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Abstract—In the past years the progress on the mobile market
has made possible an advancement in terms of telemedicine
systems and definition of systems for monitoring chronic illnesses.
The distribution of mobile devices in developed countries is
increasing. Many of these devices are equipped with wireless
standards including Bluetooth and the amount of sold Smart-
phones is constantly increasing. Our approach is oriented towards
this market, using existing devices to enable in-home patient
monitoring and even further to ubiquitious monitoring. The idea
is to increase the quality of care, reduce costs and gather medical
grade data, especially vital signs, with a resolution of minutes or
even less, which is nowadays only possible in an ICU (Intensive
Care Units). In this paper we will present the COMPASS personal
health system (PHS) platform, and how it enables Android devices
to collect, analyze and send sensor data to an observation storage
by means of interoperability standards. We also present how this
data is compressed using compressed sensing techniques and how
to optimize these techniques with genetic algorithms. We also
produce a preliminary evaluation of the algorithm against the
state of the art algorithms for compressed sensing.
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I. INTRODUCTION

Personal Health Systems [1] (PHS), systems equipped with
sensors that can monitor and report on the health of a patient
affected by a chronic illness, are becoming a reality, thanks to
the recent advancements of mobile technology and integrated
sensors. For some illnesses, such as chronic obstructive pul-
monary disease (COPD), observing continuously, the evolution
of the physiological value of the patient can mean being able
to prevent the happening of exacerbation episodes that may
force the patient to hospitalization. It is therefore of paramount
importance to be able to deploy these systems on the patients
to improve the interaction between the patients and the doctor.

Chronic diseases limit the quality of life drastically and are
cost intensive for patients, insurance companies and govern-
ments. According to Global Health Observatory data published
in [2] noncommunicable diseases (NCD), such as heart dis-
eases, stroke, chronic respiratory diseases and diabetes, are the
leading cause of mortality worldwide. Therefore the presented
systems aim is to hinder this development by easily available,
pervasive monitoring.

The first generation of PHS focused on simply creating
interconnectivity between the sensor and a backend infras-
tructure to collect the data, realizing the telemedicine vision.
Despite this technical advancement, a set of challenges became
immediately evident: first the data collected was not struc-
tured, implying a big amount of work to the medical stuff
to reconstruct the meaning of the collected data; secondly,
the information to process for the medical doctors became
suddenly too big and too complex to interpret; thirdly, when
involving continuous sensors, the data transmitted is too much
and expensive to transfer; fourthly the transmission of medical
data through mobile technology brings security concerns.

Interoperability is a crucial thing when it comes to integra-
tion to either existing systems or newly created ones. Ensuring
easy and fast integration can set the threshold for the success
or failure of a PHS, as a matter of fact it is quite crucial to
make the information immediately actionable for the medical
doctors monitoring the patients. In this sense, several, major
standards and protocols exist to deal with medical data on
different layers. On the message layer, HL7 provides a set
of standards which evolved over time. From V2.x messages
in pipe and hat format to XML introducing V3 and CDA
(Clinical Document Architecture) changing the paradigm from
messages to documents to represent patient encounters and
acts. In the presented solution the Continua Design Guidelines
(CDG) were considered to ensure interoperability. This paper
will discuss how the interaction between a new device like the
Biovotion 1 VSM1 and the COMPASS PHS can be modelled,
taking into account the CDG on different layers to maximize
interoperability.

We want to introduce a flexible, extensible system which
is as interoperable as possible to enable long-term monitoring
with a high resolution of data for patients suffering from
chronic diseases. We aim to apply information retrieval and
machine learning to gain new knowledge about chronic dis-
eases, the effects of co-morbidities and get a better under-
standing of the effects of certain medications.

The rest of this paper is structured as follows: Section II
presents the architecture of the system; Section III discusses

1http://www.biovotion.ch/
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how the interoperability issues are tackled within the COM-
PASS project; in Section IV Security issues are addressed;
Section V discusses the algorithms that we will use for the
compression of the medical information within COMPASS and
an evaluation with preliminary results; Section VI puts our
work in comparison with existing PHSs; Section VII finally
summarizes our approach and lists future work.

