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Abstract— Sleep problems have been shown to have significant 

negative impact on health. As such it is important to examine 

night time behaviour to objectively determine when sleep 

disturbances arise. Due to the large night-to-night variability in 

sleep quality for older adults, it is important to objectively 

measure behaviour over a significant period to establish trends or 

changes in patterns of sleep. In this paper we present a means of 

ambiently monitoring sleep through the use of sensors installed in 

each of sixteen independent living apartments. We investigate the 

effect of time outside the home and movement within the home on 

sleep. These measures are validated against comparative 

measures from two actigraph datasets. The first consisting of five 

adults, two of whom are healthy subjects and the other three 

adults have previously fallen, gathered over a period of between 

two and four nights. The second consisting of three older adults 

recorded over seven nights in their own homes. Results relating 

time outside the home and movement within the home to sleep 

are presented for three individuals spanning a period of between 

630 and 650 days. 

Keywords-AAL; aging in place; ambient monitoring; sleep 

measures 

I.  INTRODUCTION 

Continuous monitoring can support the detection of early 
signs of age related illnesses, ensuring early intervention is 
provided [1, 2], to maintain wellbeing. In [3] it was established 
that subtle changes in the behaviour of a person can provide 
early indications of age related decline. The integration of 
unobtrusive, ambient sensors within an individual's living 
environment has been proposed as a means for facilitating such 
continuous monitoring. The large scale ambient setups required 
for such monitoring produce a vast dataset of unrefined data. 
Resultantly data analysis techniques are required to ensure such 
ambient monitoring is efficient and cost effective in providing 
the necessary monitoring required for older people to "age in 
place".  

Degradation in sleep over time has been shown to have a 
considerable negative impact on health [4, 5]. Long term 
variation is difficult to measure and home-based studies 
typically are of short duration, particularly if contact-based 
sensors are used. With significant night-to-night variability 
being reported in older adults it is important that longitudinal 
changes are considered in determining if a significant decline 
in sleep quality has occurred. In this paper we describe the 
derivation of metrics by means of a location mapping model to 

determine characteristics of sleep pattern including bed time; 
rise time; sleep disturbances and time in bed, from ambient 
sensors installed in sixteen independent living apartments. This 
model has been validated by comparison of the derived metrics 
with similar metrics established through actigraphy, the 
ambulatory gold standard for sleep monitoring. A longitudinal 
investigation of the variation in daily activity and sleep 
measures is then presented for three individuals residing in 
their homes, and compared to a range of subjective sleep 
quality scores, as determined by Pittsburgh Sleep Quality Index 
(PSQI) [6] questionnaire results. 

The main contribution of this paper is the development, 
validation and implementation of an ambient night time 
behavior monitoring system that is particularly suited for 
extended deployments. Highly-validated algorithms extract 
specific nocturnal activity metrics including time in bed, time 
outside the home and total movement detected. Subsequently, 
these algorithms were applied to data collected from the 
permanent homes of older adults over an extended duration of 
between 630 and 650 days. The paper illustrates the use of 
ambient unobtrusive sensors to monitor longitudinal patterns of 
night time and sleep behavior and presents methods for the 
detection of medium term changes in behaviour over time.  

The remainder of the paper is structured as follows. In 
section II an overview of the related research is given. In 
section III the methodology is provided. Results of a 
comparison between ambient metrics of night time behaviour 
and actigraphy-derived sleep metrics are presented in section 
IV. Results from a longitudinal analysis of time in bed are 
compared against detected movement and time outside the 
home metrics in section V. Limitations are discussed and 
conclusions are presented in section VI.  

II.  RELATED RESEARCH 

The established real-world technology for sleep monitoring 
is wrist actigraphy, however this is unsuitable for certain 
populations and over extended durations. The development of 
an appropriate technology for long term sleep monitoring has 
been the focus of many research groups. Various non-contact 
technologies have been investigated including PIR-based 
systems [7, 8]; biomotion sensors using Doppler radar to 
detect sleep [9]; pressure-based systems such as the Under 
Mattress Bed Sensor (UMBS) [10], load cells discriminating 
Sleep Behaviour Disorder (SBD) from normal breathing [11, 
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12], and pneumatic tubes to estimate physiological signals and 
infer various sleep metrics [13-15]. However such a system 
must be integrated into an intelligent environment to facilitate 
the long term collection of sleep related data.  

