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Abstract—Activity recognition has many health applications,
from helping individuals track meals and exercise to providing
treatment reminders to people with chronic illness and improving
closed-loop control of diabetes. While eating is one of the most
fundamental health-related activities, it has proven difficult to
recognize accurately and unobtrusively. Body-worn and environ-
mental sensors lack the needed specificity, while acoustic and
accelerometer sensors worn around the neck may be intrusive and
uncomfortable. We propose a new approach to identifying eating
based on head movement data from Google Glass. We develop
the Glass Eating and Motion (GLEAM) dataset using sensor data
collected from 38 participants conducting a series of activities
including eating. We demonstrate that head movement data are
sufficient to allow recognition of eating with high precision and
minimal impact on privacy and comfort.
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I. INTRODUCTION

Chronic diseases such as obesity and diabetes affect an
increasing portion of the population and require new patient-
centered management strategies as patients and their caregivers
have the primary day-to-day management responsibility. Key
problems include providing patient-centered decision support
(e.g. adjusting insulin doses for people with diabetes), improv-
ing medication adherence, and creating logs to be reviewed
with clinicians. Many of these needs center on eating: nutrition
is critical to managing blood glucose, many medications are
taken with food or on an empty stomach, and nutrition logs for
obesity and other diseases have low adherence and accuracy.

Activity recognition has previously been used for appli-
cations such as predicting falls in the elderly using mobile
phone accelerometers, identifying running to track exercise,
and understanding movement patterns through a home. While
eating has been less studied, it is critical for three areas of
health. Eating detection will enable personal informatics to
automate meal logging and give feedback to users. Second,
it can improve the interaction between individuals and their
environment [4]. For example, an application can detect a
user is eating and silence her phone to avoid interruption.
Finally, there is a strong connection between eating and health.
People with chronic disease, a rapidly growing portion of the
population, may particularly benefit due to the importance of
self-management in the treatment of these diseases. Eating de-
tection can support healthy individuals and those with chronic
and acute disease by logging and rewarding activity (through
gamification mechanisms), providing contextual medication
reminders (as many medications must be taken with food or
on an empty stomach), or prompting a person with diabetes
to measure their blood glucose. Systems that provide frequent
feedback can improve treatment adherence, but this requires
accurate systems that do not intrude on daily life.

(a) (b) (c)

Fig. 1. Device and sample application: (a) Google Glass, (b) action
recognition and (c) reminder in response to action.

We propose that continuously collected data from unin-
trusive head-mounted sensors can be used to recognize eat-
ing and other activities. Our pilot Glass Eating and Motion
(GLEAM) dataset shows that the sensors in Google Glass
(e.g. accelerometer, gyroscope) are sensitive enough for this
purpose. With a combination of machine learning methods, we
achieve high accuracy for eating detection. While we focus on
the use of Glass because of its flexibility for prototyping and
the possibility of sending feedback to users as shown in figure
1, in the future other head-mounted sensors (e.g. earbuds) may
be developed when visual feedback is not needed.

II. RELATED WORK

Much prior work has been done on activity recognition,
in particular on recognizing locomotion using data from ac-
celerometers in cellphones or body-worn sensors [11]. Less
work has been done on detecting eating, with the main
approaches using audio or image data, environmental sensors
such as RFID, or sensors placed around the throat. The use
of acoustic sensors (to detect chewing sounds) ([9], [2]) or
cameras [12] raises major privacy concerns and may face
challenges due to lighting or background noise, while environ-
mental sensors [3] have limited generalizability as they depend
on a controlled and tagged environment. Finally, the use of
sensors to detect swallowing [1] requires these devices to be
placed around the throat, which can be uncomfortable.

Ishimaru et. al. have investigated head movement in con-
junction with blink detection using Google Glass [6], but did
not apply the technique to eating detection. They also tested
electrooculography glasses for discriminating several activities
including eating [7], but this study was limited by a small
sample size (2 participants).

III. DATA COLLECTION

To test our hypothesis that head movement can be used to
recognize eating, we developed the GLEAM dataset, using data
collected from 38 participants wearing Glass while conducting
a series of activities in a controlled environment. Activity
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Fig. 2. Demographic information.

times were annotated by two of the researchers during data
collection. Participants provided informed consent and the
protocol was approved by the Stevens IRB.1

A. Procedure

Our main goal is detecting eating, but this is a small portion
of a person’s daily activities. Thus, our protocol involved 2
hours of data collection spanning eating, brief walks and other
activities. To ensure that the eating data were representative of
usual behavior, participants brought their own meals (usually
lunch) to our lab space. Meals included pasta, bagels, pizza,
sandwiches, sushi, yogurt, salad, and nuts.

Participants talked with the researcher, ate a meal in two
parts (to yield two onset times) with a 5 minute break in-
between, walked down and up stairs and across a hallway,
drank a beverage, and performed other activities of their choice
(e.g. reading, working on a computer) until 2 hours had
elapsed. The primary activity category was “other.” Not all
participants performed the activities in the same order and they
were permitted to perform multiple activities simultaneously.

