uses an unlocked BlackBerry 8800 (EDGE)

4.2.1.72 (Platform 2.3.0.54) with CLDC-1.1 and MIDP-2.0. The

8800 has an Intel XScale 312 MHz CPU and a Sun JVM. Java

tests report 56MB of total memory, which points to a 64MB

RAM. The 8800’s 64MB of flash is expanded with a 2GB

microSD card, which stores the Lucene index and the 350

recordings.

The experiments measure separately the execution time and

memory usage of Boolean queries and of the associated span

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

queries. Only the time to retrieve the data from the index and

prepare it for display is reported; the screen manager overhead is

not included.

Table 3. Benchmark Queries

Name Query Expression

1. TermHA +business

2. TermHB +information

3. TermLA +ambient

4. TermLB +disposable

5. And2HA +business +people

6. And2HB +technology + information

7. And2L +ambient +disposable

8. And3HA +business +people +different

9. And3HB +important +technology +information

10. And3L +ambient +disposable +diffusion

11. Or2HA +(business people)

12. Or2HB +(technology information)

13. Or2L +(ambient disposable)

14. Or3HA +(business people different)

15. Or3HB +(important technology information)

16. Or3L +(ambient disposable diffusion)

17. And2HOr2H +business +people

+(technology information)

18. And3HOr3H +business +people +different +(important

technology information)

19. And2HOr2L +business +people

+(ambient disposable)

20. And3HOr3L +business +people +different

+(ambient disposable diffusion)

21.

And2HOr2HNot2H

+business +people

+(technology information)

-different –important

22.

And2HOr2HNot2L

+business +people

+(technology information)

-ambient –disposable

The 22 queries shown in Table 3 are executed in each of the 14

configurations in Table 2 and the top-10 ranked podcasts are

displayed. The query collection, which is designed as a

microbenchmark, uses search concepts introduced in TEXTURE

[6]. The ‘H’s and ‘L’s in the query names designate that the query

uses high- and low-rank terms, respectively. The digits and the

logical operators in the query name designate how many terms are

combined and their role in the query. For instance,

‘And2HOr2HNot2H’ searches for podcasts featuring two high-

rank terms (‘And2H’), one of two low-rank terms (‘Or2H’) and

none of two high-rank terms (‘Not2H’). ‘A’ and ‘B’ are used to

differentiate between structurally identical queries. The 22 queries

are stored in the search repository and executed in sequence. Plots

display the average of three runs. In the following, we report some

of the most relevant insights.

Execution times and memory usage vary with query type and the

ranks of the terms used in the query. Figure 6 and Figure 7 show

the execution times and memory usage for two simple, one-term

Boolean queries, namely TermHA and TermLA. TermHA returns

between 21 and 302 documents while TermLA consistently

returns one document across all configurations. The execution

times and memory overheads for TermHA’s Boolean queries

increase quickly for configurations with less than 200-250

documents; for larger indexes, they increase at a very slow rate

and almost flatten even as the number of hits continues to increase

linearly with the index size. For TermLA, the cost of finding

‘ambient’ in the term dictionary dominates the query overhead

across all configurations.

When the ranks of the two query terms are both high and

comparable, the overheads correlate well with the ranks of the two

terms. For instance, the ratios between the execution times and

memory usages of the TermHA and TermHB queries are close to

the ratio between the ranks of the terms in the queries, i.e.,

‘business’ and ‘information’, across all configurations.

Execution Time: TermHA and TermLA

0

200

400

600

800

1000

1200

25 50 75 100 125 150 175 200 225 250 275 300 325 350

Index Size (recordings)

M
il
li
s
e

c
o

n
d

s

Boolean TermHA

Span TermHA

Boolean TermLA

Span TermLA

Figure 6. Execution Time: high vs. low rank terms

Memory Used: TermHA and TermLA

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

25 50 75 100 125 150 175 200 225 250 275 300 325 350

Index Size (recordings)

B
y
te

s

Boolean TermHA

Span TermHA

Boolean TermLA

Span TermLA

Figure 7. Memory Used: high vs. low rank terms

Results for TermLA and TermLB indicate that searches using a

rare word are very fast, which is encouraging. Stored searches are

expected to be used repetitively and they can be refined with rare

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

words to increase their selectivity and with common words to

increase the expressivity of the result visualization.