Ongoing research in the Orcatech Living Lab [16] is 
investigating the monitoring of motion [17] and sleep patterns 
[18] in order to determine location, walking speed and daily 
activities. Unobtrusive monitoring technologies have been 
installed within the homes of community dwelling older 
adults, to provide a testbed for evaluating behaviour 
monitoring technology. This could support the detection of 
early changes in cognitive function and inform clinicians of a 
change in health status. CASAS smart home testbed [19] has 
been used to generate models of user behaviour as well as 
recognise activities. In [20] the authors present online activity 
recognition and discovery within three smart apartment 
testbeds over a six month period. The resulting information 
may be used in performing functional health assessments 
longitudinally and in prompting users in their activities of 
daily living as required. Work ongoing at University of 
Missouri (MU) [21-23], consists of analysing data from a 31 
unit facility housing older people who would have otherwise 
made the move to a nursing home. Accordingly on-site 
support is provided from healthcare professionals, such as 
nurses and physical therapists. Maintenance, housekeeping, 
transportation and dining services are also provided and social 
activities are scheduled regularly. Their setup facilitates the 
detection of specific activities using PIRs and the 
measurement of restlessness in bed using bed sensors. It is 
intended to monitor and assess potential problems in mobility 
and cognition of older people in their homes and may be used 
in detecting falls, and changes in daily patterns which may 
indicate onset of a health problem [24].  

III. METHODOLOGY 

A. Great Northern Haven Overview 

The Great Northern Haven (GNH) is a purpose-built 
demonstration housing project in Dundalk, Ireland consisting 
of sixteen independent living apartments. Each apartment has 
been fitted with a series of ambient sensors and actuators 
intended to monitor and support residents. The integrated 
sensors include passive infra-red (PIR) sensors to detect 
motion; contact sensors on all windows and exterior doors as 
well as on three interior doors; sensors on all light switches; 
temperature sensors within each room; brightness sensors in 
three rooms; and sensors to detect electricity and heating 
usage. Data is collected via a KNX infrastructure and stored in 
a MySQL database.  

Fifteen apartments are permanently occupied, with 
residents aged 58 to 87. Among the permanent residents of 
GNH one apartment is multiple occupancy, in which a married 
couple reside, with the remaining apartments being occupied 
singly, accommodating 10 men and 4 women. Residents suffer 
from a wide range of illnesses including heart conditions; 
diabetes; depression; bipolar disorder; with one resident 
having previously suffered a stroke and another having 
suffered from cancer. The sixteenth apartment is used as a 
demonstration/test apartment as well as being designated as a 

transition unit for falls prevention. Clinically validated 
questionnaires, administered every six months, subjectively 
monitor changes in physical and emotional wellbeing. Results 
from two questionnaires, Pittsburgh Sleep Quality Index 
(PSQI) [6] and the De Jong scale of emotional and social 
loneliness [25], are discussed in section V. 

Our setup differs from those presented in section II in that 
residents live independently in a real world environment, 
integrated with monitoring technology which has been 
extensively validated. 

B. Sensor Validation 

Considerable validation has been carried out on all sensor 
data to ensure the integrity of the data is maintained. Days in 
which data loss occurred, as determined by strict quality 
measures [26], have been omitted from analysis. The location 
mapping model, detailed in section C, relies on PIRs in 
determining the location of a resident. Consequently PIRs 
were evaluated to determine their visibility within each 
apartment. As apartment layout and sensor placement is 
consistent in all apartments in GNH, validation within the 
test/demonstration apartment was valid for all apartments. 