II. ARCHITECTURE

The architecture of COMPASS is a server-client setting
with a publish/subscribe mechanism, dynamic updates of ma-
chine learning models and RESTful services to perform CRUD
(Create, Read, Update, Delete) operations. In the following
sections the components shown in Figure 1 will be discussed
in detail.

A. Sensor

Biovotion provides COMPASS with a multi-sensor, medi-
cal device prototype which is measuring numerous vital signs
simultaneously like blood oxygenation, heart rate, temperature
and triaxial accelerometer. Since no similar sensor is on the
market and the earlier mentioned communication profiles aim
only for a small set of devices this sensor gave the incentive to
re-use existing standards and recycle them in a way to create
as much interoperability as possible. The VSM1 is a wearable
medical device, similar in appearance with a wristwatch-type
blood pressure meter, but sleeker and more lightweight, which
is placed on the bearers upper arm. The VSM1 has sensors
in direct contact with the skin, which allow the continuous
monitoring of vital signs like for example heartbeat, skin
temperature or movement/activity. The VSM1 is intended to
be a medical device class IIa (outpatient) or IIb (monitoring
in a hospital) with all the respective requirements and shall
be used by patients in a hospital setting, but also by mobile
persons with an interest in their health. The key benefit of the
VSM1 is reliable signals during rest and motion recorded in
a ubiquitous manner with virtually no user intervention. Pos-
sible applications are the monitoring of patients with chronic
conditions such as chronic lung diseases or obstructive sleep
apnea. The hardware and communication interfaces shall allow

Fig. 1: Components diagram

future expansion of additional and possible external sensors
(e.g. ECG) to communicate with the VSM wirelessly.

B. Mobile Device

The mobile device acts as a data collector. It has a
continuous connection to the sensor, reading/receiving the
measurements. At this point we should mention that the idea,
architecture and system is not only designed for one particular
device, it is made to be multi-device ready. The mobile device
is the gateway to the server which is storing the data. It holds
all relevant profiles and protocol implementations, necessary
for the overall system to bring the sensors to the patients
home. As a matter of fact it is planned to implement a plugin
system to easily download device profile implementations. The
platform of choice for the first implementation is Android 4.4
or higher since there is a security vulnerability in the keystore
of the system in Android 4.3. In general Android 4.0 or higher
should be used for health applications using Bluetooth because
the Bluetooth Health Device Profile (HDP) was introduced in
Ice Cream Sandwich (Android 4.0).

C. Authentication Server

The authentication server is part of the security as well
as of the interoperability part. Offering a federated identity,
using established standards, leads to interoperability and will
also lead to easier integration. Offering a system which is
capable of handling a federated identity scheme leads to easier
integration on the server side as well as on the client side.
For the authentication protocol OpenID Connect developed
by the OpenID Foundation was chosen. OpenID Connect was
developed with a special interest of securing RESTful services.
Already implemented in server solutions, providing identity
servers with different, well-known authentication schemes like
SAML2, OpenID or other Single-Sign-On (SSO) solutions
it improves the level of interoperability. Such servers offer
different approaches with one, central user database, decoupled
from the data storage which in fact increases privacy, security,
and reusability of components. Another positive side effect is
acceptability by other parties, dealing with established, proven
security schemes.

D. API Server/WAN Device

The API server offers RESTful services for integration
with the mobile device mainly. Therefore there is a strict bond
between the authentication and authorization of users, logged
in to the app. We claim to realize real RESTful services,
meaning that every REST call can be handled as one request,
no states involved. To achieve this we present in the security
section a RESTful, secure approach, gathering authentication
and authorization in one request.

E. Machine Learning/Predictive Component

The presented architecture implements two machine learn-
ing components. The first component is to deal with the
amount of data and reduce energy consumption using com-
pressive sensing described in Section V. The other part is
a predictive component which models the submitted data
to enable an alerting mechanism. The latter component is



mentioned for the sake of completeness and is part of future
work.

