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Abstract—Research has demonstrated that a lack of cooking 

competence can be a significant barrier to healthier eating. We 

present two studies from which we develop a set of requirements 

for a pervasive sensor infrastructure that will enable our 

Ambient Kitchen environment to measure cooking competence in 

an unobtrusive manner. From the first study we derive key 

characteristics and potentially measurable aspects of cooking 

competence. This study also led to the specification and design of 

a pervasive sensor infrastructure comprising of a set of kitchen 

utensils equipped with custom-made wireless accelerometers. The 

second study reports our initial findings from the use of the 

sensor infrastructure and demonstrates its potential to measure 

key indicators of cooking competence. Our studies provide initial 

evidence that cooking competence can be measured automatically 

using our proposed pervasive kitchen infrastructure. 

Keywords-activity recognition, cooking competence, pervasive 

computing; accelerometer 

I. INTRODUCTION 

The World Health Organization (WHO) identified obesity 
as one of the greatest health challenges of the 21st century. 
Since the 1980s the number of obese people has tripled and this 
figure is rising at an alarming rate [2]. About a third of the 
European adult population has a body mass index (BMI) above 
30 (the definition of obese). Obesity increases the likelihood of 
medical conditions such as cardiovascular diseases, various 
types of cancer, diabetes and osteoarthritis, and treating these 
conditions places significant demands on national healthcare 
systems. Obesity is mostly attributed to an imbalance between 
energy intake and energy expenditure. In theory, it should be an 
easy task to counteract obesity, by either increasing energy 
expenditure or by reducing energy intake. But achieving 
permanent changes in diet is well known to be challenging, 
despite people’s awareness of the shortfalls in their diet and the 
impact this may have on their health and well-being [3]. There 
are a number of identifiable barriers to successful dietary 
change and many of these barriers also lead to increased 
consumption of less healthy energy dense foods, such as 
convenience meals, fast food or snacks [4]. Food choice is 
affected by a number of factors [5]. Healthier food and meal 
choice is in part related to people’s levels of cooking 
competence and confidence [6]. However, many people lack 
the confidence or skill to plan and prepare meals, to undertake 
certain meal preparation activities, or to follow recipe 

instructions. People with a low level of cooking competence 
also tend to consume more convenience meals [7].  

Our overall goal is to design and deploy digital 
technologies that can improve people’s cooking skills and 
thereby impact positively on the nutritional quality of their diet. 
However, to achieve this we must first characterize cooking 
competence and then develop reliable measures for it, based on 
sensed activities in the kitchen. We therefore envision a 
pervasive kitchen infrastructure that can automatically sense 
and reason about people’s food preparation and cooking 
activities. In order to create such an infrastructure we must first 
establish the nature of cooking competence and thereby 
establish its requirements. To this end we have conducted both 
an exploratory observational study, in people’s homes, and as a 
result we designed and deployed a sensor infrastructure that has 
the potential to evaluate an individual’s cooking competence. 
We evaluate this infrastructure and provide an overview of the 
challenges to be overcome to realize our vision of a pervasive 
kitchen that can truly support users in their food preparation 
and cooking activities. 

II. RELATED WORK 

A large number of systems (both research prototypes and 
consumer products) aim to provide support to users to analyze 
their diet and make healthier food choices. While traditional 
digital interventions for healthier eating have relied on users 
accessing nutritional support and advice at a desktop, there has 
been a growing recognition that such support needs to be more 
situated, that is, located in the time and place that the actual 
activities of meal planning and preparation occur. Svensson et 
al. [8, 9] aimed to develop a system that supports users when 
they are uncertain as to what meal to prepare. They specifically 
addressed two scenarios, one in which people are uncertain as 
to what meal to prepare, and another where a meal needs to be 
planned using a limited set of ingredients. While online 
databases are a potentially valuable resource for inspiring food 
and meal choice, the large range of choice can be 
overwhelming. To support people in these decision-making 
processes, Svensson et al. created an application that allows 
users to navigate through a database for a healthy and balanced 
meal in a simplified manner. Technologies have also been 
applied to the problem of increasing awareness as to the current 
nutritional characteristics of an individual’s diet (usually with a 
view to supporting dietary change). Again, such systems can 
provide appropriate personalized support and guidance for 
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users. Mankoff et al. [3] aimed to increase a user’s 
understanding of the amount of nutrients they actually 
consume. To assess the current state of a user’s diet, shopping 
receipts were scanned and analyzed, and a shopping list of 
suggested healthier food alternatives was produced. Ransley et 
al. [10] also used shopping receipts to analyze the nutritional 
quality of someone’s diet. 

