
RECOUP: Efficient Reconfiguration for Wireless Sensor
Networks

S. Pennington, A. Waller, T. Baugé
Thales Research and Technology,

 Worton Drive, Worton Grange, Reading, RG2 0SB
Sarah.Pennington@thalesgroup.com

ABSTRACT
In this paper, we describe RECOUP (Reliable Configuration
Update), an eff icient protocol for updating the configuration of a
Wireless Sensor Network (WSN).

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols.

General Terms
Management, Reliabilit y

Keywords
Wireless sensor networks, protocols, configuration management

1. INTRODUCTION
Within a WSN, a management framework may be needed to

allow configuration parameters to be changed after the initial
deployment of the network. For example, the level of security for
sending and receiving messages may need to be changed. The
security level can be increased to provide higher protection
against attacks from malicious sensor nodes and it can also be
decreased again when the threat subsides to conserve power. In
order to implement this framework, all sensor nodes in the
network need to be instructed how to set their configuration. This
needs to be done in a reliable, secure, synchronised, and eff icient
way.

The RECOUP protocol ensures that all nodes in a network
receive configuration management messages that inform them to
update their configuration. It ensures that all nodes have a
consistent configuration, and allows recovery of situations where
some nodes are in an inconsistent state. It is particularly suited to
applications that send small configuration payloads, so that the
configuration is contained within a single packet. In addition, the
protocol is appropriate for applications where speed of update and
power consumption is of importance, or where nodes need to
recover from an inconsistent state, for example new nodes joining
the network.

2. RELATED WORK
Protocols to achieve reliable reconfiguration in wired

networks exist, such as reliable IP multi cast. However, these are
not appropriate for WSNs due to their significant overheads in

terms of bandwidth used and maintenance of state on network
nodes. Moreover, these approaches do not inherently allow
recovery from an inconsistent network state, such as may occur
when a new node joins.

Reconfiguration taking into account the significant
constraints of WSNs is a relatively new area of research for which
few solutions have been proposed. Of those that do exist, most,
such as MOAP [1], Deluge [2] and TinyCubus [3] are designed
for distributing code updates, which are assumed to be large.
Their main aim is to save communications and memory costs
where multiple packets of data need to be sent and speed of
update is a minor issue.

Many assumptions and optimisations used by these
approaches, such as the use of negative acknowledgments from
receivers to signal missed packets, are not valid for small , single
packet, updates which need to be disseminated rapidly. In
addition, use of a periodic broadcast by existing nodes of the
current code version to allow new nodes or nodes that have been
out of range to update themselves is relatively ineff icient and will
lead to significant delays in (re-) incorporating such nodes in the
network.

Finall y, synchronisation of the updates is rarely considered.
It is generally assumed that the network will be unable to perform
its usual operations (e.g. collecting sensor data) while the code
update is being distributed. For code updates, this is not a
problem as these will be relatively infrequent. However, for
frequent security level changes for example, this would be a
significant issue. In [4], small configuration updates are
considered, but the use of TCP/IP is suggested for point-to-point
updates, which is ineff icient, and reliable broadcast updates are
left as future work.

3. RECOUP
The protocol has two major features. Firstly, new

configuration updates will be flooded throughout the sensor
network using a smart flood mechanism. Secondly, if nodes have
missed updates, e.g. due to being out of range when the last
update was sent or because they are new nodes being added to the
network, then the protocol provides a ‘ local repair’ (update)
mechanism, which is triggered on the next transmission from the
out-of-date sensor. This provides a rapid repair mechanism should
nodes have inconsistent configurations and ensures that the
network has a very high probabilit y of being in a consistent state.
Note that the protocol makes no assumption as to the
communication pattern of the sensor network (peer to peer, tree
structure, etc), or the network’s topology (single or multi -hop)
and is patent pending.

For the following description, we assume, without loss of
generality, a gateway sensor node that is connected to a PC
running the management application and a network of sensor
nodes. When the configuration of the sensors needs to be
changed, the management application on the PC will send a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republi sh, to post on servers or to redistribute to li sts,
requires prior specific permission and/or a fee.
MobiQuitous 2008, July 21-25, 2008, Dublin, Ireland.
Copyright © 2008 ICST ISBN # 978-963-9799-27-1

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.4049
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.4049

request to the gateway node. The gateway will then send out an
update to all the sensor nodes in its immediate neighbourhood
using a link-level broadcast of a ‘configuration management
message’ that contains this new configuration. To enable nodes to
tell which configurations are more recent, version numbers or
time stamps can be used.

 When a sensor node first joins the network it will update to
the first valid configuration it receives. When the new node
receives a sensor data message from another node, it will
broadcast an invalid configuration. This alerts other nodes in the
network that it is out-of-date and nodes with a valid configuration
will broadcast their configuration. On receiving this valid
configuration, the new node will immediately update to this
configuration.