The machine learning (ML) part resides on the backend
with an information retrieval component, gathering and or-
chestrating the information of the retrieved measurements to
apply machine learning algorithms. The ML component will
calculate models and refine them on a regular basis like once
per day and will be applied on both components. Figure 2
shows the schematics of the model refinement loop. Using
a publish/subscribe mechanism, the server pushes the refined
models to the clients if the newly created model performs
better than the old one. The calculation of the models is made
on the server side and the classification is done directly on
the clients, which will be Android devices in the first step.
Within the COMPASS project evaluations will be conducted
to analyze the potential of lossy compression in the medical
area.

Fig. 2: Machine Learning Model Refinement Loop

F. Others

Figure 1 also shows a Web UI with a Web server and
two kinds of data storage. A user storage, linked to the
authentication server and a data storage linked to the WAN
device or API server, the Web server and of course the Machine
Learning server. These elements create a complete picture of
the presented PHS but are not discussed in this paper.

III. INTEROPERABILITY

Interoperability is key aspect of the presented approach
and therefore we considered the Continua Design Guidelines
(CDG) 2013 [3] to create an architecture with interoperable
interfaces. As Bridget Moorman suitably stated in [4] about
the goal of interoperability, that it is the seamless flow of
information between many disparate devices over a network.

Due to some limitations of the hardware at hand we could
not go for full Continua compliance. Continua recommends
the usage of existing standards and refines them to reduce and
even remove ambiguities that arise when implementing certain
standards. For device communication in Body Area Networks,
Continua relies on the IEEE 11073-20601 Health Informatics

Application Profile - Optimized Exchange Protocol. The list
of existing and well defined communication profiles in the
IEEE 11073 Personal Health Device standards family and the
related device specializations 104xx covers common sensors in
the medical area. Building and integrating a new device with a
multi-sensor approach leads to some challenges. For example
one cannot rely on existing message profiles because the new
device delivers a bigger or changed set of sensor values. Exist-
ing profiles have been studied and extended to fit the projects
needs to keep the main patterns and rules of the standards.
Furthermore, Continua references the IHE-PCD-01 (Integrated
Healthcare Environment - Patient Care Devices) which mainly
describes the setting between an Device Observation Reporter
(DOR) and a Data Observation Customer (DOC). The message
delivered by the DOR is a HL7 V2.6 message with a mapping
of the IEEE 11073-10101 Nomenclature. According to the
CDG the protocol ought to be a SOAP Web service to transfer
the data. Interconnecting medical systems such as Hospital
Information Systems (HIS), Laboratory Information Systems
(LIS) or Electronic Health Record (EHR) storage, SOAP is the
most common used standard but it can lead to big payloads
due to the specification of certain security measures. In non-
medical fields SOAP seems to be going to be replaced by
RESTful services. REST [5] can be more lightweight but it is
also less specified in terms of security for example. We will
present a way to use existing and well known approaches to
secure REST APIs and ensure message layer security, discuss
the limitations and challenges that arises. Figure 3 shows a
sample of a an IHE PCD HL7 message of a pulse oximenter
spot measurment.

IV. SECURITY AND PRIVACY

We think that Security is not a feature of software, it is an
essential part of it, especially when dealing with medical grade
data and therefore also concerning privacy issues. We will
focus on two main issues when working with mobile devices
and authentication. The security of stored private/public keys
on mobile devices and how to ensure the authenticity of a
customer/patient in such a setting that the data is sent from
the mobile device to a secured server.

A. Authentication & Authorization

The options for securing access to open interfaces are
quite numerous. In the corporate and medical field most of
the federated identity systems use SAML2 (Security Assertion
Markup Language) assertions in combination with SOAP Web
services relying on XML encryption and signing backed up by
a PKI (Public Key Infrastructure.) Due to some trends and the
decisions taken by big IT players influencing the development
of technologies, REST [5] has become the common choice for
Web services. REST is not a technology, it is a set of rules,
a paradigm of how to use the HTTP protocol specification to
create Web services. It is easy to create REST like services, but
to consider real RESTful services, using only stateless HTTP
calls, it requires a set of mechanisms, orchestrated to a well
functioning system, covering authentication and authorization
in a single call. OAuth has become a valid technology, but is
often misused since OAuth2 is a delegation protocol which
can be used for authorization and authentication purpose
if it is implemented correctly. Covering authentication with