A small number of prototype systems aim to help users 
during meal preparation by both recognizing their activities and 
guiding them through their tasks. In general this has been with 
a view to increasing time efficiency and supporting decisions 
as to what to prepare. Chi et al. [11] developed a nutrition 
aware kitchen that gives feedback, during the actual 
preparation of a meal, as to its nutritional value. RFID sensors 
and scales embedded in the kitchen counter detected and 
quantified ingredients. Nutritional information was presented to 
users in an attempt to motivate and help them to make healthier 
choices. Amft et al. [12] analyzed nutritional behavior directly 
during actual food intake. By using a range of worn sensor 
technologies to detect both chewing sounds and swallowing 
motions, they were able to report accuracies as high as 80% for 
the identification of food groups consumed. Chang et al. [13] 
created a dining table using load cells, weight tracking 
algorithms and RFID technology to measure food intake. While 
this was a significantly less obtrusive solution (compared with 
Amft et al's [12]) it required an infrastructure embedded in the 
user’s environment and more configurations (i.e. to define the 
dishes in the first place). Captured pictures of a meal and 
storing them in a journal have also been used to promote and 
support dietary awareness and reflection [14, 15]. 

A number of projects have sought to provide support for 
inexperienced cooks through the use of a sensing infrastructure 
in the kitchen that monitors the users and guides them through 
meal preparation and cooking activities. Nakauchi et al. [16] 
developed a system that combines robotic and activity 
recognition systems. Meal preparation activities are recognized 
and mapped onto a recipe, and based on this information a 
robot predicts the next steps and guides a user with both speech 
and gestures (e.g. points towards the cupboard with the sugar). 
Related systems include Ju et al.’s [17] rich multimedia 
experience guides to support users preparing new dishes, and 
Martins et al.’s [18] cooking guide based on a spoken dialog 
system which predicts the next activity based on a cooking 
ontology. Being inexperienced or disorganized can also result 
in inefficient behavior during meal preparation. To address 
such problems, systems such as CounterIntelligence [19] have 
explored the use of various surfaces in the kitchen to support 
information access for the cook. Bonnani et al. [19] identified 
the fridge as a particularly valuable resource, and claimed that 
people’s efficiency in meal preparation and meal planning 
could be significantly improved if they were more aware of 
what ingredients are in their fridge (e.g. when doing groceries 
reminding people of what they need to buy). They applied this 
idea to a range of other kitchen appliances, for example, using 
displays on cupboards and drawers that indicate to a user where 
different kitchen utensils were located. 

Another approach is to provide appropriate advice in a 
timely manner, by monitoring people’s meal preparation 
activities. This requires the detection of as many activities as 

accurately as possible. In our previous work we embedded 
sensors, such as accelerometers, into kitchen utensils [20, 21]. 
The recorded acceleration data can be translated into activities 
using classifiers trained using machine learning techniques on 
annotated data sets. An alternative approach is to mount a 
sensor on the user’s wrist, or use a wrist worn RFID reader that 
can sense passive RFID tags embedded in the environment 
[22]. While body worn sensor approaches are utensil 
independent there is a subsequent encumbrance for the user. In 
addition to detecting the activity, Kranz et al. [34] detected 
different ingredients. Using a combination of torque sensors in 
the knife, microphones in the environment, and load cells in the 
chopping board, they reported being able to distinguish 
between 6 different ingredients. 

Distractions while preparing a meal can also influence the 
outcome and a user’s general motivation to cook. Such 
distractions can be caused by other family members, phone 
calls, or unexpected events such as simple mistakes. Tran et al. 
[23] developed a system that records the user while preparing a 
meal. When the user wants to continue their meal preparation 
after being distracted, they can view the recording to see at 
which point they were distracted, and thus more easily restart 
their activity. Distractions can also occur while preparing 
multiple meals at the same time. Hamanda et al. [24] designed 
a system to address this challenge, claiming that the user can 
“cook several meals without failure”. 

