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Abstract—Freezing of gait (FoG) is a common gait deficit in
advanced Parkinson’s disease (PD). FoG events are associated
with falls, interfere with daily life activities and impair quality of
life. FoG is often resistant to pharmacologic treatment; therefore
effective non-pharmacologic assistance is needed.

We propose a wearable assistant, composed of a smartphone
and wearable accelerometers, for online detection of FoG. The
system is based on machine learning techniques for automatic
detection of FoG episodes. When FoG is detected, the assistant
provides rhythmic auditory cueing or vibrotactile feedback that
stimulates the patient to resume walking.

We tested our solution on more than 8h of recorded lab
data from PD patients that experience FoG in daily life. We
characterize the system performance on user-dependent and
user-independent experiments, with respect to different machine
learning algorithms, sensor placement and preprocessing window
size. The final system was able to detect FoG events with an
average sensitivity and specificity of more than 95%, and mean
detection latency of 0.34s in user-dependent settings.

I. INTRODUCTION

A. Freezing of Gait in Parkinson’s Disease

FoG is a gait impairment common among patients with
PD. According to a survey of 6620 PD patients by Macht
et al. [1] 47% of the subjects reported regular freezing (28%
experienced FoG daily). FoG is associated with falls ([2],
[3]) and has substantial clinical and social consequences
([4], [5]). FoG is defined as a “brief, episodic absence or
marked reduction of forward progression of the feet despite
the intention to walk” [6]. Patients describe FoG as a feeling
of having the feet glued to the ground and being temporarily
unable to reinitiate gait. Episodes last between a few seconds
and up to one minute [7]. While FoG can appear everywhere,
it happens most often during turns, before gait initiation, in
tight quarters such as doorways and in stressful situations ([5],
[8], [9]). Treatment of PD patients with Levodopa reduces the
FoG frequency during the ON state of medication, but like
most gait deficits in PD patients, FoG is often resistant to
pharmacological treatment [2].

A common non-pharmacological therapy for FoG is rhyth-
mical auditory cueing [10]. In recent years, the option of using
rhythmic auditory stimulation (RAS), e.g. with a metronome
that provides a rhythmic ticking sound has gained support.
RAS supports the patient to return to a more normal gait

pattern. Unfortunately, the effectiveness of RAS wears off with
time, so permanent cueing is not advised ([11], [12], [13]). For
this reason, context-aware cueing systems are proposed where
the auditory signal only starts in response to the occurence
of FoG. Patient interviews in a preliminary study by Bächlin
et al. [14] suggest that context-aware cueing may help to
overcome freezing and reinitiate gait. The challenge in context-
aware cueing is to reliably detect FoG episodes online using
unobtrusive wearable sensor systems.

B. Mobile Phones as Wearable Assistants

A context-aware cueing system should be wearable and un-
obtrusive to the users as they have to wear it during daily-life
activities. Recently, smartphones have evolved into a standard
equipment in daily life due to their unobtrusive design. In ad-
dition, they are relatively cheap and offer high computational
power. Therefore, smartphones are an interesting alternative to
dedicated hardware in medical applications requiring wearable
assistants. Users do not have to buy additional hardware as
they often already possess a smartphone. Smartphones were,
for example, used as assistants in fitness monitoring [15],
heart rate monitoring [16], gait recognition [17], or to promote
wellbeing [18]. Another example is the iPhone application
iFall by Sposaro and Tyson [19], which uses the internal
acceleration sensor for fall detection. In addition, modern
smartphones offer a large number of internal sensors, including
accelerometers, gyroscopes and magnetometers. A survey on
mobile phone sensing is presented in [20]. To our knowledge,
mobile phones have not yet been used in the context of online
detection of FoG in PD.

Here, we propose the use of smartphones as a wearable de-
vice for FoG detection and perhaps treatment. This has several
significant merits: (1) Economical – a FoG detection system
on a smartphone will be economically beneficial compared
to dedicated hardware [14]. (2) User friendliness – subjects
with PD are typically older adults, a population that usually
assimilates new technologies more slowly. However, it may
hold that either this or the next generation of elderly people
will be sufficiently familiar with smartphone technologies to
adapt its use as a wearable assistant. (3) Tele-Medicine aspects
– one of the future uses of automated detection of FoG
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provides the treating physician with information on the FoG
symptom burden. Having the FoG-detection device built in on
a tele-communication platform has obvious advantages with
respect to transfer of data from the patient to the clinic. (4)
Social – a patient will feel more comfortable moving around
with a smartphone, rather than a dedicated device that may
draw unnecessarly attention from their social environment.