MSH|ˆ˜\&|Biovotion-HES-SOˆ1122334455667788ˆEUI-64||||20140505032308.221-0500||ORUˆR01ˆORU_R01|
MSGID00000001|P|2.6|||NE|AL|||||IHE PCD ORU-R012006ˆHL7ˆ2.16.840.1.113883.9.n.mˆHL7

PID|||789567ˆˆˆImaginary HospitalˆPI||DoeˆJohnˆJosephˆˆˆˆL
OBR|1|CESL01ˆAcme Mgrˆ1122334455667788ˆEUI-64|CESL01ˆBiovotion-HES-SOˆ1122334455667788ˆEUI

-64|182777000ˆmonitoring of patientˆSNOMED-CT
OBX|1|CWE|68220ˆMDC_TIME_SYNC_PROTOCOLˆMDC|0.0.0.1|532233ˆMDC_TIME_SYNC_GSMˆMDC||||||R
OBX|2|NM|67983ˆMDC_ATTR_TIME_RELˆMDC|0.0.0.2|5000||||||R|||20140505072308+0000||||

ACME_Rel_Timebase-ABCDEF123456ˆACME_TIMEBASE_ID
OBX|3|NM|68223ˆMDC_TIME_RES_RELˆMDC|0.0.0.3|8000|264339ˆMDC_DIM_MICRO_SECˆMDC|||||R
OBX|4|CWE|68218ˆMDC_REG_CERT_DATA_AUTH_BODYˆMDC|0.0.0.4|2ˆauth-body-continua||||||R
OBX|5|ST|588800ˆMDC_REG_CERT_DATA_CONTINUA_VERSIONˆMDC|0.0.0.5|1.5||||||R
OBX|6||528388ˆMDC_DEV_SPEC_PROFILE_PULS_OXIMˆMDC|1|||||||X|||||||887766554433221199ˆEUI-64
OBX|7|ST|531970ˆMDC_ID_MODEL_MANUFACTURERˆMDC|1.0.0.1|PulseOximeter||||||R
OBX|8|ST|531969ˆMDC_ID_MODEL_NUMBERˆMDC|1.0.0.2|Nonin Onyx II||||||R
OBX|9|ST|531972ˆMDC_ID_PROD_SPEC_SERIALˆMDC|1.0.0.3|1234||||||R|||||||SN10404ˆEUI-64
OBX|10|NM|150456ˆMDC_PULS_OXIM_SAT_O2ˆMDC|1.0.0.4|90|262688ˆMDC_DIM_PERCENTˆMDC|||||R
OBX|11|NM|149530ˆMDC_PULS_OXIM_PULS_RATEˆMDC|1.0.0.5|51|264864ˆMDC_DIM_BEAT_PER_MINˆMDC|||||R

Fig. 3: HL7 V2.6 message using the IHE PCD profile of a pulse oximeter (IEEE 11073-10404 [6]) spot measurement.

OIDC Provider Protected
Resource
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12: Validate Token
13: Service Response

10: User Information
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3: Authenticate End-User

1: Prepare Authentication Request

9: Access Userinfo

7: Access & ID Token

6: Request Access & ID Token

11: Request Service w/ Access Token

5: Return to Client w/ Authorization Code

2: Request Authentication

Fig. 4: OpenID Connect authentication scheme

SSO capabilities, OpenID is a valid choice. OpenID is used
to create federated identities, famous from being used by
Google and Facebook. Due to this fact a new system emerged
called OpenID Connect (OIDC) [7], combining OAuth2 and
OpenID and is going to be widely used to secure REST
services. OpenID Connect extended the concept of an access
token of the OAuth specification by adding an ID token to
identify the requesting entity. In OpenID Connect four roles
are identified: (1) Authentication Server, (2) Relying Party
(Client), (3) Protected Resource (Service Provider) and (4)
End-User. The client can be any native or Web application
accessing a protected resource. The protected resource in the
presented scenario is a RESTful service to store and retrieve
observations.