Although our overview of related work has identified a 
number of digital interventions that aim to improve people’s 
nutrition, the approach most of these systems adopt is to 
support the decision making process, by analyzing a user’s diet 
and/or providing guidance and to help with meal preparation to 
inexperience cooks. We can readily see that the problems these 
systems are mostly seeking to address can in part be linked to a 
user’s cooking competence. Not knowing what to prepare can 
be the result of a person only having knowledge of a small 
number of different recipes, or lacking the knowledge as to 
which ingredients go together. People who regularly cook 
meals with fresh ingredients generally have a more balanced 
diet [25]. By being involved in the meal preparation a user is 
also more aware of the actual composition of the meal. On the 
other hand, people who consume convenience meals have to 
rely on the information on their meal’s packaging, and have no 
real opportunity to modify its composition [26]. Furthermore, 
people with higher levels of cooking competence have a better 
understanding of the different chemical processes that occur 
during meal preparation, e.g. temperature treatment or reactions 
of different ingredients; knowing these processes enables a 
person to better plan their meal preparation activities. 
Experienced cooks are generally more time efficient and are 
certainly able to monitor multiple simultaneous processes.  

Our observations about the differences between 
experienced and inexperienced cooks suggest that increasing an 
individual’s cooking competence may also result in an 
improvement in the diet of those consuming the food the cooks 
prepare. Currently, a person’s cooking competence is assessed 
using questionnaires [26]. The obvious shortcoming of such 
instruments is that they measure subjective self-assessments, 
and a subject might rate his or her competence incorrectly, for 
example, based on their opinion of preparing a limited range of 



meals that involve only a small range of meal preparation 
activities. Indeed, the few existing cooking competence 
questionnaires have low face validity. In response to both this 
measurement problem, and the link between cooking 
competence and diet, our first aim is to develop a sensor 
infrastructure that allows the accurate and objective 
measurement of cooking competence.  

III. OBSERVATIONAL STUDY 

Similar to Hudson et al. [27], we chose an observational 
approach to explore the feasibility and requirements of a 
pervasive kitchen infrastructure for measuring cooking 
competence. Instead of inserting different sensors into a 
kitchen environment we used annotated video observations to 
simulate and explore possible sensor deployments. 
Observations were conducted in participants’ home kitchens to 
access an authentic record of people’s everyday meal 
preparation activities using their own utensils and appliances. 
Furthermore, a number of activities that were not directly 
related to meal preparation were also captured (such as 
cleaning, and responses to distractions). Another advantage of 
home-based observation was that our participants prepared 
meals in a familiar spatial environment in which they knew 
what appliances are available and where to find them. This 
allowed “normal” meal preparation strategies and routines to be 
followed, and enabled us to get a better insight into people’s 
cooking activities “in the wild”. 

Nine participants (5 males and 4 females) were recruited 
from single-person households, two-person households, and 
families with young children. We anticipated that this diversity 
would lead to the observation of a number of different cooking 
styles, strategies, and levels of competence and confidence. 
Participants all claimed to be the person responsible for meal 
planning and meal preparation in their household. The task was 
to prepare an “every day” meal while being filmed. We placed 
no constraints on participants as to what meal to prepare, other 
than that it had to be a self-cooked fresh meal (i.e. ready-made 
meals were excluded). Designing an appropriate camera setup 
was a significant challenge, as cameras had to be positioned so 
as not to interfere with the participant’s meal preparation. 
Consequently, depending on the kitchen layout, up to 2 
cameras were mounted at places that were unobtrusive to the 
participant (during the cooking process). That is, cameras had 
to be out of range of moving elements, such as cupboards and 
drawers. Although the use of small camcorders and gorilla 
tripods simplified this task, filming in each kitchen required a 
unique setup and strategy. Figure 1 shows a sample camera 
setup. Although the cameras were deployed to capture as many 
activities as possible, in no case was it possible to capture every 
activity, as we were significantly constrained by the kitchen 
layout, kitchen size, and available camera mount locations – as 
a result each video contained a number of “blind spots”. While 
preparing their meals, participants were mostly alone in the 
kitchen, although in some cases family members passed 
through (these sections were removed from the video footage 
to protect the family members’ privacy). In general, the 
participants reported feeling comfortable being recorded while 
cooking; some participants claimed that they only felt 
monitored for the first few minutes, but after a while forgot 

about the cameras and undertook their meal preparation tasks 
unaffected.  

 
Figure 1. A participant’s kitchen and the camera setup. 