The overhead of queries that yield an empty set is not negligible.

For instance, And2L and And3L yield no podcasts and they take

250-300ms and 350-500ms, respectively, and use about 150kB

and 350kB, respectively. Their execution times and memory

usages are a higher than for TermLA, which returns one document

across all configurations.

The execution time of Boolean queries using several high-rank

terms and returning a large result set increases faster than their

selectivity, i.e., the inverse of the cardinality of their result set.

Their memory overheads correlate better with selectivity. For

instance, Figure 8 and Figure 9 show the overheads of TermHA,

And2HA and And3HA, which return between 21 and 302, 20 and

242, and 19 and 169 documents, respectively, across all

configurations. These results teach us that it is preferable to refine

Boolean queries with low-rank search terms.

Execution Time: TermHA, And2HA, And3HA

0

500

1000

1500

2000

2500

3000

25 50 75 100 125 150 175 200 225 250 275 300 325 350
Index Size (recordings)

M
il
li
s
e
c
o

n
d

s

Boolean TermHA

Span TermHA

Boolean And2HA

Span And2HA

Boolean And3HA

Span And3HA

Figure 8. Execution Time: refining w/ high-rank terms

Memory Used: TermHA, And2HA, And3HA

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

25 50 75 100 125 150 175 200 225 250 275 300 325 350
Index Size (recordings)

B
y
te

s

Boolean TermHA

Span TermHA

Boolean And2HA

Span And2HA

Boolean And3HA

Span And3HA

Figure 9. Memory Used: refining w/ high-rank terms

Using high-rank NOT terms in a query has a positive impact not

only on the number of hits returned but also on its execution time.

As expected, Lucene uses the negative terms early in the query

evaluation process to prune documents from further processing.

Figure 10 and Figure 11 show the case where the more complex

query And2HOr2HNot2H requires fewer resources than simpler

query And2HOr2H. And2HOr2HNot2H result size ranges from 1

to 22 while And2HOr2H result size ranges from 19 to 212 across

all configurations.

Several Boolean queries exhibit a drop in memory usage and

execution time for the 325-recording configuration. So far, our

analysis indicates that this anomaly is more likely to be explained

by the Lucene index organization than by an error in data

collection or processing.

Execution Time: And2HOr2H and And2HOr2HNot2H

0

500

1000

1500

2000

2500

3000

3500

25 50 75 100 125 150 175 200 225 250 275 300 325 350
Index Size (recordings)

M
il
li
s
e
c
o

n
d

s

Boolean And2HOr2H

Span And2HOr2H

Boolean And2HOr2HNor2H

Span And2HOr2HNot2H

Figure 10. Execution Time: using negative terms

Memory Used: And2HOr2H and And2HOr2HNot2H

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

25 50 75 100 125 150 175 200 225 250 275 300 325 350

Index Size (recordings)

B
y
te

s

Boolean And2HOr2H

Span And2HOr2H

Boolean And2HOr2HNot2H

Span And2HOr2HNot2H

Figure 11. Memory Used: using negative terms

So far, we have only analyzed the overhead of Boolean queries.

Resource requirements for SpanTermQueries, which retrieve word

timestamps, are surprisingly low and constant across all

configurations, despite the fact that more hits translate into more

timestamps. This is explained by our approach of storing the

timestamps in the index locations used for word positions and the

use of the SpanTermQuery API, which is optimized to take

advantage of the structure of the Lucene index.

First, for a given term, the SpanTermQuery retrieves the start of

the index region where this term’s timestamps are stored, for all of

the documents in the index. The cost of this operation, which uses

the term dictionary, increases logarithmically with the index size.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

Second, the SpanTermQuery scans this index region skipping over

timestamps in documents not included in the result set. This

results in close to constant overheads for the configurations used

in this work. Therefore, the additional cost of representing term

positions on the time line seem to be small, as the resources used

for executing Boolean queries dominate those used by span

queries.

Based on the results of our measurements, extending smartphones

with extensive support for personal memories seems feasible.