Participants wore Glass for the duration of data collection
but did not interact with the device to avoid biasing the data
toward gestures like swipes and taps. Instead, Glass’s sensors
recorded movement and a researcher annotated activity start
and end times on a separate device.

B. Sensors

Data was collected from participants wearing Google
Glass, which has a similar form factor to glasses but with a
display and no lenses. Along one arm (on the right side of the
head), as shown in figure 1a, Glass contains several sensors and
computing hardware similar to that of a cellphone. The sensors
include: accelerometer, gyroscope, magnetometer, and light
sensor. The Glass API allows reading these sensors directly
and provides processed values for gravity, linear acceleration,
and a rotation vector (a quaternion representing the device’s
orientation). We developed Glassware that collects data from
all sensors and processed sensor values except light with a
median sampling period of 395 ms. The sampling rate was
chosen as a trade-off between time-granularity and battery life.

C. Participants

Data were collected from 21 male and 17 female partici-
pants, aged 18-21 (median 20), recruited from the University

1Data are available at: http://www.skleinberg.org/data.html
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Fig. 3. Overview of activity recognition.

TABLE I. MEAN ANNOTATION ERRORS (IN SECONDS) FOR TWO
ANNOTATORS (A1, A2). P-VALUES ARE BASED ON A PAIRED T-TEST.

A1 A2 # p-value
Onset 0.75 1.07 75 0.6944
Offset 0.79 1.12 75 0.2955
Eat 0.56 0.76 62 0.2612
Drink 1.14 1.32 22 0.7473
Walk 0.50 1.50 22 0.3577
Talk 0.91 1.27 44 0.2147

and surrounding area. We excluded individuals with prior Lasik
surgery (based on Google’s Glass guidance) and those with
difficulty chewing or swallowing. All participants completed
the full 2 hours of data collection.

Implements used for eating, drinking, and sitting are shown
in figure 2. Additionally, 3 participants wore Glass atop their
own prescription glasses. Pictures of food were taken prior to
eating, after half the meal was completed, and at the end to
enable analysis of accuracy by food type and meal size.

D. Annotation

Researchers observing the participants annotated the start
and end times of all activities using an Android app we devel-
oped for the Samsung Galaxy cellphone, as shown in figure 3.
The clocks of Glass and the cellphone were synchronized.
Activity onsets were defined as follows. Eating begins when
food is first placed in the mouth, talking begins when a word
is spoken, drinking begins when a beverage or straw is placed
in the mouth, and walking or navigating stairs begins with
the first footfall. If a participant performed several activities at
once, only the dominant activity was annotated. Thus the end
of one activity is the beginning of another.

To ensure the quality of annotation, we conducted pre-
liminary tests of inter-rater reliability. Two research group
members were video recorded as they ate, drank, walked and
talked, with a total of 75 activities (150 combined onsets and
offsets). The videos were then independently annotated by two
researchers. The mean absolute error in seconds between each
annotator and video (treated as ground truth) for each of the
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Fig. 4. Activity annotations, accelerometer x-axis data, and eating detected by LOWO RF classifier for one participant.

four main activities are shown in table I. Across all activities,
the mean error is 0.77 and 1.10 seconds for annotators 1
and 2 respectively. Onset errors are lower than for offset, but
using a paired t-test, no differences were statistically significant
(p > 0.2147 in all cases).

IV. EATING RECOGNITION

The key steps of the activity recognition process are ex-
tracting features from the sensor data and training the classifier.

A. Feature Extraction

The raw sensor data was divided into minute-long non-
overlapping windows, with the window length chosen to be
long enough to capture periodic head movements but short
enough for granular activity onset detection. To explore the
effect of window boundaries on classification performance,
we generated features based on 6 different window offsets (0
through 50 seconds with 10 second steps).

From each window we generate a 180-element vector
consisting of features proven useful for activity recognition
([2], [13]), specifically 5 statistical (mean, intensity, variance,
skewness, kurtosis and crest-factor), 3 spectral (spectral cen-
troid, flux, and roll-off ), and 2 temporal (delta and delta-delta
coefficient [8]) features, for each of 6 sensors and 3 axes. Each
feature vector is labeled with the most frequent activity in the
window. An example of raw data along with ground-truth and
predicted class labels is shown in figure 4.

B. Cross-Validation

Due to heterogeneity between participants, we expect
classification performance will be improved by training on
some individual data. To evaluate the relationship between
the amount of training data for a given participant and the
classifier performance, we tested three cross-validation ap-
proaches which use progressively more training data: leave one
participant out (LOPO), leave half participant out (LHPO),
and leave one window out (LOWO).

LOPO has 38 cross-validation folds, each created by train-
ing a classifier on data from 37 participants and testing it on
the held out one. While this does not require any labeled data
for a new user, it will perform poorly when there is significant
heterogeneity that is not fully captured in training data. In
LHPO each participant’s data is divided into two parts by
splitting each labeled activity in half. In each of 76 folds, a
classifier is trained on data from 37 participants and half of

the data from the remaining participant. Finally in LOWO, all
data is used for training except for a single 1-minute window,
which is then used for evaluating the classifier.

