
Performance Analysis of an Activity Monitoring
System using the SPINE Framework

Roberta Giannantonioi, Raffaele Gravina*, Philip Kuryloski*, Ville-Pekka Seppa t, Fabio Bellifemine'', Jari
Hyttinen", Marco Sgroi*

§TelecomItalia, Torino, Italy
*WSN Lab sponsored by Pirelli and Telecom Italia Berkeley, CA

"Department ofBiomedical Engineering, Tampere University ofTechnology, Finland

Abstract - SPINE is an Open Source Framework for the design of
signal processing intensive (SPI) WSNs. It supports the
construction of WSN applications through high-level abstractions
and libraries, and allows designers to quickly explore
implementation tradeoffs through fast prototyping. This
paper describes the architecture of SPINE and presents
implementation parameters, such as processing time, memory,
bandwidth usage and power consumption that are most relevant for
application developers to set tunable parameters and analyze
system performance. Finally, the paper presents the performance
and the resource usage of a SPINE based posture recognition
system for elderly health monitoring.

Keywords-component; wireless sensor networks, performance
analysis, SPINE

I. INTRODUCTION

The design of health care systems based on Wireless
Sensor Networks (WSNs) is complex, particularly due to the
challenge of implementing signal processing intensive
algorithms for data interpretation on wireless nodes that are
very resource limited and have to meet hard requirements in
terms of wearability and battery duration. New abstractions
and tools are needed to support application developers during
design space exploration and fast prototyping.

A small number of design frameworks have been
proposed to address this problem. Titan [1] supports context
recognition in dynamic sensor networks. Context
recognition algorithms are represented as a network of
interconnected data processing tasks. Titan adapts to
different context recognition algorithms by dynamically
reconfiguring individual sensor nodes to update the network
wide algorithm execution. CodeBlue [2] is a framework
built on TinyOS designed to provide routing, naming,
discovery, and security for wireless medical sensors, PDAs,
PCs, and other devices that may be used to monitor and treat
patients in a range of medical settings. The same team has
developed a new operating system for data-intensive sensor
network applications called Pixie [3] that enables resource
aware programming and allows applications to receive
feedback on resource usage, and control resources. The
Pixie OS gives visibility and fine-grained control over
resource management through the concepts of resource
tickets, a core abstraction for representing resource
availability and reservations, and resource brokers, which

Digital Object Identifier: 10.41OBIICST.PERVASIVEHEALTH2009. 6004
http://dx.doi.org/10.410BIICST.PERVASIVEHEALTH2009. 6004

mediate between low-level physical resources and higher
level application demands.

SPINE (Signal Processing in Node Environment) [4] is a
Framework for the design of signal processing intensive
(SPI) WSNs. It provides higher abstraction levels and
support to quickly explore implementation tradeoffs through
fast prototyping. Titan and Pixie focus on allocation and
management of resources, where SPINE focus on making a
variety of functionality easily and conveniently accessible,
yet configurable by designers. SPINE is based on the
following principles:

• Open Source. The SPINE project [5] is Open Source
to establish a community of users and developers.
The SPINE code is available under the LGPL
license.

• Interoperability through APIs. SPINE provides local
and remote applications with lightweight Java APIs
that they can use to manage the sensor nodes or issue
service requests. The APIs are easily portable to
devices of various capabilities, such as PCs or
mobile phones.

• High-level abstractions. SPINE provides libraries of
protocols, utilities and data processing functions and
support to easily specify new services and features.
The layer defined by the SPINE service libraries
allows application designers to program at higher
levels ofabstraction than TinyOS.

• Distributed implementations of data processing and
interpretation algorithms. SPINE helps designers to
evaluate the efficiency of distributed
implementations of data classification algorithms
with respect to the use of energy and channel
bandwidth.

This paper provides a detailed description of the
architecture of the last release of SPINE (1.2 version) and
focuses on the performance and cost analysis aspects of the
design of an application using SPINE. In particular, it
provides description of parameters, such as processing time,
memory, bandwidth usage and power consumption that are
most relevant for application developers to set tunable
parameters properly and analyze system performance.
Finally, it shows how these parameters are used in the
performance analysis of a posture recognition system for
elderly health monitoring.