The video of the meal preparation sessions was annotated 
using the ELAN [28] annotation tool. Due to the fact that there 
were clear differences between the participants, their cooking 
environment, and the prepared meals, the first step was to 
define an annotation schema that would be general enough to 
apply to the different settings and meal preparation behaviors. 

A. Annotation Schema 

Our initial challenge was to design an annotation schema 
that would allow is to meaningfully compare different users, in 
different environments, preparing different meals. There are 
very few previous examples of approaches to annotating meal 
preparation activities; and existing annotation schemas are 
mostly tailored to either specific environments and/or recipes. 
For example, Spriggs et al. [29] introduced an annotation 
schema defined to test and evaluate a very specific set of 
activity recognition algorithms. In developing our schema we 
had to address three principal challenges. First, we had to 
define the number of levels of activities that we wished to 
annotate, i.e. from simply noting presence in the kitchen, to 
specific motion primitives. Our approach involves two levels: 
level 1 describes when an object is being moved and level 2 
describes more specific activities (e.g. as can be found in a 
cook book). The second challenge was to identify (or define) 
exactly when an activity starts and ends. Here we took 
advantage of the two levels of activities, that is, as soon as a 
utensil is being moved, it is moving. This can frame more 
descriptive activities (e.g. cutting). Figure 2 visualizes this 
concept. 
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Figure 2. Schematic of different levels of activities and their annotation. 

The last challenge was to determine exactly which activities 
we wanted to annotate. In practice, the selection of these was 
an iterative process; on the basis of pilot annotation sessions, 
we found that new activities had to be defined, and related 
activities grouped together. This was also true for many of the 



utensils that were used to perform many of the actions. We 
decided to treat activities and utensils separately from each 
other, to allow us to analyze which activities can be performed 
with which utensils. The final annotation schema consists of 21 
activities and 34 utensils and objects. The set of activities 
contains both actively performed activities (e.g. cutting, 
stirring, grating) as well as passively performed activities (e.g. 
boiling, frying); but also activities that are not related to meal 
preparation, but that occurred while cooking. 

The results of applying this annotation schema can be 
simplified and used to describe a complex cooking process in a 
structured manner. The annotation schema (and subsequent 
results) can be used to get insights as to both the performed 
activities as well as the utensils used. Figure 3 shows a 
summary of the most common activities and utensils, in both 
frequency and duration. 
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(a) Frequency of the 12 most 

common activities as a percentage of 
total number of recorded activities. 
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(b) The 12 activities performed for 
the longest time as a percentage of 

the total preparation time. 
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(c) Frequency of use of the 12 most 
used utensils/objects as percentage of 

the total utensil usage. 
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(d) The 12 utensils/objects that were 
used for the longest time as a 

percentage of total preparation time. 

Figure 3.  Most common (frequency & duration) activities & utensils/objects. 

B. Cooking Behavior Insights 

Although the activity adding (to add an ingredient from one 
container to another) is typically a very short activity it is a key 
meal preparation activity. Our results for the utensils/objects 
used show that ingredients are manipulated almost twice as 
often as other objects (both occurrence and duration). Of the 
other activities, cutting and stirring were the most performed. 
These represent about one third of all activities when preparing 
a meal. They not only occur frequently, but their duration 
constitutes 30% of the overall cooking process. Importantly, 
cutting and stirring activities were performed by every 
participant. This is something that was also reflected in the use 
of the utensils; knives and spoons as well as chopping boards 

and pots and pans are all used by participants. This simply 
confirms the intuitive notion that meal preparation is mostly 
comprised of the manipulation and adding of ingredients. 

Another pair of activities that occurred very frequently was 
the opening and closing of kitchen furniture. These activities 
were recorded at almost all stages of meal preparation, so long 
as ingredients were being added or utensils used. Opening and 
closing occurred frequently, but they were typically very brief 
actions. Another unanticipated finding was the frequency of the 
washing activity (of ingredients, utensils or the participant’s 
hands). This activity most commonly occurred at the beginning 
or end of a meal preparation task, indicating its potential to be 
used to frame cooking activities. Furthermore, our observations 
indicate that there are a range of different meal preparation 
strategies that depend on personal preference, competence, 
cooking space, and even cultural background. For example, 
some participants first gathered together all ingredients for their 
meal, separated and chopped them and as a very last step 
cooked them. Others followed a “just-in-time” strategy, where 
ingredients are gathered and prepared based on the situation. 
We also observed that the kitchen was not exclusively used to 
cook; while preparing a meal many other activities took place 
that were unrelated to meal preparation (e.g. drinking or 
cleaning). 