C. Classification

Focusing on the classification between eating and other
(primarily reading and homework), we evaluated Gaussian
Naive Bayes (NB) and k-nearest neighbor (kNN) with k = 1
due to their prevalence in related work. We also evaluated C4.5
decision tree and Random Forest (RF) with 10 trees due to their
robustness to non-informative features. As the performance of
NB and kNN are negatively impacted by the presence of non-
informative features, we trained these classifiers only on the 10
most informative features, selected using an Information Gain
criterion. All classification and feature selection was performed
using implementations in WEKA [5] with default parameters.

D. Performance Metric

The appropriate choice of performance metric is data and
application dependent. Our data has a strong class imbalance
(only 11.57% of samples are of eating, while 72.43% are
homework/free time), so an Fβ score, where β controls rela-
tive importance of recall and precision, is most appropriate.
Our envisioned applications (e.g. automated meal logging,
medication reminders) are sensitive to false positives, which
would result in annoying spurious alerts and logged events, and
therefore we particularly value precision. Furthermore, because
our annotations indicate start and end times of entire meals,
false negatives may actually be due to pauses between bites
or courses. Therefore we report the F0.5 score, which weights
precision more strongly than recall, as well as the Area Under
Curve (AUC) for comparison with related work.

V. EXPERIMENTAL RESULTS

The F0.5 score for each classifier and cross-validation
approach is given in table II. Corresponding confusion matrices
are shown in table III. Tree-based classification methods per-
formed well due to implicit feature selection, and more training
data consistently improved performance, with the LOWO RF
classifier performing best. Window offset was not found to
significantly impact performance (p = 0.92 using one-way
ANOVA of F0.5 score for LOWO RF).

Results varied between participants, as shown in figure 5.
No eating was detected in 9 participants, including two who
frequently adjusted their prescription glasses, one who moved
abruptly in a rolling chair, and one who ate only a small meal
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Fig. 5. Performance of LOWO RF classifier for eating class across 38
participants. The marker areas are proportional to number of participants with
identical performance.

of pudding and cookies. Shorter meals (less than 15 minutes)
were less likely to be recognized. However, for 11 participants
100% precision was achieved. The results are robust with
respect to the objects used for eating, with no significant
difference in LOWO RF F0.5 score (p = 0.80 using one-way
ANOVA). Similarly, sitting on a rolling versus fixed chair had
no significant effect (p = 0.52 using unpaired t-test).

The performance achieved here is better than that reported
by other approaches to eating detection, showing the value of
using head movement for this purpose. For example, Logan
et al. [10] used more than 900 environmental sensors tagged
with objects and achieved AUC of 0.587 for eating recognition
whereas our AUC is 0.92 for RF. Finally, the more intrusive
audio visual data of Liu et al. [9] suffered from a high false
positive rate: 13.07% of “other” class detected as eating in
contrast to only 1.79% in our study.

The performance of our LOWO RF classifier relies on
user-specific training data. Although in our study participants
did not interact with Glass, future studies may evaluate an
active learning approach where the Glass app prompts users
for feedback to gather the required training data so that eating
detection may be iteratively improved.

VI. CONCLUSION

While eating recognition has lagged behind that of other
activities, newly developed head-mounted sensors have made
this feasible with high accuracy in an unobtrusive and privacy-
preserving manner. We propose a new approach to recognizing
eating from head movement that can facilitate automated
nutrition logs, smart medication reminders, and individualized
chronic disease management. The data collected are a realistic
sample of eating and drinking as they contain significant
natural variation, such as participants doing multiple activ-
ities at once and eating their own foods with their chosen
utensils. Even without developing algorithms specifically for
this purpose, our study achieved a higher F0.5 (67.55%) for
eating recognition than the best reported methods, and we
demonstrated robustness to utensils used. Future work may
focus on active learning to improve performance over time,
determining activity onset time and duration, and using the
meal photographs to estimate meal size and type.

TABLE II. F0.5 SCORE AND AUC FOR DIFFERENT CLASSIFIERS AND
DIFFERENT CROSS VALIDATION APPROACHES.

Classifier Metric LOPO LHPO LOWO

k-NN F0.5 31.27% 33.79% 37.06%
AUC 0.638 0.644 0.652

NB F0.5 19.71% 20.16% 19.19%
AUC 0.786 0.804 0.779

C4.5 F0.5 41.95% 50.0% 53.53%
AUC 0.639 0.611 0.677

RF F0.5 49.73% 58.77% 67.55%
AUC 0.858 0.884 0.922

TABLE III. CONFUSION MATRICES FOR EAT (E) AND OTHER (O) FOR
LOWO. ROWS ARE ACTUAL AND COLUMNS CLASSIFIED LABEL.

k-NN NB C4.5 RF
E O E O E O E O

E 213 325 495 43 273 265 244 294
O 371 3708 2595 1484 230 3849 73 4006
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