PIR validation was carried out in each room containing a 
PIR, as well as entrances to adjacent rooms in the line of sight 
of a PIR. These areas included the open plan living room and 
kitchen; the hallway, as well as entrances to the bathroom and 
guest bedroom; and finally the main bedroom and en suite. 
Rows of points were marked with tape every 35 cm parallel to 
the wall holding the PIR, see fig. 1. Continuous motion, from 
the waist up, was carried out on each point for the overshoot 
time (ten seconds) plus an additional five seconds to ensure 
that movement was measured on each point. This method was 
performed on all points parallel to the PIR bearing wall, 
following the red lines in fig. 1, and also diagonally, along the 
blue lines. The blue areas of figs. 1 and 2 show areas that 
remain undetected by PIRs. Areas which detect movement 
towards them but don't detect subtle movement within them, 
i.e. the PIR fired when moving to the spot but then shut off 
after a few seconds, are coloured light green. Areas 
completely visible to the PIR sensor, are shown in dark green.  

Detection of movement into and out of the bedroom is a 
requirement in determining the sleep window, described in 
section D. Results have indicated that PIRs should be 
positioned at a transition point between rooms in order to 

Figure 1. GNH floor validation markers (left) and path of floor validation 

(right) within the living room 



accurately determine location. Fig. 2(a) illustrates the standard 
placement and visibility of PIRs located in the hallway, living 
room and main bedroom of GNH. A number of additional 
PIRs have been installed in the test/demonstration apartment at 
GNH to achieve a higher level of visibility. This increased 
visibility, illustrated in fig. 2(b), facilitates validation of the 
location mapping model discussed in section C. 

C. Location Mapping 

A location mapping algorithm has been developed, using a 
subset of sensors installed in GNH. All PIRs have been 
validated to detect room transitions. Consequently it is 
possible to deduce when a resident is in a room in which a PIR 

is installed. It is important to note that if PIRs were installed in 
each room, as is the case in the test/demonstration apartment 
depicted in fig. 2(b), additional sensors would not be required 
to establish the location of the resident. As this is not the case 
in the permanently occupied apartments within GNH the 
location mapping decision model, as illustrated in fig. 3, is 
used. This decision model is used to establish whether: 1) the 
resident remained in the room within which a PIR has most 
recently fired; or 2) the resident moved to an adjacent room in 
which movement is undetectable by the PIR. In GNH any 
room which does not have a PIR installed is adjacent to a 
room containing a PIR. 

Movement to adjacent rooms, identified by the pale blue 
areas in fig. 2(a), is determined by checking for changed 
values of any "periodic" or "on change" sensor within adjacent 
rooms. A "periodic" sensor, such as a contact sensor on a 
window or door, is determined to have fired when a change in 
value is registered. An "on change" sensor is determined to 
have fired any time a value is registered. If a sensor is 
triggered in a room adjacent to the room in which the most 
recently fired PIR is located, a person is determined to be in 
the adjacent room between the time that PIR detected a cease 
in movement and the time it next detects movement. Adjacent 
rooms in GNH include the en suite, adjacent to the main 
bedroom; the bathroom, guest bedroom and outside, adjacent 
to the hallway; or the kitchen, adjacent to the living room.  

This algorithm gives comparable results when evaluating 
the typical setup using three PIRs, shown in fig 2(a), against 
the setup using the additional PIRs, shown in fig 2(b), which 
offers almost full PIR visibility. 

Two visits have been carried out to determine the validity 
of the location mapping algorithm. These visits took place in 
the test/demonstration apartment in GNH. Emerald Timestamp 
app for iPhone was used to record transitions between rooms Figure 3. Location mapping model 

Figure 2. Standard PIR visibility in GNH apartments (a); visibility with additional PIR sensors (b), as described in section III.B 

(overlaid location mapping zones, as described in section III.C) 



as well as door and light switch usage. Derived location maps 
were analysed against the locations recorded using Emerald 
Timestamp during the visit. The first visit involved typical 
movement around the apartment. The second visit focused on 
testing for false firings. This involved moving into and out of 
adjacent rooms in which light switch sensors are located 
within line of sight of a PIR. These included the en suite, guest 
bedroom and bathroom.  