The observational study provided us with a number of 
valuable insights into people’s cooking behavior in their actual 
home environments. The annotation schema we developed was 
used as a tool to compare how different meals were prepared 
(by different participants) but also as a source of information 
by reference to which we can assess the appropriateness (e.g. in 
terms of coverage) of a sensor infrastructure for recognizing 
activities and thereby measuring cooking competence. 

C. Cooking Competence 

Definitions, or defining qualities, of cooking competence 
are colored by the context in which a meal is prepared. A 
chef’s emphasis on taste and presentation would most likely 
differ from the concerns of a high school domestic science 
teacher, or a working mother. In our definition, we focus on the 
activities of meal preparation, rather than the sensory qualities 
of the resulting meal, and based on the literature and our own 
observations we have identified a total of seven different 
factors that characterize cooking competence [1, 30, 31, 5]. 

(a) Use of utensils and appliances: selection and manipulation 
of utensils and appliances during meal preparation. 

This requires the evaluation of both the appropriateness of 
utensil selection, and a person’s skill in using a utensil 
[32]. Several different characteristics relate to the level of 
skill with which a utensil is used (e.g. speed, smoothness, 
self-similarity of motion, etc.) and these can potentially be 
measured directly during meal preparation.  

(b) Multitasking: the ability to perform multiple meal 
preparation activities simultaneously. 

A complex meal, in which a number of non-trivial 
constituents are separately prepared and then combined, 
requires a person to undertake multiple activities in 
parallel. The measurement of multitasking will therefore 
require the identification of the number of activities taking 



place simultaneously. While multitasking can potentially 
be measured directly during meal preparation, the number 
of tasks that can be conducted in parallel is clearly a 
function of the recipe.  

(c) Monitoring and adaptation: the ability to accurately 
perceive the state of the meal being prepared, and to react 
appropriately in different situations (e.g. novel or stressful 
situations). 

Monitoring and adaption are particularly important when 
modifying an existing plan for the preparation of a meal 
(and they are therefore related to planning). To evaluate 
this aspect of cooking competence it is necessary to 
measure meal preparation activities and map them to 
corresponding recipes. This enables the identification and 
evaluation of the modification. For example, changing or 
adapting a meal often involves the addition or replacement 
of at least one ingredient. The measurement of monitoring 
and adaption is therefore likely to require the detection of 
ingredients. 

(d) Planning: the ability to schedule activities prior to, and 
during, the preparation of a meal. 

Planning is required prior to the meal, when sourcing 
ingredients from the store, and when preparing the meal. 
To monitor how well a meal was planned, it would again 
be necessary to measure and track a person’s meal 
preparation activities. Another aspect of planning, the 
acquisition of ingredients, can be measured by tracking the 
flow of ingredients in and out of the kitchen. Therefore the 
measurement of this aspect of planning skill is again likely 
to require the actual identification (and tracking) of 
ingredients. 

(e) Reproduction of recipes: the ability to reproduce recipes 
with a consistent quality without following instructions. 

The measurement of a person’s reproduction of a recipe 
requires the meal preparation activities to be mapped to the 
recipe instructions – this (again) implies a need for 
ingredient identification and tracking. Mapping a meal 
preparation session closely to a recipe must also take into 
account a user’s meal preparation preferences and 
strategies. People with experience of preparing a certain 
recipe are likely to have incorporated adjustments to the 
constituent ingredients, the tasks, or to the order of the 
tasks, and such adjustments must also be taken into 
account. 

(f) Cognitive skill: both knowledge of and the ability to reason 
about basic cooking processes (e.g. the effects of 
temperature on ingredients and the effects of combining 
different ingredients).  

The measurement of a person’s cognitive skill, from direct 
observations of meal preparation activities, poses a 
significant challenge.  

(g) Nutritional knowledge: an understanding of the nutritional 
properties of foods, the impact of cooking processes on 
these properties, and the requirements of a healthy diet. 

The degree to which nutritional knowledge is applied, for 
any individual meal, depends on a wide range of 

contextual factors (e.g. the purpose and social context of a 
meal). Although such factors are unlikely to be inferable 
from meal preparation activities alone, cumulative 
evaluation (over relatively long periods of time) of meals 
planned, ingredients used, and activities performed, may 
provide a clear indication of a person’s nutritional 
knowledge, or rather, their application of this knowledge. 