For securing the service provider the OpenID Connect
Authentication using the Authorization Code Flow is imple-
mented which consists of following steps described in [7].
Figure 4 illustrates the scheme which applies to OpenID
Connect authorization code flows. Steps 1 to 8 show the

authorization process and steps 9 to 13 complete the whole
picture of requesting data from a protected resource:

1) Client prepares an Authentication Request containing
the desired request parameters.

2) Client sends the request to the Authorization Server.
3) Authorization Server Authenticates the End-User.
4) Authorization Server obtains End-User Consent/-

Authorization.
5) Authorization Server sends the End-User back to the

Client with an Authorization Code.
6) Client requests a response using the Authorization

Code at the Token Endpoint.
7) Client receives a response that contains an ID Token

and Access Token in the response body.
8) Client validates the ID token and retrieves the End-

User’s Subject Identifier.

A central element in OAuth and OIDC is the token endpoint
(step 6). It is used to retrieve an access and ID token with
an authorization code which was retrieved by an earlier au-
thorization request. Using this approach to secure a RESTful
service covers authentication and authorization. If a Hash-
based Message Authentication Code (HMAC) [8] is used
during the authentication scheme, data integrity is covered, too.
The HMAC calculation algorithm that is recommended for this
scenario, basically signs the HTTP request by combining the
HTTP request parameters, the timestamp, the resource URI
and the access code and encrypts this set of data with a shared
secret that has to be exchanged in the beginning of the com-
munication. Summarizing the addressed security measures, the
RESTful service is protected by an authentication scheme
which allows to add fine grained authorization. Depending on
the implementation of the identity server it is possible to grant
and revoke access to a secured resource within a short time.
Furthermore the connection is secured using TLS (see IV-C).

B. Public Key Infrastructure

Another approach to introduce security using encryption
and signatures enabling authentication is a Public Key Infras-
tructure (PKI). A PKI is set of routines to establish a network



of trusted entities through a trusted Certificate Authority (CA).
PKI is a well-known concept and proven over years giving a
strong security scheme if the key size is chosen appropriately.
The key distribution is a challenge that should not be under-
estimated. Topics like private key safety which describes how
safe the storage is kept where the key resides or the handling
of certificate revocation if a key is tampered by an adversary.
In COMPASS, Android is the mobile platform of choice for
the first implementations. In Android 4.3 (Jelly Bean, API
Version 18) a security vulnerability described in [9] was found
targeting the key store which enables code execution under
the key store process. Although an adversary has to overcome
some obstacles there is the chance that one could achieve to
exploit this vulnerability.

1) Private Key embedded in App: Establishing a PKI
within a mobile app could be achieved by embedding a
keystore into the app. For example in the resource folder of
the app. But this folder can be made readable to everyone so
the private key is not private at all. A solution could be to use
a strong password on the keystore. The next question arises,
how does the user of the app receive the password on a secure
channel? This approach is not recommended as long as you
rely on security.

2) Generated Keypair: A possible and feasable approach
which needs additional work to create a PKI also used on
mobile devices is to use self-signed certificates and establish
your own CA (Certificate Authority). Imagine a strategy of
creating a key pair and send a Certificate Signing Request
(CSR) to the CA. The creation and sending of the CSR needs
some additional security because it could be target of a Man-
In-The-Middle attack (MITM), replacing the CA. For example
by using TLS on the CA connection storing the public key
in the app the probability of an attack decreases significantly
since you need to replace the public key in the app directly.

C. Transport Layer Security (TLS)

Basic transport layer security will be addressed by using
TLS (formerly known as SSL). An extension of TLS is
mutual TLS which allows authentication on the transport layer
by using a PKI. As described before, keeping private keys
on Android is delicate if you do not consider the possible
vulnerabilities of the Android architecture.

V. COMPRESSION WITH COMPRESSIVE SENSING

Compressive sensing is a sampling theory that makes use
of the sparsity of signals and images to reconstruct them from
incomplete information. Traditionally, an effective reconstruc-
tion of a signal has to follow the Shannon sampling theorem,
stating that the sampling rate must be twice as much as the
highest frequency of the signal. Most data exist in sparse
form or can be made sparse by using a sparsifying basis.
In such a framework, a signal with an appropriate sparse
representation over a basis (or sampling matrix) is projected
on a much lower dimensional space by means of a projection
matrix. The original signal can then be recovered from the
projection provided that the projection respects the restricted
isometry property (RIP). For this reason in the literature the
projection matrix is usually selected as a random projection,
due to the fact that random projections have a high probability
of satisfying RIP.