Service Layer

Communication Layer

Fig. 2. SPINE FunctionalArchitecture

Sensor Data Interpretation (SOl) Service

!- - - -ci ~~-~i-fi~~ti~~-- - - l

SOl Service Manager I -~;~~-~~;i;,~~~;~~- - i

I Feature Extraction I

Sensor Data Collection (SOC) Service

I Sensor Controller I I Buffer Manager I

! --- --- -- - - -----~~~~_;;;~~-~~-~~~i~~~- --- --- --- - ----]

'-- - - - - ---- - - - - - ---- - - - - - - - ---- - - - - - ---- - - - - - - - ---- - - - - -'

Service Layer
Manager

.---------...-- --. :o,---.----- ---.....--- -- - - r:-----.,,- - - - - ...---- - - - - -""-- -- - - - -"\'-.----..---,

: Application Layer :
L 1

Other feature extraction or classification functions in
addition to those currently included in SPINE may be

sensors to be introduced without requiring changes to other
SPINE components. The Buffer Manager manages the
buffers that are allocated at design time, one for each active
signal acquisition channel. Buffers are shared among the
active functions on a node so that multiple functions can
access the same stored data during any processing interval.

The Sensor Data Interpretation Service includes functions
that are used to process or interpret the raw sensor data
provided by the Sensor Data Collection Service. This service
includes:

• libraries of features implemented on the sensor nodes
such as mean, median, central value, amplitude,
range, minimum, max, root mean square, standard
deviation, variance and cross-axial energy. Standard
math functions are also implemented on the sensor
nodes to allow the designer to define additional
feature extractors as necessary. A Feature can
operate over all active channels ofa given sensor and
can produce an array of data to be sent to the base
station

• a Feature Extraction Engine which allows activation
or deactivation of the computation of features for a
given signal acquisition channel at runtime.
Furthermore, it allows dynamic tuning of the
following two feature extraction parameters: window
size (time interval on which the feature is to be
calculated), and window shift (the period at which
each feature has to be computed).

• an Alarm Engine which generates events when
certain conditions determined by the comparison of
local variables with predefined thresholds occur.
Alarms can be set on any of the supported features,
including raw data, specifying window and shift
settings as well as alarm-specific parameters.

Fig. I . SPINE NetworkArchitecture

II. ARCHITECTURE OF SPINE

A. Network Architecture

The network architecture of a WSN supported by SPINE
includes one Coordinator Node (CN) and one or more Sensor
Nodes (SN). The CN manages the network, collects and
analyzes the data received from the SNs, and acts as a
gateway to connect the WSN with wide area networks for
remote data access. SNs measure local physical parameters
and send raw or interpreted data to the CN. Fig. I visualizes
the architecture ofa SPINE network.

Currently SPINE supports WSNs with star topology,
where each SN communicates only with the CN. However,
the Framework can be easily extended to support also multi
hop communication and direct communication among SNs.
In the current version of SPINE a SN can be associated with
a single gateway. However, a possible extension of the
Framework is to allow nodes to leave a WSN and join
another WSN managed by a different CN. This scenario
might occur when a patient wearing body sensors moves
across locations and at each location connects to a different
gateway.

B. Functional Architecture

The functional architecture of the SPINE Framework
(Fig. 2) consists of two main components: the Service Layer
and the Communication Layer.

The Service Layer of SPINE includes the following
components: the Service Layer Manager, the Sensor Data
Collection Service and the Sensor Data Interpretation
Service.

The Service Layer Manager implements the main logic of
the Service Layer and dispatches computation among
services.

The Sensor Data Collection Service manages sensor data
sampling and buffering on the sensor nodes. In particular, the
Sensor Controller manages:

• real-time activation/deactivation of sensors or
independent channels.

• the sampling rate, which can be set dynamically (e.g.
for more detailed monitoring when a relevant event
has been detected).

The Sensor Controller wraps each supported sensor with a
common interface. As a result, each sensor appears as
variation of a similar abstract component to processing and
communication components of SPINE. This allows new

Digital Object Identifier: 10.410BACSTPERVASIVEHEALTH2009.6004
hltp:lldx.doi.org/10.410BACSTPERVASIVEHEALTH2009.6004

Fig. 3. Sensor Node Architecture

III. HW/SWPLATFORMS

The functional architecture described in the previous
section is partly implemented on the SNs and partly on the
CN.