When a sensor node that has a valid configuration receives a
configuration management message, if the received message is
more recent than the previous message the node received then it
will immediately change its configuration. It then broadcasts this
new configuration in a configuration management message to its
neighbours. In this way, the update will be flooded throughout the
network. If the received message is less recent, it will broadcast its
own, more recent, configuration to its neighbours. However, if the
versions are the same, it will simply ignore the message,
preventing the message from being flooded indefinitely.

A local repair is achieved as follows. When a sensor node
receives any message that is not a configuration management
message, it first checks that the configuration of the node that sent
the message is the same as its own configuration (note that the
protocol requires that the configuration of the sending node can
be unambiguously determined from the received message). If the
two configurations match, then the message is processed
normally. If they do not match, then the node that received the
message may either have a more recent or older configuration. To
determine which is the case, it sends its own configuration to its
neighbours. As described above, on receipt of this message either
the other nodes will update their configuration (if they have older
versions) or will respond with the newer configuration (if they
have newer versions).

In the case that on receiving a message a node detects a
mismatch in configurations, the received message may either be
processed normally or dropped, depending on the requirements of
the appli cation. For example, when sending security management
messages using this protocol, if the current security policy
requires packets to be sent with authentication but the received
message is unauthenticated, then the data should be regarded as
potentially compromised and the packet should be dropped by the
node. However, if the received message were authenticated, then
regardless of the current security poli cy any compromise of the
data would be detectable. In this case, the packet could be
processed normally. In this way, the amount of appli cation data
lost due to lack of synchronisation of configurations is kept to a
minimum.

4. EVALUATION
The full RECOUP protocol and a flooding algorithm (based

on the protocol provided with TinyOS, and set to broadcast
updates eight times) were implemented on the TinyOS v1.1.15

platform [5]. TOSSIM, a bit-level simulator designed for the
TinyOS platform [6], was then used to evaluate the protocol.

We found that the flooding protocol results in eight times the
number of configuration update messages being sent compared to
the RECOUP protocol. Furthermore, the average packet loss for
the RECOUP protocol was lower than that for the flooding
protocol. The high number of packets sent using the flooding
protocol caused congestion in the network which led to queue
overflows and packets being dropped. Both protocols delivered
each update to all nodes in the network, although the flooding
protocol resulted in a faster update of the network than the
RECOUP protocol. However, we demonstrated that the flooding
protocol does not guarantee to deli ver the update to nodes that
join the network after the initial flood. Conversely, the ‘ local
repair’ feature of the RECOUP protocol means that it is able to
deliver the update to all nodes that miss the initial flood.

5. ACKNOWLEDGMENTS
This paper describes work partiall y funded by the FP6 EU project
“e-SENSE, Capturing Ambient Intelli gence for Mobile
Communications though Wireless Sensor Networks” , Contract
Number: IST-4-027227-IP, www.ist-e-sense.org. It also describes
work undertaken in the context of the SENSEI project,
‘I ntegrating the Physical with the Digital World of the Network of
the Future’ (www.sensei-project.eu). SENSEI is a Large Scale
Collaborative Project supported by the European 7th Framework
Programme, contract number: 215923.

6. REFERENCES
[1] Stathopoulos, T., Heidemann, J., Estrin, D., “A remote code

update mechanism for wireless sensor networks” , Technical
Report CENS-TR-30, University of Cali fornia, L.A. (2003).

[2] Hui, J.W., Culler, D., “The dynamic Behaviour of a data
dissemination protocol for network programming at scale”,
In: Proc. Of the 2nd Intl. Conf. On Embedded Networked
Sensor Systems. (2004) 81–94.

[3] Pedro José Marrón, Andreas Lachenmann, Daniel Minder,
Matthias Gauger, Olga Saukh and Kurt Rothermel,
“Management and configuration issues for sensor networks” ,
International Journal of Network Management -- Special
Issue: Wireless Sensor Networks, Volume 15, No. 4, pages
235—253, 2005.

[4] Markus Anwander, Gerald Wagenknecht, Torsten Braun,
“Energy-eff icient Management of Heterogeneous Wireless
Sensor Networks” , Technical Report iam-07-002, IAM,
University of Bern, 2007.

[5] University of Cali fornia, Berkley. TinyOS. 2005, available
at http://www.tinyos.net/

[6] P. Levis et al., TOSSIM: accurate and scalable simulation of
entire TinyOS appli cations, Proc. of SenSys 2003.

[7] A. Woo and D. Culler. Taming the Underlying Challenges
of Reliable Multihop Routing in Sensor Networks. In Proc.
of the 1st ACM Conf. on Embedded Networked Sensor
Systems, pages 14--27. Los Angeles, Nov 5-7 2003

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.4049
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.4049