C. Machine Learning for Analysis of Motion Data

FoG stands out as a typical motion pattern that is vi-
sually distinguishable from normal gait and has a unique
frequency range. For example, when using wearable devices,
motion patterns can be analyzed using acceleration features of
body-mounted sensors. If sufficiently discriminative features
are used, different motion patterns have different feature-
space representations. In simple tasks where a low number
of features is discriminative, decision boundaries can be set
manually. This however becomes very tedious if the feature
space is of high dimensionality.

Machine learning, on the other hand, offers methods for
automated setting of decision boundaries, even in higher-
dimensional problems. In contrast to manual thresholds, these
boundaries are optimal in terms of decision accuracy for a
set of training data. When sufficient training data is available,
machine learning will outperform manual thresholding. Exam-
ples for successful application of machine learning methods
to acceleration data are particularly abundant in the field of
activity recognition [21], where activities such as running,
walking or opening a door were detected using machine
learning techniques with features computed from motion data.
FoG is not an intentional movement but can be seen as a
specific activity in the context of activity recognition. Thus,
the analytical techniques applied for activity classification may
be applicable to FoG detection.

D. Contributions

The goals of this work are (1) to improve the FoG-detection
performance by using machine learning techniques and (2) to
deploy the final system on a smartphone as an unobtrusive and
inexpensive wearable assistant.

To reach this goal, we performed the following steps:
• We evaluated several machine learning algorithms on a

real FoG dataset [14] in terms of FoG-detection accuracy
and FoG-detection latency (the delay between a FoG start
and its detection by the system).

• We performed experiments to optimize the FoG-detection
accuracy and latency with respect to sensor placement
and sensory-data window size. As a result of this opti-
mization we propose a combination of machine learning
algorithm, sensor location and window size that will
achieve favorable results in terms of performance and
detection latency, while considering the system’s wear-
ability and minimizing computational costs.

• Based on the previous evaluation steps, we built a sys-
tem for online FoG detection using a smartphone and
wearable sensors. The resulting Android application uses

external accelerometers for FoG detection, but could
easily be extended to use the internal smartphone sensors
instead. The system provides auditory feedback whenever
FoG is detected.

II. RELATED WORK

Han and collegues [22] made a first attempt to detect FoG
episodes in PD patients by monitoring body acceleration using
a 3-axis accelerometer. Freezing appearances were detected
offline, by analyzing the differences in the recorded signals
between freezing and normal gait. Moore et al. [23] analyzed
offline accelerometer data from the left shank collected in
a study with 11 PD patients. They observed high frequency
components in the 3–8Hz band of the leg movement during
FoG episodes that were not apparent in normal gait or voli-
tional standing. Their algorithm obtained up to 89% accuracy
and sensitivity for FoG detection. Delval and collegues [24]
collected data from PD patients wearing goniometers, monitor-
ized while walking on a treadmill. They obtained a sensitivity
of 75 – 83% and specificity above 95% for FoG detection by
analyzing the frequency representation of knee joint signals.
However, in all of these studies the FoG detection was done
offline, so it is not actively helping the PD patients.

Bächlin et al. [14] developed a system for online FoG
detection based on the algorithm of Moore [23]. The system
contained three 3-axial accelerometers and a wearable com-
puter. It was able to detect FoG episodes in user-dependent
settings with a sensitivity of 88.6%, a specificity of 92.4% and
a maximum latency of 2s. Whenever FoG was detected, the
system provided a metronome ticking sound as feedback to the
patient. The FoG-detection results were promising, but there is
space for improvement. Also, manual adjustment of algorithm
parameters was necessary to achieve optimal results. With
machine learning, a patient-specific FoG-detection model can
be built automatically and without need for manual parameter
optimization.

Another online FoG-detection system based on the algo-
rithm by Moore was presented by Jovanov et al. [25]. Using
a 3-axis accelerometer and a wearable computer they detected
FoG with an average latency of 332ms and maximum latency
of 580ms. However, they do not provide information regarding
the detection accuracy.