A. Motion Board

SPINE supports a motion sensor node (Fig. 4a). This
motion node is composed of a commercially available
TelosB mote on which has been connected a custom-made
motion sensorboard.

Fig. 4. a) Motion board, b) Physiological sensor board

The TelosB platform has a 8MHz microcontroller with
10K RAM and 48K ROM, 1Mb of external flash memory, a
802.15.4 radio module and a lO-pin expansion interface. The
motion sensorboard consists of a triaxial accelerometer (ST
LIS3LV02DQ), a biaxial gyroscope (IDG300), a power
on/off switch and a LED. The node is powered by a
rechargeable 600mA/h Li-Ion battery that allows
approximately 20 hours of continuous sampling and raw data
radio transmission. Lifetime can improve significantly by
enabling the on-node processing of data and reducing
wireless communication.

As the sensors introduce some measurement errors, a
preliminary calibration could be necessary in certain
applications, particularly using several sensor nodes.

B. Biosensor Board

For many BSN applications knowledge of the
physiological state of the person is essential. This includes
for instance diagnostics, rehabilitation, physiological and
psychological research, and sports. With appropriate sensors
BSNs can provide means for acquiring information that has
not been available before, due to their ability to operate for
extended periods of time during normal activities of the
person. There have been multiple BSN projects that measure
heart activity (ECG signal) and some that also incorporate
breathing measurement. Unfortunately the projects so far
have only measured the rate of breathing, neglecting a more
essential parameter of breathing, namely the volume. For
instance, in metabolic rate estimation, the respiration rate is a
very poor indicator compared to breathing minute volume.
To address this issue, we are developing a combined sensor
capable of measuring not only heart and respiration rates, but
also the volumetric parameters ofbreathing.

The developed sensor board prototype uses four
electrodes connected to the surface of the ribcage. The same
electrodes are used for both heart and breathing
measurement. Breathing is measured through electrical
impedance pneumography (EIP) . EIP involves feeding a
very small constant high frequency current through the
thorax and measuring the voltage created by the current.
Changes in the voltage are proportional to changes in the
conductivity of the thorax caused by breathing. The raw
physiological signals are interpreted to derive ECG for heart
rate and heart rate variability (HRV) and EIP signal for
respiration rate, inspiration-expiration times, tidal volume,
minute volume and their associated variabilities. With
multivariate analysis these parameters can be used for higher
level long-term derivations of, for example, energy
expenditure. In a small preliminary test series during a 20
minutes gradually increasing treadmill exercise the system
was capable of estimating respiration minute volume
(ventilation) with a mean relative error between 5 and 13 %
[9].

IShimmer I

SPINEProtocol

Radio ControllerSensor Drivers

Services

TinyOS

SW

HW

GenericSensor ISensor Board Controller I
Interface -------- - ----- -- ------ -

required for specific applications. The Framework makes it
easy to add User-defined Services.

The Communication Layer manages the communication
between the coordinator and the sensor nodes. It includes:

• a Radio Controller that manages the duty cycle of the
radio and switches the radio on when data is ready to
be transmitted;

• an end-to-end protocol (called SPINE protocol)
between the WSN coordinator and the sensor nodes.
The protocol is used by the coordinator to activate
functions on the sensor nodes and specify settings
such as time intervals and thresholds and by the
sensor nodes to send sensor data or the result of the
functions computed on the node to the coordinator;

• a TDMA Protocol that is optional and can be
enabled depending on the requirements of the target
application.

The SN component is currently implemented in nesC and
executed in the TinyOS [6] environment. SPINE has been
structured to be platform-independent and may run on
different TinyOS 2.x hardware platforms (MicaZ, Telos[7],
Shimmer [8]). Fig. 3 visualizes the components ofa SN.

The CN component consists of a Java-based interface
that an application running on the CN itself or on a remote
server can use to manage the sensor nodes or make service
requests. SPINE provides a lightweight Java API that is
easily portable to devices of various capabilities that can be
used as gateway, such as a PC or a mobile phone.