These seven aspects of cooking competence, combined 
with the findings of our observational study described earlier, 
indicate that there is potential to measure a number of aspects 
of cooking competence from meal preparation activities alone. 
Our overarching goal is to integrate a sensor infrastructure 
within the Ambient Kitchen [1] that enables the measurement 
of cooking competence. As we have already explained in our 
characterization of the different components of cooking 
competence, although different measurement modalities may 
be necessary, a number of these components of cooking 
competence are (to a significant degree) measurable from a 
person’s meal preparation activities alone. Based on this 
observation, we established the requirements for a pervasive 
kitchen infrastructure capable of measuring cooking 
competence and undertook an initial evaluation of its ability to 
recognize different meal preparation activities. 

IV. SENSOR INFRASTRUCTURE 

A. Requirements 

There are several requirements for a sensor infrastructure 
that can be used to measure the aspects of cooking competence 
that we have identified. As described earlier, the majority of 
these aspects are closely linked to the user’s meal preparation 
activities. This suggests the principal requirement of the 
infrastructure is that it enables the measurement and analysis of 
meal preparation activities. Such an infrastructure should 
measure activities unobtrusively; it should neither interfere 
with a person’s normal meal preparation routines nor should it 
give users a feeling of “being monitored”. For this reason we 
have rejected both body-worn and camera-based solutions. 
Instead, the sensors should be seamlessly deployed in the 
infrastructure and in particular, in the utensils. In the Ambient 
Kitchen [1], we have shown how different sensors can be 
embedded into a kitchen to observe users activities 
unobtrusively. Another requirement, a commercial imperative, 
is that the system should be self-contained and deployable 
within a regular (existing) kitchen. To ensure a reasonable 
coverage of cooking activities we deployed sensors in utensils 
that are frequently used during meal preparation. The selection 
of these utensils is based on the findings in the observational 
study. The last requirement relates to the cost of the 
infrastructure, which, as ever, should be minimal. 

Previous research in activity recognition has used a large 
number of different classes of sensor, including accelerometers, 
radio frequency identification (RFID), video cameras, 
microphones, load cells, torque sensors, temperature sensors 
and motion sensors. In our own work accelerometers have 
proved to be a robust means by which to measure and classify 
activities for which a knife was used. Pham et al. [20] 
demonstrated how a 3-axis accelerometer could be used to 
distinguish between 11 different meal preparation activities 
performed with a knife. An accelerometer is a relatively cheap 



robust sensor, which due to its small size can be easily 
integrated into everyday objects such as kitchen utensils. 

B. Design 

Encouraged by our previous experience of 3-axis 
accelerometer-based activity recognition, we sought to both 
expand and further explore its application. Tapia et al. [33] 
have shown that a single sensing technology can be used to 
recognize a wide variety of activities. We integrated our sensor 
infrastructure within a number of kitchen utensils: 5 knives, 2 
pots and lids, a frying pan, a peeler, a grater, a measuring cup, a 
sieve, a spoon, a spatula, a ladle, a whisk and a chopping board. 
Figure 4 (top) shows the complete set of utensils. Each of these 
utensils was modified to embed a 3-axis accelerometer inside a 
waterproof case, which also allowed the utensils to be washed. 
The handles of the original utensils were replaced with new 
handles designed to (as closely as possible resemble the 
original design. The new handles were printed in ABS using an 
FDM rapid prototyping technology. Figure 4 (bottom) shows 
an example of a (new) modified handle with an embedded 
sensor. With the accelerometer embedded into a redesigned 
handle we can unobtrusively (and wirelessly) track utensil use, 
and use the tracked sensor data to identify aspects of cooking 
competence. In our evaluation study specific tasks in the 
overall cooking process were monitored, and the annotation 
schema developed for the observational study was used to 
characterize cooking performance. 

 

Redesigned 
handle

Blade

Accelerometer embedded into 
the handle

 

Figure 4. Overview of the sensor embedded kitchen utensils (top); kitchen 

knife with an embedded wireless accelerometer (bottom). 