That machine learning techniques are helpful when analyz-
ing motor fluctuations of PD patients was shown by Bonato
et al. [26] and Patel et al. [27]. However, to the best of our
knowledge, no one applied machine learning to the problem
of FoG detection so far.

III. SYSTEM OVERVIEW

In this section we present our system for online detection
of FoG episodes (Fig. 1). First, we describe the hardware
components and explain how data from sensors is collected
and processed in real-time. In the second part, we describe
the online FoG-detection application that runs on top of our
wearable system.



Fig. 1. Online FoG-detection system.

A. Mobile Platform

The proposed wearable assistant is composed of: (1) up to
three external sensors, which could easily be replaced with
the internal sensing platform of the mobile phone and (2) a
smartphone as the wearable computer.

Similar to [14] we make use of the NTMotion:AccGyro
sensors described in [28]. From the available sensor data, we
utilize the wirelessly transmitted 3-dimensional acceleration
data. The physical dimensions of the sensor node are 25 x 44
x 17 mm3 and the weight is approximately 22g. On-board is a
300mAh Li-ion battery that lasts 6 hours per charge. Although
the sensors are capable of sampling at up to 256Hz, we set
the sampling rate to 64Hz for the purposes of this work, to
match the FoG dataset sampling rate.

In contrast to the dedicated hardware in [14], we utilize the
Nexus One smartphone as a wearable computer. Specifically,
we implemented an application on top of the Android platform
that acts as the hub of the system. In addition to gathering
internal accelerometer readings, our application communicates
with multiple NTMotion sensors simultaneously via Bluetooth.
We ported an existing sensor reading acquisition software
– Java Bluetooth Gateway1 – for the Android platform.
As a modular component, the sensor communication and
packet parsing functionalities were implemented separately
as a helper class which sends acceleration readings to our
Android application. Together with the data of the phone’s
internal accelerometer, these readings are piped into a queue
for window-based classification.

The contents of the queue are read at fixed time intervals
(e.g. 1s) for preprocessing of the raw acceleration data. The
stream is segmented into windows. Features are computed for
each window and sensor axis. For this work, we compute 4
time-domain features (mean, variance, standard deviation and
entropy), the signal energy and the two features proposed in
[14] and [23] for FoG detection. See Table I for further details.

1http://code.google.com/p/javabtgateway/

Fig. 2. The classification process for the Android online FoG detection
application.

B. Online FoG Application

The online FoG-detection application has two components
(Fig. 2): A FoG-detection classifier, built offline on a base sta-
tion, and the real-time FoG-detection app on the smartphone.
The two parts are explained as follows:

• Offline: The FoG-detection classifier is trained offline
with previously collected data (from the same patient or
from different patients). Data for offline training must be
labeled, i.e. we need to know for each window whether
it is a member of the FoG class or not. As a first
(optional) step, we perform a feature selection to choose
the most discriminative features for distinguishing FoG
from normal gait. For this work, we used Correlation-
based Feature Subset Selection as described in [29]. Only
the selected features are then used for classifier training
with supervised machine learning techniques from the
Weka data mining suite [30]. The classifier is serialized
and ported to the smartphone using the Weka serialization
API. The data structure representing the classifier is
converted to byte format and stored in a file, which is then
copied to the mobile-phone application resources. Since
this building and serialization process is performed offline
on a computer, there are no additional costs in terms of
latency and computational power for the wearable system.

• Online: In the online phase of the process, the Android
app uses the deserialized classifier built in the previous
step to detect FoG events in real-time from sensor data.
We use a modified version of the Weka API for Android2

to deserialize and use the classifier. The FoG-detection
application calls the sensor communication module to
get the last recorded data, preprocesses it to extract the
necessary features and passes them to the classifier. When
a FoG event is detected, the application provides feedback
to the patient. Depending on the patient’s preferences

2https://github.com/rjmarsan/Weka-for-Android



TABLE I
USED FEATURES WITH SYMBOLS AND BRIEF DESCRIPTIONS

Feature Description
Mean The DC component (average value) of the signal in the window
Standard Deviation Mean deviation of the signal compared to the average in the window
Variance The square of the standard deviation
Entropy Measure of the distribution of frequency components
Energy Sum of the squared discrete FFT-component magnitudes of the signal, divided

by the window length for normalization
Freeze Index Power of the freeze band (3–8Hz) divided by the power in the locomotor

band (0.5–3Hz) as used in the FoG-detection algorithm from [23]
Power The sum of the power in the freeze and locomotion band – this feature was

used by Bächlin et al. to distinguish volitional standing from FoG [14]

and favorable response in terms of gait rehabilitation,
this can be an RAS signal (metronome ticking sound)
or vibrotactile feedback (i.e. the smartphone vibrates).