Although a 70 hrs archive is at the low end of what most of us

would consider useful, our initial tests with larger archives and

Lucene’s success in handling much larger indexes on server

platforms support our assertion. Overall, we are pleased with

using BBSearch on the smartphone, as the search application feels

very responsive. This is not unexpected, as we leverage the work

done by the Lucene community on optimizing it.

Detailed modeling of query resource requirements is desirable but

difficult given the complexity of the Lucene implementation. The

structure of the term dictionary, which uses skip lists for faster

access, appears to set a logarithmic upper bound on query

execution time. Even without a detailed model of Lucene resource

usage, our measurements suggest that it is safe to run BBSearch

on collections several times larger on existing smartphones.

Unfortunately, currently there are no smartphones with enough

memory capacity to store large speech archives. Technology

advances are expected to increase the capacity of memory cards or

enable multiple card slots per cellphone.

6. RELATED WORK
Initial approaches to searching audio archives use text search

methods on audio transcripts. It soon became apparent that a

ranked set of audio files is less useful than a similar document set,

due to the inherent sequential nature of the audio files that

prevents them from being scanned quickly.

SCAN, for Spoken Content-based Audio Navigation [17], is the

first system to propose a user interface design paradigm, called

What You See Is (Almost) What You Hear, for local navigation of

audio files. The SCAN approach is a multimodal method for

accessing audio archives, which uses text search methods for

retrieving a relevant list of recordings and their visual

representations for local navigation. Recordings are divided in

variable length segments using acoustic information and ASR is

applied separately to each segment. The SCAN UI shows the ASR

transcript and a histogram with a column for each segment of the

story. Search terms found in each segment are displayed as

stacked, variable-height rectangles; this representation, called

TileBars, was introduced in [9] for text documents. Jotmail [15]

and later SCANMail [16], focus on providing voicemail users

with a visual representation of their archive. Finally, the term

“strategic fixation” is defined as the “visual scan of text to focus

on regions of interest” in [18], which is also summary of the

authors’ experiences with building Jotmail and SCANMail.

BBSearch is designed to support the search and navigation of

audio archives as well, but it is intended for ubiquitous access to a

larger collection of recordings than voicemail. In contrast to these

systems, the BBSearch UI shows the visual representation of

several elements in the ranked set at the same time, therefore

assisting in global navigation, as well. For local navigation,

BBSearch allows for higher precision in locating relevant

utterances than previous systems.

 The influence of ASR accuracy on user experience is determined

to be linear and only transcripts with word error rates less than

25% are usable in searching Webcast archives [11]. The impact of

ASR accuracy on the effectiveness of the SCAN system and its

user interface is analyzed in [12]. BBSearch does not address

these topics.

On personal devices, handling speech-as-data is even more

challenging due to the inherent limitations of these devices, which

leads to removing resource-intensive features from the mobile

version of an application. For instance, the UIs of the two mobile

implementations of SCANMail display voicemail headers with

little extra information [18]. We found only one graphical UI for

random-access to speech records on personal devices [13]. A

speech record is divided into variable length chunks based on

pauses in the recording; on average, chunks are five seconds long

and each chunk is displayed as a continuous horizontal line, one

after the other, like words in a paragraph. The player controls

allow for direct navigation from one chunk to another. BBSearch

allows for a more precise navigation based on search terms.

Currently, there is significant research interest in designing

personal information devices or management systems, which

handle email, Web page history and images in addition to

recorded conversations or lectures. These systems are intended to

support our memories and recent studies identify that device

efficiency [10] and fast response [5] are the most desired

characteristics.

There is a strong motivation for personal information devices with

very large storage, and existing technologies support their design

and implementation. The convenience of a single always-on,

always-with and connected device points to the cellular phone as

the preferred platform to be expanded with support for

indexing/searching large amounts of personal information. For

cellphones, audio recordings are the preferred information

medium, mainly because of the small size of their displays. Our

work aims at advancing the understanding of the feasibility of this

paradigm.

7. CONCLUSIONS and FUTURE WORK
This paper describes BBSearch, a system for ubiquitous search of

speech archives. BBSearch introduces a podcast-specific user

interface for global and local navigation of search results, and it

includes PC and smartphone applications for managing speech

archives. The latter uses LuceneME, our Lucene port to J2ME.

The paper focuses on the resource requirements of LuceneME

when used for searching smartphone-resident indexes. The results

of our experiments show that searches complete in less than a few

seconds and use only a small fraction of the available memory.