Digital Object Identifier: 10.41081/CSTPERVASIVEHEALTH2009.6004
htlp;//dx.doi.org/10.41081/CSTPERVASIVEHEALTH2009.6004

The biosensor board is shown in Fig 4b. Lower board is
the TelosB mote and the upper is the analog sensing board.
The battery is in between. The nearest white connector is for
the four electrode cables. The custom analog measurement
board is connected to a TelosB mote board which performs
analog-digital conversion, signal processing and
communication over the radio. To calculate all the
parameters described above, sampling rates of 250 Hz and 20
Hz are needed for ECG and EIP, respectively. The system is
powered by a small lithium-ion battery that lasts for
approximately 20 hours in continuous measurement and raw
data transmission. In general, the structure of the system is
very similar to the motion board described above.

The software of the biosensor system was originally
developed without using SPINE. The mote side was running
on TinyOS sending custom data packets to a PC Matlab
application that then parsed the data for displaying and
recording. Every time something needed to be changed in the
data packet format, extensive changes in code were required.
Also, one had to be careful with scheduling and memory
issues on the node side software while sampling, processing
and sending data. This custom suite has been replaced by a
SPINE 1.2 implementation. The primary effort in moving to
a SPINE based solution was the creation of SPINE drivers
for the ECG and EIP sensors. Additionally, SPINE server
provided an easy and flexible java API to configure and use
the sensorboard. Currently we have implemented only raw
data access, but the interface for physiological event
detection and transmission already exists. The next step is to
implement the algorithms that interpret the ECG and EIP
signals on-board, reducing network traffic significantly.

IV. USE OF THE SPINE FRAtvlEWORK

Efficient implementation of WSN applications requires
appropriate allocation of the limited resources on the nodes
in terms ofpower, memory and processing. This is especially
critical in signal processing systems, which usually have
large amounts of data to process and transmit. SPINE
provides a flexible framework to support developers in
evaluating the implementation tradeoffs along the memory,
computation and energy dimensions. In particular, it supports
both centralized and distributed implementations and offers
developers tools to evaluate and select the architecture that is
most suitable for the target application.

Centralized architectures maximize the amount of
functions executed on the coordinator, which is usually
implemented on a gateway or a mobile phone and therefore
has more resources than sensor nodes. In a fully centralized
approach, sensor nodes typically transmit the raw sensor data
to the coordinator, which extracts features and executes
classification algorithms. This implementation has the
disadvantage of using large amounts of power and channel
bandwidth for data transmission.

In distributed architectures sensor nodes share the burden
of performing some classification functions. For example,
sensor nodes may compute features locally and transmit
them to the coordinator. Sending only the result of a
computation instead of transmitting the raw sensor data
might significantly reduce the amount of transmitted data
and therefore allow a more efficient utilization of the

Digital Object Identifier: 10.41OBIICST.PERVASIVEHEALTH2009.6004
http://dx.doi.org/10.410B/ICST.PERVASIVEHEALTH2009.6004

wireless bandwidth and relevant savings of the energy of the
nodes. In some cases further resource optimization could be
achieved by implementing some classification functions on
the node.

Typically, distributed implementations require more
effort on the part of the developer. However, SPINE reduces
this effort significantly by providing readily available
features on the node. WSN applications must be designed as
dynamic systems that adapt to varying interactions with the
environment and can be easily extended with new features
during the lifetime ofthe system.

Data processing requirements may vary significantly
during system operation, for example when the person being
monitored performs different activities. In this case the
middleware should dynamically adapt and quickly configure
internal services and communication accordingly. The
Service Layer of SPINE supports dynamic adaptation of the
data collection and interpretation services by allowing the
coordinator node to send messages to the sensor nodes
specifying parameters such as the sampling rate and the
features that sensor nodes must compute.

WSN application developers can use the built-in features
of the framework such as radio controller, the feature library
and engine, or can easily add new features and services
taking advantage of the SPINE APls and management
functions. For example, support for new sensors can be
easily added by writing the sensor drivers so that they
comply with the generic sensor interface and without having
to modify the sensor controller, the buffer manager or the
feature engine. This also results in the sensor being made
immediately available for further processing by other parts of
the SPINE framework.

The implementation of the SN component of SPINE has
been designed to decouple sensing (SDC Service), data
processing (SDI Service) and communication functionality.
As a result, it is relatively easy to add new functionality and
new sensor drivers. New features can be easily introduced as
far as they conform to a defined feature interface. It is also
possible to introduce new services or processing functions.
Both the Feature Engine and the Alarm Engine conform to a
defined function interface, which specifies that a processing
component will be setup with one message from the base
station, after which sub-functions may be each activated with
an additional message. The format of setup messages and
messages sent back to the base station is not defined by the
interface, which gives the developer full freedom when
developing new processing components. Functions and sub
functions are each addressed by a unique 8-bit value in the
setup message, which allows for ample expansion of the
SPINE Framework by the open source community.