The application respects the patient’s privacy by not saving
collected sensor data. It is built as an Android service, meaning
that the user can start and stop the application anytime. It runs
in the background and therefore does not interfere with the use
of other applications on the smartphone.

IV. SYSTEM EVALUATION

A. Dataset

We tested our system on the DAPHNet dataset [14], the
result of a study carried out by the Laboratory for Gait and
Neurodynamics, Department of Neurology, Tel Aviv Sourasky
Medical Center (TASMC). The DAPHNet dataset contains
data collected from 10 PD patients that experienced regu-
lar FoG in daily life. Data was recorded using three 3D-
acceleration sensors attached to the shank (above the ankle),
the thigh (above the knee) and to the lower back of each
subject. The sensors recorded at 64Hz and transmitted the
acceleration data via a Bluetooth link to a wearable computing
system that was located at the lower back of the subjects.

Patients completed two sessions of 10-15 minutes each.
Both recording sessions consisted of three walking tasks:

• Walking back and forth in a straight line, including
several 180-grade turns

• Random walking in a reception hall space, including a
series of initiated stops and 360 degrees turns. Subjects
should stop or turn in different directions

• Walking simulating activities of daily living (ADL),
which included entering and leaving rooms, walking to
the kitchen, getting something to drink and returning to
the starting room with a cup of water

Motor performances varied strongly among the participants.
While some subjects maintained regular gait during nonfreez-
ing episodes, others walked slowly and very unstable. Overall,
8h20min of data were recorded. To label FoG episodes in
the data set, synchronized video recordings were analyzed
by physiotherapists. The start of a FoG event was considered
when the gait pattern (i.e., alternating left-right stepping) was

arrested, and the end of a FoG was defined as the point in
time when the pattern was resumed. In total, 237 FoG episodes
were identified (23.7±20.7 per patient). The duration of FoG
episodes was between 0.5s and 40.5s (7.3±6.7s). 50% of the
FoGs lasted for less than 5.4s and 93.2% were shorter than
20s.

B. Experiments and Evaluation
We evaluated different sensor placements, window lengths

and machine learning algorithms in terms of detection ac-
curacy and latency in user-dependent and user-independent
experiments.

For supervised machine learning we tested the following
algorithms: Random Trees (RT), Random Forests (RF), de-
cision trees and pruned decision trees (C4.5), Naive Bayes
(NB), Bayes Nets (BN), k-nearest neighbor with one neighbor
(KNN-1) and two neighbors (KNN-2), Multilayer perceptron
(MLP), boosting (AdaBoost) and bagging with pruned C4.5
trees as base classifiers.

The reference for all our evaluations is the video annotation
provided by physiotherapists in the DAPHNet dataset. The
detection performance is based on window evaluation, i.e. for
each window the classifier output is compared to the reference
annotation. Windows that are correctly labeled as FoG are
counted as True Positive (TP). We define as False Positives
(FP) the FoG detections in episodes where physiotherapists
did not identify FoG. False Negatives (FN) are windows where
the system failed to detect FoG during FoG episodes in the
reference. The remaining windows are correctly labeled as no
FoG and are therefore True Negatives (TN).

We measure the Sensitivity (Sens = TP
TP+FN ), which

represents the proportion of correctly detected FoG windows to
the total of reference FoG windows. The Specificity (Spec =

TN
TN+FP ) measures the proportion of correctly detected no-
FoG windows to all reference no-FoG windows. Additionally
we report F1-measure and area under the curve (AUC) in
the ROC space [31] as performance measures to evaluate
our system. The F1-measure takes into account the precision
(Prec = TP

TP+FP ) and recall rate (identical to specificity) for
each class (in our case the FoG class and the null- or no-FoG
class).