C. Preliminary Study 

To evaluate the sensor infrastructure a small user study was 
conducted with the aim of testing the utensils (usability and 
robustness) and how accurately activity recognition can be 
performed. We used a more controlled setup than that used in 
our first study. Five participants, all of whom cook regularly 
(i.e. most days of the week) were invited to the Experience Lab 
at Philips Research, Eindhoven. We asked participants to 
prepare three dishes in the Experience Lab’s kitchen 
environment using the sensor infrastructure. For this study we 
used 12 utensils with an embedded accelerometer and 8 regular 
utensils. In addition, the complete meal preparation activity 

was captured using multiple cameras. The recipes were 
selected to ensure that a wide range of different meal 
preparation activities were performed, and the recipe 
instructions encouraged the use of all 12 of the utensils that 
contained embedded sensors. 

After an introduction to both the study and the kitchen, the 
participants were given the recipes for the three dishes. During 
the study no restrictions were placed on participants as to how 
they executed the instructions and in which order they prepared 
the meals. In addition, they were not required to perform the 
tasks with any specified utensils (i.e. they were free to choose 
what they felt was the most appropriate utensils for the tasks at 
hand). Although the main aim of the study was to evaluate the 
sensor infrastructure and not the user’s meal preparation, we 
wanted the participants to engage in the activity in a manner 
that was as natural as possible. Although each participant had 
to prepare the same dishes, and had access to the same 
infrastructure, significant differences in the preparation time 
were observed (m=40min, stdv=7min). This time difference 
was most likely due to variations in participant familiarity with 
the recipes and preparation methods, and their sequencing of 
the preparation steps (i.e. planning). This observation may 
indicate that there were significant differences between the 
levels of cooking competence of our participants (although we 
did not conduct any separate evaluation of cooking 
competence).  

The physical robustness of the sensor infrastructure is a 
mundane quality but one that it was important to demonstrate. 
In particular, it was very important that the remodeled handles 
did not deteriorate as a result of either contact with water, the 
high temperatures they were exposed to, or the mechanical 
stresses they underwent; not only to ensure the user experience 
but also the safety of our participants. During the experiment 
all participants were asked to stop mid-task and describe any 
negative impressions of the utensils. 

The main characteristic of the infrastructure that we 
evaluated was its ability to identify different meal preparation 
activities. In the past we have evaluated the accuracy of 
detecting 11 different activities that can be performed with a 
knife [20]. Our infrastructure needs to be able to recognize 
meal preparation activities associated with a large number, and 
wide range, of utensils if we are in future to be able to measure 
aspects of cooking competence such as multitasking, planning 
and the reproduction of recipes. In this preliminary study 12 
kitchen utensils were selected to cover the majority of 
activities. While we used a questionnaire to assess users’ 
perceptions of the infrastructure, we used the annotated sensor 
data files (annotated by reference to the videoed session) to 
train activity classifiers, which we evaluated using a 4-fold 
cross validation procedure on the 5 cooking sessions of our 5 
participants. 

1) User perceptions of the sensor infrastructure: When the 

participants finished preparing the three dishes we evaluated 

their experience of the sensor infrastructure. We used a 5-point 

Likert scale to measure users’ impressions as to the design, 

functionality and safety of the utensils. From our observations 

we noted that all participants used the utensils naturally and 

our mid- and post-task inquiries failed to reveal any concerns 



as to their durability. Most of the participants also washed 

some of the utensils in the sink (at no detriment to the 

sensors). Utensils used for stirring were rated less positively 

due to the fact that some of our modified designs (e.g. the 

whisk) were not well balanced. For example, the additional 

weight of the sensor in the whisk’s handle occasionally caused 

the whisk to fall out of the mixing bowl. 

2) Partial data: Figure 5 shows an example of the error 

inherent in our pervasive kitchen infrastructure; the limited 

deployment of sensors meant that it was not possible to detect 

every activity. Sensors were only embedded in frequently used 

utensils (and ones in which it was possible to “hide” the 

sensor, usually inside a handle). Figure 5 shows the average use 

of measured activities during the entire meal preparation time 

for Participant 1. It can be seen that between minutes 5 and 12 

there are a number of relatively long periods during which no 

activities were detected. When we compare these results with 

our record of the order in which the dishes were prepared, it 

can be seen that the user prepared the salad first. Here the 

participant mostly used one or more of the 8 utensils that had 

not been instrumented (e.g. fork, ceramic bowl). A similar 

pattern was observed for the other participants. Nevertheless, 

these preliminary results show that the infrastructure allowed 

the detection of a large number of the activities that occur 

during meal preparation. 
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Figure 5 Distribution of measured activities (per minute) for Participant 1. 