V. SYSTEM DESIGN PARAMETERS

Designing a WSN application requires allocation of tasks
among the nodes and setting of the tunable parameters of the
architecture in a way that maximizes the lifetime of the
system (Le. battery duration) and satisfies the data accuracy
requirements.

Parameters that are specific to the implementation of the
SPINE Framework on a selected HW/SW platform include:

• the processing time of the features and of the SPINE
functions on the selected HW platform

• the required memory to store the code and the data

• the overhead of the SPINE protocol in terms of
channel bandwidth

• the energy consumed to perform the tasks

Parameters that are directly tunable by the designer
include:

• Sensor data sampling rate

• Window size and shift of features

• Features to compute

• Buffer allocation per sensor channel

• Adoption of TDMA access control and slots
allocated for each node

Some tunable parameters can be set during system
operation, while others must be set at design time. While the
sampling rate, the window size and shift and the features to
compute can be selected at run time based on the behavior of
the system and its interaction with the environment, in the
current implementation of SPINE buffers and TDMA policy
must be set at design time and cannot be modified
dynamically.

Typical performance evaluation concerns design choices
and parameter settings such as

• if data is lost due to insufficient channel bandwidth
or due to buffer overflow (in the case a node is not
able to process incoming data fast enough);

• whether a contention-based or TDMA-based access
protocol is best suited to the target application;

• how long the battery will last running the allocated
tasks.

During performance analysis designers are concerned
both with parameters that correspond to requirements of the
system such as data accuracy, lifetime or latency, and with
parameters related to the implementation of the system for
the given test scenarios, such as buffer occupation, channel
bandwidth usage and packet losses. In case an
implementation of the system does not meet the
requirements, the second types of parameters are important
to identify bottlenecks and the required changes.

A. Processing Time

Processing time of the SPINE functions depends on the
selected HW platform. Table 1 shows the execution time of
the basic operations in SPINE computed on the Telosb
platform by the hardware counter connected to the crystal
oscillator of the platform.

Radio Shut-Down 0.244

Packet Transmission from 5.13 to 24.26 (mean 10.07)
active message with 28-byte payload)

ST LIS3L V02DQ 1.68
Accelerometer Sampling (all 3-axis)

MSP430 Voltage Diode Sampling 17.48

UTILITIES

FEATURE EXTRACTORS

RADIO CONTROLLER AND SPINE PACKETS

TABLE II.

TABLE IV.

TABLE III.

Operation Time (ms)

200 elements 100 elements 50 elements

Merge Sort (rec) 23.28 10.62 4.88

Bubble Sort (it) 145.05 36.13 8.88

Max 0.60 [31 0.18

Mean 0.92 b.55 P.36

Variance 13.67 ~.81 3.48

Operation Time (ms)

200 elements 100 elements 50 elements

Raw Data (over 3 0.062
hannels)

Max (over 3 channels) 1.67 b.88 0.49

Mean (over 3 channels) ~.68 1.65 1.1

Standard Deviation ~8.68 17.7 10.8
over 3 channels)

Vector Magnitude ~.58 ~.89 2.44
over 3 channels)

Pitch & Roll 19.53 18.37 17.90
over 3 channels)

Operation Time (ms)

Packetlvlanager.build - no fragmentation 0.52

Packetlvlanager.build - 2 fragments 1.22

SPINEDataPkt.build 30bytes ofdata) 0.092
200bytes) 0.3

SPINESpineHeader.build F:::0.031

SPINESpineHeader.parse ~ 0.092

These experimental data about the time needed by
different services on the node can be used during the design
phase to determine the processing capabilities of the nodes
and define achievable task allocations that avoid data losses.
In particular, since TinyOS is a single task operating system,
it does not handle overload gracefully and functionalities
must be activated carefully to avoid data loss.

For example, calculation of the standard deviation over 3
channels on a 200 element buffer will take 28.68 msec,

Time (ms)

2.685

BASIC OPERATIONSTABLE I.