TABLE II
AVERAGE SENS, SPEC, F1 AND AUC FOR DIFFERENT MACHINE LEARNING ALGORITHMS, FOR 1S WINDOWS AND FOR 4S WINDOWS.

1s window 4s window
Classifier Sens (%) Spec (%) F1 (%) AUC (%) Sens (%) Spec (%) F1 (%) AUC (%)

Random Forest 97.76 99.75 98.35 99.82 99.54 99.96 99.75 99.98
C4.5 93.47 99.38 95.94 97.40 98.43 99.84 99.04 99.35

Näive Bayes 48.06 98.66 73.62 93.08 41.87 99.73 71.13 95.31
MLP 77.46 97.29 82.94 95.84 84.99 98.63 91.17 98.41

AdaBoost with C4.5 98.35 99.72 98.37 99.85 99.69 99.96 99.78 99.98
Bagging with C4.5 97.57 99.59 97.60 99.84 99.41 99.91 99.53 99.97

Furthermore, we evaluated the algorithms in terms of la-
tency, which is the time delay between the start of a FoG
episode in the reference and the start of a detected FoG episode
by the application.

V. EVALUATION RESULTS

A. User Dependent

In user-dependent experiments, both training and testing
data are from the same patient. We performed 10-fold cross
validation using feature selection and classification methods
enumerated in Subsection IV-B for each patient data from the
DAPHNet dataset. We report comparative results on average
performance measures on the whole dataset for RF, C4.5,
NB, MLP, boosting and bagging methods, in case of window
lengths of 1s and 4s. The 4s-window results are presented for
comparison with the state-of-the-art FoG detection system in
[14], which also uses 4s windows. Best results were obtained
with boosting of pruned decision trees and RF. The use of such
large windows increases the latency of online FoG detection,
therefore we investigated shorter windows as well and report
results for window length of 1s. Detection performance was
only slightly decreased for 1s windows (98.35% sensitivity
and 99.72% specificity for boosting of pruned decision trees).

Compared to [14], that report results of 88.6% sensitivity
and 92.4% specificity for patient-dependent experiments with
window length of 4s, we obtained better performances with
all tested machine learning algorithms, except Naı̈ve Bayes
and Bayes Nets. This was expected, as machine learning tech-
niques offer more possibilities to explore the data properties
(i.e. computation of more features, selection of most discrimi-
native features, automatic setting of decision boundaries). The
results are slightly biased due to the random selection of
training and testing data in 10-fold cross-validation, which
may lead to selection of subsequent and therefore correlated
samples to both subsets. Since FoG episodes of a single
user are anyway correlated and have similar feature-space
representation, we assume that this bias is small. However
we will address the issue in future work.

According to the results presented in Table II the best per-
formances were obtained by AdaBoost (with pruned C4.5 as
base classifier) and Random Forest classifiers. Comparing the
ensemble methods, we observed that boosting classifiers obtain
slightly better performances than bagging classifiers. However

all the ensemble methods tested (boosting, bagging, Random
Forests) obtain better results than the single classifiers.

All results were obtained using 10-11 features on average
(10.3 features for 1s windows and 11.6 features for 4s win-
dows, selected from the 63 features computed in the prepro-
cessing step). The most discriminative features, regardless of
sensor location, were the mean and standard deviation as time-
domain features, and the physiological features – freeze index
and power computed as in [14].

For all further experiments we selected C4.5 and RF as
classification algorithms. Pruned C4.5 was chosen because of
its simplicity and still good detection results and RF for its
very good detection performances.

B. Latency Results
As mentioned before, we refer to latency as the time

between a FoG episode starts and the time when the system
detects it. Here, we only discuss the latency which is inherent
to the machine learning algorithm with corresponding window
size. We neglect further delays caused by sensor data trans-
mission, preprocessing and feedback generation, assuming that
these contributions are small.

Fig. 3 shows a section of the acceleration signals of Patient
02 with the ground truth annotation (FoG or normal gait) and
the FoG-detection results of our system. We observe that the
system detects FoG episodes shortly after the FoG event starts.