We learned several lessons from the experimental evaluation. For

instance, the cost of retrieving the timestamps used by the

graphical user interface is lower than initially expected.

In our future work, we plan to explore how BBSearch can use

other types of Lucene queries, such as proximity and fuzzy

queries, against errorful transcripts and how to run them

efficiently on smartphones. We are also looking at how to provide

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

user feedback during query specification towards avoiding queries

with high resource usage and low selectivity. We are also looking

at how the existing smartphone application design can be

extended with capabilities for searching remote archives and

integrating the results of local and remote searches.

8. ACKNOWLEDGEMENTS
 The media player shown in Figure 5 was written by Dan

Coffman. Brian Kingsbury was instrumental in obtaining the ASR

transcripts. Comments from the anonymous reviewers helped

improve the presentation.

9. REFERENCES
1. Apache Lucene, http://lucene.apache.org.

2. E. Adar, D. Karger and L. Stein. Haystack: Per-User

Information Environments. In CIKM99, 413-422, 1999.

3. W. Bodin, A. Grizzaffi. Enterprise Library Management for

Digital Media with Dynamic Media Synthesis. In ISWPC07,

373-377, 2007.

4. V. Bush. “As We May Think”, Atlantic Monthly, July 1945,

www.theatlantic.com/doc/194507/bush

5. S. Dumais, E. Cutrell, J.Cadiz, G. Jancke, R. Sarin, D.

Robbins. Stuff I’ve Seen: A System for Personal Information

Retrieval and Re-Use. In SIGIR03, 72-79, 2003.

6. V. Ercegovac, D. DeWitt and R. Ramakrishnan. The

TEXTURE Benchmark: Measuring Performance of Text

Queries on a Relational DBMS VLDB05, 313-324, 2005.

7. G. Faulkner. Podcasting and Social Media at IBM.

http://gfaulkner.wordpress.com/2007/11/05/social-media-at-

ibm-focus-on-podcasting/.

8. O. Gospodnetic and E. Hatcher. Lucene In Action. Manning

Publications 2005.

9. M. Hearst. TileBars: Visualization of Term Distribution

Information in Full Text Information Access. In CHI95, 59-

66, 1995.

10. V. Kalnikaite and S. Whittaker. Software or Wetware?

Discovering When and Why People Use Digital Prosthetic

Memory. In CHI07, 71-80, 2007 (Best Paper).

11. C. Munteanu, R. Baecker, G. Penn, E. Toms and D. James.

The Effect of Speech Recognition Accuracy rates on the

Usefulness and Usability of Webcast Archives. In CHI06,

493-502, 2006.

12. L. Stark, S. Whittaker and J. Hirschberg. ASR Satisficing: The

Effects of ASR accuracy on Speech Retrieval. In International

Conference on Spoken Language Processing, 1069-1072,

2000.

13. R. Tucker, M. Hickey and N. Haddock. Speech-as-data

technologies for personal information devices. In Pers Ubiquit

Comput, 7:22-29, 2003.

14. S. Vemuri, What Was I Thinking?,

http://web.media.mit.edu/~vemuri/wwit/

15. S. Whittaker, R. Davis, J. Hirschberg and U. Muller. Jotmail:

a voicemail interface that enables you to see what was said. In

CHI00, 89-96, 2000.

16. S. Whittaker, J. Hirschberg, B. Amento, L. Stark, M.

Bacchiani, P. Isenhour, L. Stead, G. Zamchick, and A.

Rosenberg. SCANMail: a voicemail interface that makes

speech browsable, readable and searchable. In CHI02, 275-

280, 2002.

17. S. Whittaker, J. Hirschberg, J. Choi, D. Hindle, F. Pereira, and

A. Singhal. SCAN: designing and evaluating user interfaces to

support retrieval from speech activities. In SIGIR99, 26-33,

1999.

18. S. Whittaker and J. Hirschberg. Accessing Speech Data

Using Strategic Fixation. In Computer Speech and

Language 21(2), 296-324, 2006.

19. The Java ME Device Table,

http://developers.sun.com/mobility/device/device.

20. VLC Media Player, www.videolan.org

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3635
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3635