In the first visit the location mapping algorithm was 
determined to consistently capture all movement to rooms in 
which PIRs are located, all time outside the home events and 
was successful in capturing all movement to adjacent rooms 
where doors and light switches were used. One false firing 
was detected in the kitchen after a switch to open/close the 
kitchen window was used followed directly by a period of no 
motion in the living room. This results from the switch being 
located in direct view of the PIR in the living room. Results of 
the second visit confirmed this issue. When the en suite light 
switch was switched on and movement into the en suite did 
not directly follow, movement to these adjacent rooms was 
either mislabelled or missed completely. This issue is resolved 
when sensors located in areas undetectable by PIRs are used in 
conjunction with sensors located in direct view of a PIR, for 
example when light switches and doors are used together, or 
doors are used on their own.  

These false firings result from the added complexity 
introduced by the overshoot time on each PIR. In GNH all 
PIRs have an overshoot time of ten seconds. When a PIR 
initially detects motion, it immediately sets to a value of 1 and 
the overshoot time is started. Updates are not sent during the 
overshoot time. Once the overshoot time is over, it will either 
restart if motion has been detected, or reset the PIR value to a 
0. Consequently motion may be detected by a PIR ten seconds 
after a sensor in an adjacent room has been triggered.  

D. Sleep Measures 

Various sleep measures have been derived by considering 
elongated periods within the bedroom, as deduced by the 
location mapping algorithm. Metrics investigated include 
estimated bed time and rise time, sleep disturbances and total 
time in bed. Bedroom and out of bedroom events, as 
calculated by the location mapping algorithm, are examined in 
determining the estimated sleep window, i.e. the period within 
which the bed time and rise time are located. Periods spent out 
of the bedroom from 3am onwards are compared to the in 
bedroom event that follows. For example if an out of bedroom 
event occurs and is determined to be short, in comparison to 
the in bedroom event that follows, it is categorised as a sleep 
disturbance, is grouped within the current sleep window and 
the period that follows is investigated further. If however the 
duration spent outside the bedroom is greater than the 
following in bedroom event, the end of the previous period in 
the bedroom is deemed to be the end of the current sleep 
window. This is repeated in reverse to detect the start of the 
estimated sleep window.  

1) Bed Time (BT) and Rise Time (RT) 
Once an estimated sleep window is determined for a given 

night the movement levels, as determined by the PIR in the 

bedroom, at the beginning of this sleep window are used to 
estimate the bed time and rise time. Movement is segmented 
into 1 minute epochs. The bed time is determined as the start 
of a period where movement is below a subject-specific 
movement threshold for at least 10 epochs. This threshold is 
based on normal nightly movement levels of an individual in 
their first month residing in GNH. As movement may reduce 
to a level below their threshold as a result of reading in the 
bedroom, a secondary requirement is in place to verify that the 
main bedroom light is switched off before estimating bed time. 
Rise time is estimated by deducing the last period at the end of 
the sleep window whereby movement is below a subject-
specific threshold for at least 10 epochs. 

2) Sleep Disturbances (SD) 
A sleep disturbance is determined by a change in location, 

or a grouping of epochs in which movement is above the 
movement threshold, between the estimated bed time and rise 
time. Where changes in location occur the rules for 
determining bed time and rise time are applied to calculate the 
estimated wake time before the disturbance and the estimated 
sleep time after the disturbance. The total disturbance time is 
calculated as the duration, in hours, between the estimated 
wake time and the sleep time. 

3) Time in Bed (TIB) 
Time in bed is calculated as the duration, in hours, between 

bed time and rise time, removing periods which were 
calculated to be sleep disturbances. 

E. Activity Measures 

The relationship between time outside the home and total 
movement on sleep is unknown, however changes in these 
activity measures may have an impact on sleep over time, this 
is investigated further in section V.  