More formally, if we consider a vector x in some Hilbert
space CN and a measurement matrix Φ of dimension M ×N
with M << N , then compressive sensing foresees to project
x in some coefficients y by means of Φ, as y = Φx. This
projection happens by means of a sparsifying matrix s = Ψx,
and s is K-sparse. In particular it has been demonstrated that
if s is K-sparse then we can recover x from y by applying
the following optimization problem:

mins∈RN ||s||l1 subject to y = Φx = (ΦΨ−1)s

In the case in which the matrix Φ respects the restricted
isometry property (RIP) [10], for there is a constant δs defined
as:

Definition 1: (Restricted Isometry Constant) For each inte-
ger k = 1, 2 . . . , n define the isometry constant δk of a matrix
Φ as the smallest number such that (1−δk)||x||2l2 ≤ ||Φx||2l2 ≤
(1 + δk)||x||2l2 holds for all vectors that are K-sparse.

If the RIP property is respected, then the projection will
maintain the distance between similar vectors also in the pro-
jection space, which is important to have a good reconstruction
error.

Another important concept is that of mutual coherence.

Definition 2: (Mutual Coherence) Given a dictionary D=
ΦΨ−1, the mutual coherence of the D is defined as: µ{D} =

max
1≤i,j≤k and i 6=j

|dTi dj |
||di||·||dj ||

As reported by Elad et al. in [11], mutual coherence is a
measure of similarity between the columns, as if two columns
are very close, then they may confuse the reconstruction
process of a signal.

A. Elad and Duarte Optimization Algorithms

In [11], Elad extends the concept of t-averaged mutual
coherence in order to reflect an average behaviour of the
projection matrix that is more likely to perform well than the
simple mutual coherence previously defined. This is defined
as follows:

Definition 3: (t-averaged mutual coherence) For a dictio-
nary D, its t-averaged mutual coherence is defined as the
average of all absolute and normalized inner products between
different columns in D (denoted as gij) that are above t.
Formally:

µt{D} =

∑
1≤i,j≤k and i6=j

(|gij |≥t)·|gij |∑
1≤i,j≤k and i6=j

(|gij |≥t)

Elad suggests to minimize µt(ΦΨ−1) with respect to Φ.
Algorithm 1 achieves this by using a threshold t and a
shrinking factor γ.

Similar to Elad, Duarte-Caravajalino and Sapiro [12] de-
fined an algorithm for the optimization of the sensing matrix
and the dictionary learning based on the optimization of the
mutual coherence, but without the need to iterate as in the case
of Elad’s algorithm. The algorithm expressed in [12] tries to
find the projection matrix whose Gram matrix is as close to the
identity matrix as possible, because this provides a very small
mutual coherence with the dictionary matrix. To achieve this
and avoid iterations, the algorithm minimizes the eigenvectors



Algorithm 1 Elad’s Projection Matrix Optimization Algo-
rithm.
1: The objective is to minimize µtΦΨ−1

2: t or t% the threshold
3: Ψ−1 the dictionary
4: p number of measurements
5: γ shrinking factor

Set Φ0 ∈ Rm×n to be any random projection matrix
6: for i=1:Iter do
7: Normalize ΦiΨ

−1 and obtain Dq

8: Set the Gram Matrix Gi = DT
i Dq

9: Either use the fixed t or choose t such that t% of the off-diagonal elements in
Gi are above it

10: Apply Shrinking to the Gram matrix Gi

11: gi,j =


γgi,j if |gi,j | ≥ t
γt · sign(gi,j) if t > |gi,j | ≥ γt
gi,j if γt > |gi,j |

12: Reduce the rank of Gi using SVD and force it equal to m
13: Calculate Si =

√
Gq

14: Find Φi+1 minimizing ||Si − ΦiΨ
−1||2F

15: end for

of the error between the Gram matrix and the identity matrix.
More details about this algorithm are discussed in [12].