3) Activity recognition: To study the feasibility of a 

sensor-based approach to assessing cooking competence we 

employed a standard, instance-based classification approach to 

automatically analyze the acceleration data recorded while 

participants prepared their dishes using our instrumented 

kitchen utensils. Raw sensor data was processed using a 

sliding window procedure to extract 64-sample frames (50% 

overlap, 100Hz sampling frequency) from the accelerometer 

data captured using the sensor-enabled utensils. For every 

analysis window (frame) a set of statistical features was 

extracted. In particular, mean, standard deviation, energy, 

entropy and correlation features were computed for each frame 

for x-, y-, z-, pitch- and roll-acceleration, resulting in 23-

element vectors. These vectors were then classified using a 

Nearest Neighbor (NN) classifier, which modeled the 34 

activities performed using the particular utensils. These 34 

activities consist of a set of activities which are a precondition 

for meal preparation but do not constitute the actual activity. 

Activities unrelated to meal preparation (i.e. no action and 

unknown action) can be performed using every utensil but all 

the remaining activities related directly to meal preparation. 

Descriptive activities (such as cutting or stirring) are listed in 

Table I. The procedure was optimized for classification 

accuracy within real-time constraints. 

The effectiveness of the activity recognition procedure was 
evaluated using a 4-fold cross validation procedure on 5 
cooking sessions for our 5 different participants, where each 
prepared three different recipes. Given the set of extracted 
frames (>1 million in total), four sub-sets were extracted, 
thereby carefully balancing the distributions of the activities 
within the particular folds. For every experiment four folds 
were used for training the classifiers, which were then 
evaluated on the remaining fold. Completely permuting the 
selection of folds for training and evaluation, this procedure 
was repeated four times and achieved classification accuracies 
were averaged. The overall classification accuracies were 
mostly well beyond 80%. This accuracy includes the context 
describing actions (no action and unknown action). Table I 
reports the results for subject-independent activity recognition 
experiments for the different activities and the utensil it has 
been performed with. The overall average accuracy of 75% 
demonstrates the effectiveness of the proposed approach in a 
relatively unconstrained cooking scenario. 

TABLE I RESULTS FOR SUBJECT-INDEPENDENT ACTIVITY RECOGNITION 

EXPERIMENTS FOR FIVE DIFFERENT UTENSILS 

Activity Utensil Accuracy Frames 

Cutting Chef knife 73.09% 996 

 Small knife 64.63% 294 

Peeling Peeler 78.31% 332 

 Chef knife 66.15% 130 

 Small knife 73.91% 92 

Grating Grater 81.07% 1294 

Whisking Whisk 70.72% 461 

Stirring Spoon 75.44% 2896 

Average  75.32%  

V. CONCLUSION AND FUTURE WORK 

There are numerous different approaches to supporting 
people to eat more healthily. Our approach is intended to 
influence people’s diet by providing a “tool” to prepare 
healthier meals. In our approach this “tool” is cooking 
competence, the basic ability that enables people to translate 
the intention of “wanting to change” into actual action. We 
envision a system that monitors and analyzes a user’s cooking 
activities and translates this information into a measurement of 
competences. The measured cooking competence will then 
afford personalized support and recommendations as well as 
situated guidance. Such a system has the potential to overcome 
barriers that hinder people in changing their diet. The intended 
system can also help to reduce the perceived complexity of a 
recipe, and increase people’s cooking competence. We have 
presented an initial step towards a system that provides support 
and guidance based on a user’s cooking competence. Having 
identified the requirements of the sensor infrastructure we 
conducted an exploratory observational study of people’s 



cooking behavior in their home kitchen. This involved the 
development of an annotation schema that allowed us to 
compare different users, environments and recipes. The 
outcome of this study provided, on the one hand, an indication 
that it may be possible to measure certain aspects of cooking 
competence. On the other hand it provided an insight as to what 
activities are performed in the kitchen and which utensils are 
used. These insights, combined with other requirements (i.e. 
the need for unobtrusive, low cost, and deployable monitoring), 
provided the foundation for our sensor infrastructure. In a pilot 
user study we evaluated the sensor infrastructure with respect 
to: how it was perceived by users; the extent to which it allows 
us to measure meal preparation; and how accurately we can 
recognize the constituent activities. The outcome of the second 
study showed that our sensor infrastructure is perceived as 
unobtrusive and that activity recognition is likely to be a 
valuable component of a cooking competence measurement 
system.  
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