1) Time Outside the Home (TOTH) 
A person is determined as being outside the home when no 

movement is detected between an exterior door closing and 
being re-opened. It may be calculated by subtracting the time a 
person closes an external door from the time they re-open the 
external door, providing no PIR has fired with a value of 1 
during this period. 

2) Total Movement (TM) 
The total movement is calculated as the time between a 

PIR firing with a value of 1 and the time the PIR resets to a 0 
value. As all PIRs in GNH have an overshoot time of ten 
seconds, this overshoot time is removed from the result. Total 
movement is segmented into 1 minute bins.  

IV. COMPARISON OF NIGHT-TIME BEHAVIOUR METRICS 

A. Experiment Setup 

A wrist-worn tri-axial actigraph (MotionWatch 8, 
CamNtech, Cambridge, UK) was used to validate night time 
activity metrics. The actigraph was set to record movement 
and light levels, recorded as luminous intensity (lux) of white 
light, in 30 second epochs. Participants were asked to use the 
event marker button to indicate when they were going to bed 
and getting up. Metrics derived by our algorithms namely rise 



time; bed time and time in bed were evaluated against 
comparable metrics such as "fell asleep", "woke up" and 
"actual sleep" derived using the software that accompanied the 
actigraph. Each participant was requested to fill out a sleep 
diary daily and a Pittsburgh Sleep Quality Index (PSQI) 
questionnaire was administered once for each participant 
during the validation period to determine their sleep quality 
score. 

Two groups participated in the validation. Group A 
consisted of five individuals staying in the test/demonstration 
apartment over a period of between two and four nights. Three 
of group A were older adults, two female and one male, who 
had previously fallen and two adults, one female and one 
male, who were healthy. Group B consisted of three male 
GNH residents, aged between 62 and 87, over a period of 
between seven and ten nights within their own homes.  

Sensor derived measures for time in bed (TIB-S) were 
compared to equivalent measures derived from the actigraph 
data (TIB-A) and daily sleep diaries (TIB-SR). Movement was 
compared in 1 minute bins and the results normalised. Details 
are given in Table I. 

B. Results 

The correlation between TIB-S and TIB-A for group A, 
shown in table I, was found to be strong, ranging from 0.71 to 
1. A strong correlation, 0.98, 0.97 and 1 respectively, was 
recorded when evaluating TIB-S data against TIB-A for group 
B. In contrast the TIB-SR showed a lower correlation of 0.9, 
0.35 and -0.1 respectively when correlating against TIB-S, and 
0.9, 0.3 and 0.14 respectively when correlating against TIB-A 
for group B. Figs. 4, 5 and 6 illustrate the movement levels of 
group B, generated from the three PIRs (black), as well as raw 
movement data, generated from the actigraph (gray), overlaid 
on location maps. 

C. Discussion and Conclusions 

Results for group A show close alignment between TIB-S 
and TIB-A in contrast to the evident difference when 
correlating TIB-SR against both TIB-S and TIB-A. The lower 
correlations of 0.76 and 0.71, for this group, result from 
delayed sleep start times and increased sleep disturbances 
being reported. This resulted from a configuration change 
which increased the overshoot time for the PIR within the 
main bedroom from ten seconds to ten minutes. The error 
affected two days of data for participant 1A and remained an 
issue for the full duration which participant 2A and 3A 
resided. Data for participant 4A and 5A were unaffected. 

In examining location maps for group B, very few signs of 
actigraph movement, represented in gray, are evident for 
participant 2B on night 1, illustrated in fig. 5. The participant 
appeared to have taken off the watch, resulting in 6 nights 
being analysed for this participant. Likewise, participant 3B 
appeared to remove the actigraph in days 1-7, as evident in fig. 
6. Additionally the location map appeared to have mislabelled 
en suite events on the morning of day 10, with two events 
appearing in close proximity. This resulted in only two nights 
being used in the analysis for participant 3B.  