The system’s latency depends on the classification algorithm
chosen and on the sampling window length used. Table III
depicts the latency results for patient-dependent experiments
with 1s and 4s window lengths and two types of classification
algorithms: pruned C4.5 and RF. There is a trade-off between
performance of the detection algorithm, in terms of sensitivity
and specificity, and the detection latency. While RF obtains
better performances for FoG detection than C4.5 trees, the
detection latency is higher. Fig. 4 shows that with C4.5 most
FoG episodes are detected shortly after their start. For RF
classifiers, FoGs are typically detected after approximately half
the window length. However, the differences are small and the
maximum latency for 1s windows in all experiments was only
0.718s. We further discuss the latency results and the relation
to window size in Section VI.

C. User Independent
The online FoG-detection system was also evaluated using

leave-one-patient-out cross validation. The classifiers were
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Fig. 3. A signal extract from Patient 02 using data from ankle, knee and hip
sensors, together with the ground-truth labels and the FoG-detection-system
labels.

TABLE III
LATENCY RESULTS FOR PATIENT DEPENDENT EXPERIMENTS.

Window Classifier Mean (s) Std (s) Max (s)

1s C4.5 0.235 0.175 0.578
RF 0.346 0.169 0.718

4s C4.5 1.085 0.731 2.016
RF 1.653 0.59 2.047

trained on features selected from N − 1 subjects and per-
formance was tested on the remaining subject. We report
results for RF classifiers only, because of lack of space. As
in the previous set of experiments, we performed feature
selection on the data before training the classifiers. Again,
mean, standard deviation, freeze index and power were the
most frequently selected features. For 1s-window experiments,
we report 62.05% sensitivity and 95.15% specificity. For 4s-
windows, the results slightly improved – 66.25% sensitivity
and 95.38% specificity. In [14], the proposed system obtained
73.1% sensitivity and 81.6% in the same 4s-window-based
evaluation. However, the algorithm from [14] allowed for 2s
tolerance after the start of a FoG episode, which explains the
slightly better sensitivity results.

The comparatively poor results for user-independent FoG
detection are a result of the large variability in motor per-
formance, caused by different walking styles among subjects
of the DAPHNet study. In this case, training classifiers on
general data does not always result in good performances when
tested on a specific subject. For some patients the general
classifier worked well, e.g. for Patient 09 where window-
based sensitivity was 98.19% and specificity 91.17% with
26 out of 27 FoG events detected (mean latency of 0.41s),
for others the general classifier failed (e.g. for Patient 01
where sensitivity was 20.53% only). Bächlin et al. approached
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Fig. 4. Histogram indicating the correlation of detection latency between the
FoG start and the moment of detection.

the problem by dividing the patients in two groups (smooth
walkers and intensified stepping walkers) with individually
optimized thresholds and thus improved detection results in
user-independent experiments [14]. In future, we plan to
apply transfer learning techniques [32] to improve the user-
independent performance of the system.

VI. PERFORMANCE OPTIMIZATION

A. Sensor Placement Characterization

In this subsection, we analyze the FoG-detection perfor-
mance with respect to different sensor placements and orien-
tations. Our goal is to determine the best sensor location taking
into account the trade-off between wearability of the system
and the detection performance. There are visually obvious
differences between the signals from different sensors. For
example the signal of the sensor at the hip is more damped
than the signal of the sensor at the ankle. Still, the leg motion
is visible at both locations (Figure 3).

From all 63 features, only a subset of features extracted from
a single sensor and a combination of sensor axes was used as
input to feature selection and classification for this experiment.
Table IV shows results for 12 combinations of three sensor
positions (ankle, knee, and hip) and four combinations of
the sensor axes (horizontal forward axis x, vertical axis y,
horizontal lateral axis z, and features extracted from all the
three axes together x & y & z). Evaluation results in terms
of sensitivity and specificity are given for 1s windows in
patient-dependent experiments, for C4.5 and RF classifiers. We



TABLE IV
DETECTION PERFORMANCE VS. SENSOR PLACEMENT

x y z x & y & z
Ankle
Sens 92.65% 89.18% 91.85% 98.21%
Spec 99.26% 98.84% 99.02% 99.76%
Knee
Sens 89.36% 87.71% 88.58% 97.94%
Spec 98.86% 98.80% 98.80% 99.73%
Hip
Sens 88.81% 83.68% 90.77% 98.63%
Spec 98.77% 98.26% 99.02% 99.83%

present and discuss the RF results only, but the observations
also apply for C4.5.