B. A Genetic Algorithm to Optimize the Projection Matrix

As discussed by Elad in [11], minimizing mutual coherence
is one way to improve the behaviour of the projection matrix,
the issue though is that this is quite independent from the task
at hand, and it can hold high reconstruction error for some
signals As a consequence, optimizing a metric associated to
the class of signal considered may be more appropriate. In
particular we think that this is crucial in the healthcare domain
in which the signal must be as close as possible to the original
one. In this sense, in this paper we devise a strategy based
on genetic algorithms to optimize the projection matrix. In
particular we apply a genetic algorithm with an elitist approach
which can be summarized in 6 steps:

1) Generate Population of N Random Matrices
2) Calculate the fit of each element of the population
3) Save the best performing matrix (elitist)
4) Combine the matrices using a crossover approach by

Taking a linear combination of the crossover values
5) Mutate the Matrixes (random mutation of the num-

bers in the matrix)
6) Calculate fit in terms of the RMSE of the recon-

structed signal wrt the original signal
7) Repeat from 3.

The input of the algorithm are the population size and the
probability of mutation, where we keep fixed the compression
rate to a 80% of the original signal.

C. Experimentation and Preliminary Results

For the experimentation, we used a dataset comprising
of 40 SPO2 signals from 4 different individuals, captured
using the VSM1 monitor. In order to find the parameters of
our algorithm we split our dataset in two parts, 70% of the
dataset is used for training and validation and 30% of the
dataset is then used for testing by comparing the RMSE of
the reconstructed signal with respect to the original signal.
The signals are all compressed with 20% compression rate
and we fixed K-SVD [11] as the algorithm to learn the
dictionary/sampling matrix.

Fig. 5 shows an example of reconstruction using the genetic
algorithm discussed in the previous section, the signals we
considered in this study are 10 hours of measurements on the
patient, with a distance of 5 minutes before each sampling. To
perform our compression we segment our signal in a size of
25 samples, compressing to 20 values and reconstructing back
to 25 samples after the transmission.

This implies that the signals have all Fig. 6 shows the
GRID search performed to find the optimal parameters for the
genetic algorithm. In this sense, we found that a population of
4 matrices with a crossover of 3 chromosomes produces the
best results in our training dataset.

Table I shows the results of the evaluation on the test set.

Despite the fact that the result is preliminary, after the
training phase, the use of an optimization approach that uses
the RMSE of the reconstructed signal as the parameter for
fitting the projection matrix, seems to improve in a statistically
significant way the result with respect to the approaches based
on mutual coherence, for the selected dataset. It is important
to state that to confirm this result it is necessary to attempt
a similar analysis on additional datasets, which will be the
subject of future work.

VI. RELATED WORK

Monitoring chronically ill patients by means of PHS
technology has been the subject of numerous studies [13],
[14], with encouraging results. Thanks to the advancements
of telecommunication technology, many telemedicine systems
aimed at monitoring chronic diseases have been defined in
recent years, as also reported in [15]. Such a study identifies
motivation for self-management, long term adherence, costs,
adoption, satisfaction and outcomes as important metrics to
evaluate PHSs. Since this paper presents the architecture of our
system and a preliminary study concerning compression, we
could not evaluate the patients’ opinion about the system yet.
Another important thing to say is that in general the problem
of compressing the data seems to be neglected in current PHSs,

Fig. 5: Compression Results on one of the VSM1 signals. In
RED the original signal, in BLUE the reconstructed one.



but this aspect can change significantly the acceptability of the
patients towards the PHS, as the ability to compress the data
submitted may allow to save battery time, thus reducing the
discomfort of recharging the monitoring devices.

An important PHS against which comparing COMPASS
is COMMODITY12 [1]. With respect to COMMODITY12,
COMPASS presents an advanced handling of the models for
machine learning and compression and an improved handling
of interoperability by considering a CONTINUA compliant
approach.