Time outside the home events and durations spent in areas 
undetected by PIRs may be recognised visually by identifying 
lengths of time where movement is detected by the actigraph 
(gray) but not by PIRs (black). This is particularly evident in 
fig. 4 during times spent outside the home (white) and times 
spent in the en suite (red). Some instances are evident where 
the location map is registering presence within a room 
containing a PIR despite movement being undetected by the 
PIRs. This may result from a resident being in an area of a 
room undetectable to PIRs, or being in an adjacent room 
without using sensors whilst in this adjacent room. This is 
evident for participant 1B on day 1 around 10:30pm where 

TABLE I.  COMPARISON OF TIME IN BED DERIVED FROM SENSORS; 
ACTIGRAPHS; AND SELF-REPORTS 

P
a

rt
ic

ip
a

n
t 

ID
 

A
g

e 

S
ex

 

M
ea

n
 S

en
so

r
-D

er
iv

ed
 

T
im

e 
in

 B
ed

 (
T

IB
-S

) 

M
ea

n
 A

ct
ig

ra
p

h
-D

er
iv

ed
 

T
im

e 
in

 B
ed

 (
T

IB
-A

) 

M
ea

n
 S

el
f-

R
ep

o
rt

ed
  

T
im

e 
in

 B
ed

 (
T

IB
-S

R
) 

C
o

rr
el

a
ti

o
n

 b
e
tw

ee
n

  

T
IB

-S
 a

n
d

 T
IB

-A
 

P
S

Q
I 

sc
o

re
 

N
u

m
b

er
 o

f 
N

ig
h

ts
 

1A 76 F 9.68 9.40 12.75 0.93 14 4 
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Time in Bed (TIB) is measured in hours 

 

Figure 4. Location map for participant 1B, a poor sleeper (PSQI=6) 

[living room (blue); kitchen (navy); main bedroom (aqua); en suite (red); 

hallway (purple); bathroom (orange); and time outside the home (white). 

Sensor (black) and actigraph (gray) movement levels are overlaid] 



movement is detected by the actigraph while the resident is in 
the hallway. This could result from the resident being in the 
bathroom or guest bedroom, or alternatively being away from 
home (if external doors were not fully closed). 

The location maps depict the diverse way in which each 
resident uses their home. Whilst both participant 2B and 3B 
spend a long time in the bedroom at night, participant 2B  has 
a very consistent routine, participant 3B has considerably less 

movement at night than participant 2B. This is reflected in 
their PSQI sleep quality scores, with participant 3B scoring 1 
(good) in contrast to a score of 12 (poor) for participant 2B. 
Conversely the bed time of participant 1B is variable, as late 
as between 3am and 4am. Rise time also appears variable, 
with participant 2B occasionally staying in the bedroom until 
1pm-2pm. Movement at night is also relatively high for 
participant IB. While a PSQI score of 6 is not as high as that 
of participant 2B, participant 1B is still determined to be a 
poor sleeper. When considering time outside the home, 
participant 1B spends elongated periods outside their home, 
almost every day, sometimes twice per day. Whilst participant 
3B also spends a considerable amount of time outside the 
home, he tends to spend short durations outside regularly 
throughout the day, and frequently goes out around lunchtime. 
In contrast participant 2B spends very little time outside the 
home, aside from on day 7 when he was away for over an hour 
at lunchtime and several hours that night, delaying his usually 
regular bed time. 

V. LONGITUDINAL ANALYSIS OF THE DERIVED BEHAVIOUR 

METRICS 

This section compares the objective measures for time in 
bed (TIB), total movement (TM) and time outside the home 
(TOTH) of participants 1B, 2B and 3B, over an extended 
duration between April 2011 and January 2013 (totalling 22 
months). These metrics have been derived using the validated 
location mapping model, as described in section III, and 
results are presented in fig. 7 and Table II. Variability is 
evident between each resident for the period.  