As expected, the best results were achieved when using
features collected from all three axes of the sensors. When
using data from a single sensor, best results in terms of both
sensitivity and specificity were obtained for the hip sensor.
However, the performances for the three positions did not
differ much. Taking into account only a single axis resulted
in slightly lower detection performance.

These findings are promising as they indicate that (1) a
single sensor is sufficient for FoG detection and (2) this sensor
can be placed at a convenient location for the patient. Even the
use of internal sensors of a smartphone placed in the pockets
of a patient is possible, making the system even more wearable
and patient-friendly.

B. Performance vs. Window Length Optimization

The latency of the online FoG-detection system is a function
of the window length used for feature extraction. We analyzed
the potential of window length optimization by plotting (1)
the FoG-detection performance in terms of minimum between
sensitivity and specificity versus window length, and (2) the
detection latency versus window length. We measured average
sensitivity, specificity and latency for C4.5 and RF classifiers
in user-dependent settings, for window sizes from 0.5s to 8s, in
steps of 0.5s. Further we detail only the results obtained with
RF classifier (Fig. 5), C4.5 results having similar properties.

When increasing the window up to a maximum length of
3s the detection performance increases. For larger windows,
noise in the computation of features is reduced, leading to
better discrimination between FoG events and normal gait. For
window lengths above 3s the window size has no significant
influence on the detection performance. The mean latency of
FoG detection increases linearly with the size of the windows.
A good trade-off between latency and detection performance
is reached for window lengths of 1s.

VII. DISCUSSION

Following the detailed algorithm evaluation presented in the
previous sections, we chose C4.5 and RF classifiers to be
used in the smartphone application. Pruned C4.5 classifiers
are small, easy and quick to port to the smartphone. Also,
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Fig. 5. Online FoG-detection performance and detection latency vs. window
length, for RF classifiers.

they obtain good results in terms of FoG-detection accuracy
and latency. On the other hand, RF is more complex, but offers
even better FoG-detection performance.

For feature extraction we chose a window size of 1s,
which is a satisfying trade-off between detection accuracy
and latency. Regarding the system components, experiments
showed that a single accelerometer is sufficient for FoG
detection and various locations (ankle, knee and hip) result
in similar performances. Therefore, the current system uses
only a single body-worn acceleration sensor together with the
smartphone as the wearable computer. In future, the possibility
of replacing external sensors with smartphone sensors will be
investigated.

The algorithms presented in this paper worked much better
in user-dependent experiments. Patients using this system will
therefore need to record a short training set with expert
supervision for labeling of FoG episodes. The classifier is then
trained offline and without any additional user input.

The system provides RAS or vibrotactile feedback whenever
FoG is detected. To reduce the number of single false positive
windows, which would cause a start of cueing even though no
FoG is present, we applied a median filter to the raw classifier
output. This increases the detection latency, but is necessary
to reduce the number of “false alarms”. Using a 31-sample
median filter, we detected 100% of the 237 FoG episodes in the
DAPHNet dataset with only 9 false alarms. For a 15-sample
median filter 58 false positive FoG detections were found.

VIII. CONCLUSION

We proposed a system for online FoG detection with
wearable accelerometers and a smartphone using machine
learning techniques. The system provides feedback to the
patients whenever a FoG event is detected. To our knowledge,
this is the first time that machine learning algorithms were
used to detect FoG episodes online. Our system was capable
of detecting all FoG events (237 out of 237 events in the
DAPHNet dataset) with an average window-based sensitivity
of 98.35% and an average specificity of 99.72%. When com-



paring directly to the state-of-the-art system for online FoG
detection [14], we obtain an average sensitivity of 99.69%
and an average specificity of 99.96% compared to 88.6%
sensitivity and 92.4% specificity for identical window size.
Furthermore we were able to detect all FoG events with a
mean latency of 0.34s (and a maximum of only 0.71s).

The analysis of different sensor locations showed promising
results in making the system less intrusive and more wearable.
The good results obtained with the sensor at the hip open the
door to the use of the internal smartphone sensing platform for
online FoG detection. Thus a mobile phone might be sufficient
for assisting PD patients with FoG.

In the future we plan to build a user-independent FoG-
detection algorithm that automatically adapts to the patient’s
specific gait using domain adaptation algorithms. Also, addi-
tional physiological and heuristic features might allow to better
distinguish FoG from the many variations of Parkinsonian gait.
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