Operation

Radio Start-Up

Digital Object Identifier: 10.410B/ICST.PERVASIVEHEALTH2009.6004

http://dx.doi.org/10.410B/ICST.PERVASIVEHEALTH2009.6004

q Sample_Rate>0.5736ms

-',........_..__7_ ," ...+,,_....,.I
ft

_tal)

The stack occupation of the heaviest function call chain
must be taken into account when customizing SPINE 1.2 to
fit into a specific mote platform. For example, MicaZ motes
have only 4K of RAM and particular attention must be taken

SPINE CORE MEMORY

STACK SIZE FOR THE MAIN SPINE COMMANDS

TABLEV.

TABLEVI.

CommandlEvent Stack (bytes)

Packetlvlanager.build 15 + SPINE_PKT_MAX_SIZE (28)

SensorBoardController. 69
acquisitionDone

Functionlvlanager.send 46

BufferPoo1.getData 10

....eatureEngine.calculateFeature 25 + Sheaviestjeat_calculate

FeatureEngine.
•..+.,..--"_.....s...._JsensorWasSampled

Variance.calculate 17

TotalEnergy.calculate 37

Median.calculate 7 + 510 + SSort_mergeSort

Mode.calculate 9 + SSort_mergeSort + 2 sizeof (dataArray)

Pitchkoll.calculate 40 + max(Satan2f, Ssqrt)

VectorMagnitude.calculate 60

Description ROM RAM (bytes)
(bytes)

SPINE 1.2 Core only (TinyOS2.0.2) 14904 1500+
2*BUFFER SIZE*
(BUFFERPOOL_SIZE+1

SPINE 1.2 Core only (TinyOS2.1) 19812 2062+
2*BUFFER SIZE*
(BUFFERPOOL_SIZE+1

SPINE 1.2with Feature/Alarms ~4316 3860
on a motion sensorboard
TinyOS2.0.2)

SPINE 1.2with Feature/Alarms ~2768 4736
on a motion sensorboard
TinyOS2.1)

Considering the aforementioned features connected to
SPINE, the heaviest function call chain occurs starting from
the event handler "sensorWasSampled" of the FeatureEngine
component. Here, every shift time, a complete copy of the
buffer pool is created; then, taking the data from that copy,
all the features requested are computed in a for cycle loop
over the list of the user activated features. Finally, the whole
computation result buffer is transmitted from the SN to the
CN using the generic FunctionManager.send command. The
stack occupation for such procedure is:

Slrift· Smftpk_ Rate> TDU
For example, if 200 elements standard deviation must be

calculated over 3 channels with a 50% window overlap:

Shift = 50

implying that if the sensor has a sampling interval lower than
28.68 msec, samples will be lost.

Moreover, depending on the on node feature calculation
implementation, there can be a buffer overflow situation
when the data in the buffer is ready to be processed before
the last computation ends: this implies a lower bound for the
sampling rate. In other words, the sensor's sampling rate
(SampleRate), the number of new elements to wait before a
new feature computation (Shift) and the time the feature
calculation takes (Time) should be in the following relation:

Time = 28.68ms

Even if this bound is not very strict (sensors we use
cannot be sampled so frequently), SPINE users should take
care of these results to better design the network and ask
nodes to compute functionalities according to their
capabilities.

B. Memory Requirements

The data memory has two main components:

global space (for the global state of the application
components)

stack (for variables locally declared into functions)

Evaluating the memory used by the SPINE Framework
requires consideration that significant memory occupancy
can reside outside the core, in particular within its extensions
(sensor drivers, functions), and is in part influenced by
system configuration parameters.

Table 5 shows the memory occupation of the SPINE core
functions on a sensor node and a version of SPINE including
also Features (Raw Data, Max, Min, Range, Mean,
Amplitude, Median, Mode, RMS, Variance, Standard
Deviation, Total Multi-Channel Energy, Vector Magnitude,
Pitch & Roll) and Alarms (events on Features thresholds),
compiled for a Telosb mote platform. Memory analysis
should consider the stack growth during the most critical
function call chain in the system. Table VI shows the stack
occupation of some SPINE commands and events where

~-~_-'-').JrIFFa_....._....I'D_I.BI«lIIl

with:

....._.......'*-".:«:......._"'---...,

BUFFER POOL SIZE is the total number of circular- -
buffers to be stored into the buffer pool. BUFFER_LENGTH
is equal to the buffer size for each buffer of the pool (the
buffers are circular, so the buffer size, with the sampling
time over a sensor, influences the maximum data time
interval storable in that buffer). For example, the default
value of 80 samples allows 2 seconds of data stored if the
data is sampled every 25ms.