In analysing weekly averages, illustrated in fig. 7, 
participant 1B experiences an overall decrease in TIB over the 
period of analysis, starting at an average of 10 hrs and 6 mins 
(10.10 hrs) in April 2011 and lowering to 7 hrs and 23 mins 
(7.38 hrs) in January 2013. This participant spends a 
considerable amount of time outside the home, as much as 10 
hours per day, peaking between December and February, as 
shown in table II. This gradual increase in TOTH coincides 
with a decrease in loneliness, with the participant scoring 4 
(moderately lonely) on the De Jong scale of emotional and 
social loneliness in June 2012 in contrast to a score of 1 (not 
lonely) in November 2012. While TM is low for participant 
1B in comparison to participants 2B and 3B it has increased 
from 23 mins (0.38 hrs) to 1 hour 24 mins (1.4 hrs) over the 
duration of analysis. Their relatively low TM may result from 
the comparably high TOTH. 

Although participant 2B reports poor subjective sleep 
quality, objective results portray a strong routine, particularly 
from January 2012 onwards, with a monthly average of 
between 8.5 and 10 hours TIB. However in some cases high 
weekly averages of up to 11 hrs 13 mins were recorded by 
both the ambient sensors and the actigraph, this may relate to a 
difficultly differentiating periods of quiescent wake in bed and 
sleep [27]. In such circumstances, long periods of quiescent 
wake, resulting in a high TIB, would not be attributed to a 
high quality of sleep. In contrast to the other participants, 
TOTH is very low, aside from a peak in October 2012, which 
may be attributed to the participant returning late at night from 
a holiday. Despite the low TOTH, TM is not significantly 

Figure 5. Location map for participant 2B, a poor sleeper (PSQI=12) 

Figure 6. Location map for participant 3B, a good sleeper (PSQI=1) 



more than the other residents. The low TOTH may be 
associated with an increase in loneliness from a score of 7 
(moderately lonely) in July 2012 to a score of 9 (severely 
lonely)  in November 2012. 

Participant 3B appears to have a relatively varied TIB, with a 

general increase experienced during the winter months. A  

sharp decrease in TIB is apparent in late December 2011/early 

January 2012, dipping from a weekly average of 10 hours 32 

mins (10.54 hrs) to 7 hours 19 mins (7.38 hrs), coinciding with 

an increase in TOTH, increasing from a weekly average of 2 

hours 14 mins (2.24 hrs) to 4 hours 29 mins (4.48), in 

comparison to the weeks previous. While there seems to be a 

gradual increase in TIB overall, rising from an average of 8-9 

hours per night to 10-11 hours, a gradual decrease in TM 

captured by the PIRs is evident. This decrease in TM may 

result from an increase in TIB or TOTH. Their TIB tends to 

increase slightly during the winter months as illustrated in 

table II. This change is confirmed in their PSQI questionnaire, 

with sleep duration increasing from 8 hours in June 2012 to 

11.5 hours in November 2012. 

VI. DISCUSSION AND CONCLUSIONS 

Wrist actigraphy compliance was found to be a concern 
when carrying out the validation of group B, with participant 
2B removing the actigraph for one night and participant 3B 
appearing to take the actigraph off for seven out of ten nights, 
leaving only three nights of valid data. This indicates that 
actigraphy may not be a viable solution to objectively monitor 
sleep measures longitudinally. Aside from compliance in 
wearing the actigraphs, not all participants used the marker 
button to indicate their bed and rise times. In these cases 
location maps proved useful in determining the window within 
which to check for sleep using the actigraphy software. The 
completion of sleep diaries was also inconsistent with one 
participant requiring assistance. Consequently, sleep diaries 
were filled in every 2/3 days during their validation period. 