Amongst those PHS offering decision support, the most
related ones are descried in the contributions presented in [16],
[17], [18] and [19]. In [16], Quinn et al. present WellDoc, a
mobile phone based system to provide patients with real time
feedback on their glucose levels. WellDoc shows an improve-
ment on the glucose control of the patients as compared to
standard care. With respect to WellDoc, for the moment our
system focuses on interoperability and compression, where the
decision support part will be added in terms of prediction of
exacerbation episodes in COPD.

The work of Lim et al. in [17] presents a rule based expert
system producing the alerts. Similarly to [16], the system
presented in [17] provides advice directly to the patient. In
COMPASS, we will not use rules for the decision support, we
will rather focus on producing a prediction of the physiological
values of the patient.

The work of Cafazzo et al. [20] focuses on diabetes type
1. Such a contribution uses gamification patterns to monitor
the patients and make them interact, showing an improvement
from the perspective of the glucose control of the patients. With
respect to the contribution in [20], COMPASS does not con-
sider gamification patterns, in particular because COMPASS is
focused at the level of the signals, more than at the level of the
treatment. With respect to the contribution of Cafazzo et al. the
main novelty of our system is to consider compressed sensing

Fig. 6: Grid Search for the Parameters of the Genetic Algo-
rithm. X: number of chromosomes for the crossover. Y: number
of matrix in the population. Z: the RMSE of the reconstructed
signal in the training set.

as a functionality of the PHS. The features extracted with
compressed sensing will also represent the basis to produce
our prediction of the SPO2 values of the patients at later stages
of the COMPASS project.

Considering related works from the broader perspective of
PHSs for chronic diseases, another extensive review on the
subject can be found in [21]. Given the classification of system
flexibility proposed in [21], COMPASS will be modelled as a
multi-function system where we offer the following services:
alerting, support activities, information and documentation,
analytical and diagnostic support.

The work of Tentori et al. [22] has aspects similar to
our model, but the focus of their PHS is rather on applying
machine learning techniques, such as Hidden Markov Models
(HMM) for activity recognition. In the case of COMPASS,
we have not yet built machine learning models for the task
of predicting SPO2 in COPD patients, but in future work
COMPASS will use features related to activity and multiple
signals coming from the VSM1 sensor to predict the behaviour
of SPO2 in patients affected by COPD.

In [23] the AMON project is presented. In AMON, patients
affected by heart issues are monitored using a mobile solution.
In AMON the monitoring is performed with an un-obtrusive
device integrating several sensors in one solution. From the
perspective of monitoring, AMON aimed at monitoring of
multi-parametric physiological values, like we do in COM-
PASS, but it did not propose compression and prediction
services.

VII. CONCLUSION & FUTURE WORK

Within this paper a solution for a Personal Health Sys-
tem with added value using Machine Learning techniques to
introduce a lossy compression which boosts performance on
the mobile device but keeps sufficient data to be of medical
relevance. Furthermore, security was addressed, using state-
of-the-art technologies to secure resources from the very first
moment and not as an add-on. By using OpenID Connect
not only security issues were covered, also the interoper-
ability was increased in terms of reusing the mobile app
with different server side implementations. Externalizing the
authentication and authorization creates a certain degree of
freedom to integrate the software with different solutions.
For example using a sophisticated identity server providing
many different authentication schemes like OAuth2, OpenID
Connect or SAML2 one can use one user management and
authentication system connecting with different, trusted third
party application providers. Interoperability is also addressed
in the means if message formats, using HL7 message format,
recommended by the Continua Health Alliance.

TABLE I: RSME Comparison.

RMSE CI
Elad 0.1835 ± 0.0022

Duarte 0.1843 ± 0.0021
Random Matrix 0.1853 ± 0.0018

Genetic 0.1791 ± 0.0027



Future work evolving from the presented approach includes
surveys for evaluating the effects of compressive sensing and
the resulting discussion about acceptance in the medical field.
The integration of a predictive component to implement an
alerting/notification mechanism will be addressed, too. Further
studies need to be conducted to evaluate the influence of an
early notification of a deterioration of vital signs with regard to
the monitored disease. Further work also involves the extension
of the mobile application, implementing more sensor protocols
extend the authorization component of the identity server with,
for example, XACML [24] (eXtended Access Control Markup
Language) to establish a fine-grained access management.
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