The overshoot time of PIRs installed in GNH may result in 
mislabelling in the location mapping algorithm when sensors, 
used to detect movement to adjacent rooms, are located in 
direct view of a PIR. This is evident on day 10 for participant 
3B, illustrated in fig. 6, in which the resident woke up, visited 

Figure 7. Weekly averages for participants 1B (a), 2B (b), and 3B (c), with PSQIs of 6, 12 and 1 respectively, between April 2011 and January 2013 

TABLE II.  SEASONAL AVERAGES BY MONTH FOR PARTICIPANTS 1B, 2B AND 3B BETWEEN APRIL 2011 AND JANUARY 2013 

 

J
a

n
u

a
ry

 

2
0

1
2

/2
0

1
3

 

F
eb

ru
a
ry

 

2
0

1
2
 

M
a

rc
h

 

2
0

1
2
 

A
p

ri
l 

2
0

1
1

/2
0

1
2

 

M
a

y
 

2
0

1
1

/2
0

1
2

 

J
u

n
e 

2
0

1
1

/2
0

1
2

 

J
u

ly
 

2
0

1
1

/2
0

1
2

 

A
u

g
u

st
 

2
0

1
1

/2
0

1
2

 

S
ep

te
m

b
e
r
 

2
0

1
1

/2
0

1
2

 

O
ct

o
b

er
 

2
0

1
1

/2
0

1
2

 

N
o

v
em

b
er

 

2
0

1
1

/2
0

1
2

 

D
ec

em
b

er
 

2
0

1
1

/2
0

1
2

 

1
B

 

Sensor-Derived Time in Bed (TIB-S) 8.62 8.23 8.39 8.76 8.65 9.85 8.35 8.92 8.94 8.88 8.42 8.19 

Time Outside the Home (TOTH) 7.26 7.27 5.93 6.31 5.62 5.19 6.04 5.18 6.90 6.41 7.18 7.91 

Total Movement (TM) 0.97 0.96 0.87 0.74 0.85 0.75 0.77 0.76 0.69 0.82 0.84 0.97 

2
B

 

Sensor-Derived Time in Bed (TIB-S) 9.68 8.86 8.88 8.96 8.99 8.86 8.53 8.9 9.51 9.79 9.86 9.86 

Time Outside the Home (TOTH) 1.36 0.90 1.43 1.45 1.40 1.35 1.30 1.34 1.59 1.61 0.94 1.21 

Total Movement (TM) 1.64 1.60 1.48 1.40 1.67 1.62 1.59 1.76 1.75 1.72 1.79 1.54 

3
B

 

Sensor-Derived Time in Bed (TIB-S) 10.02 10.17 10.15 9.91 9.34 9.44 9.23 9.29 9.66 9.54 9.81 10.4 

Time Outside the Home (TOTH) 3.55 5.08 4.58 3.09 3.82 3.72 4.51 4.92 4.39 5.06 4.71 2.86 

Total Movement (TM) 1.49 1.63 1.38 1.59 1.97 2.09 1.95 1.59 1.64 1.46 1.50 1.60 

All variables are measured in hours 

 



the en suite (red), closed the door and went back to bed (aqua). 
Location detection has been established to be most accurate 
when the placement of the bed is within the dark green areas 
portrayed in fig. 1. Such uncertainty is caused by not having 
full PIR visibility. 

This paper presents a method of detecting measures of 
night time behaviour, including bed time, rise time, time in 
bed, total movement and time outside the home. A system of 
ambient sensors installed in apartments in Great Northern 
Haven was rigorously validated and compared on a nightly 
basis with comparable measures derived from actigraph data 
for five adults staying in the test/demonstration apartment for 
between 2 and 4 nights as well as three individuals living in 
their own homes. Sensor-derived metrics have been validated 
for a number of individuals, with differing sleep problems and 
health status, residing in GNH. A longitudinal analysis was 
undertaken, relating time in bed to time outside the home and 
movement levels detected by the three PIRs installed in each 
home. Longitudinal, as well as seasonal, variability was 
evident for two individuals in particular. The third individual 
analysed has very little variability in time spent outside the 
home, as well as low levels of movement detected by the 
PIRs. This indicates the importance of monitoring individuals, 
based on their own normal behaviour. While the layout of 
GNH apartments is identical throughout the complex, the 
technique presented may be extended to any singly occupied 
home, providing PIRs installed detect room transitions. Future 
directions for research will include the comparison of clinical 
health assessments with automated activity recognition 
algorithms. 
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