Digital Object Identifier: 10.410B/ICST.PERVASIVEHEALTH2009.6004

http://dx.doi.org/10.410B/ICST.PERVASIVEHEALTH2009.6004

Fig. 5. Radio Controller Duty Cycling

--"_.-
BedIpOfE

while configuring parameters such the
BUFFER]OOL_SIZE (BP) and the BUFFER LENGTH or
while connecting heavy functionalities. -

C. Channel Bandwidth

In centralized implementations where raw data is sent
from SNs to the CN, the data rate is equal to the sampling
rate. In distributed implementations where features are
computed on SNs, every node sends a data packet every shift
time at the rate:

~ .._~_RaIIr
- WilIIItJw*~

Therefore, in terms of use of the wireless channel
bandwidth, transmitting the result of feature computation
allows reduction of channel traffic (Window*Shift%) times
with respect to transmitting raw data. Table VII reports some
examples that show significant savings in terms ofpkt/s.

Sampling RawData Window Shift'll. Feature %
rate Rate Rate savinzs

40Hz 40pkt/sec 80samoles 50% Ipkt/s 97.5%
40Hz 40pkt/sec 80samoles 25% 2okt/s 95%
10Hz lOoktlsec 20samoles 50% lokt/s 90%
10Hz 100ktlsec 20samnles 25% 2okt/s 80%

TABLE VII. CHANNEL BANDWIDTH USAGE

D. Power Consumption

The radio is one of the most power hungry components
of a WSN node and consumes significantly not only when
transmits or receives data but also when it listens to the
channel waiting for incoming packets. Hence, duty cycling
techniques that keep the radio off as long as possible and
switch it on when needed are important.

The SPINE Radio Controller component on the node side
takes care of switching on the radio when data need to be
sent and then manages a listening period to still guarantee a
full bidirectional communication with the CN. The
application communicates each node whether it should work
with the radio always on or not. In case a node is off the CN
stores the messages to it until it wakes up. Moreover, an
acknowledgment mechanism has been implemented so that
the coordinator can ensure the reception of sensor node
configuration commands.

This duty cycle technique implemented in SPINE (Fig. 5)
allows the node to have the radio off for the most of the time
and as a consequence when this mechanism is applied the
battery life is greatly increased, as will be shown in the next
Section.D-pclcl b_ . 1tt

RarONtoMnd

BesloOff I

Digital Object Identifier: 10.41081/CSTPERVASIVEHEALTH2009.6004
htlp:lldx.doi.org/10.41081/CSTPERVASIVEHEALTH2009.6004

VI. PERFORMANCE ANALYSIS OF A POSTURE

RECOGNITION SYSTEM

The SPINE Framework has been used to design an
activity recognition system prototype for elderly health
monitoring [4]. The prototype is able to recognize postures
(e.g. lying, sitting or standing still) and some movements
(e.g. walking) ofa person and issues an alarm when detects a
critical situation, e.g. when the monitored person has fallen.

The sensor node component of the SPINE framework has
been implemented on a platform based on Tmote Sky motes
with TinyOS execution environment and a custom sensor
board (SPINE sensorboard) including a 3-axis accelerometer
and two 2-axis gyroscopes. The coordinator component of
SPINE has been implemented on a laptop with a Tmote Sky
connected via USB port.

The activity recognition system prototype relies on a
classifier that takes accelerometer and gyroscope data
measured by sensors placed on the waist and on a leg of a
person and recognizes the movements defined in a training
phase. Among the classification algorithms available in the
literature, we have selected the K-Nearest Neighbor [10]
(KNN) classifier.

The prototype provides a default training set and a
graphical interface to let the user build his training set in real
time. The significant features to be activated on the node to
classify the movements are then selected using the sequential
forward floating selection [1I] (SFFS) approach or its
lightweight version sequential forward selection (SFS).
Experimental results show that, given a certain training set,
the classification accuracy is not much affected by the K
value or the type of distance metric used by the classifier.
This is because, in this specific example, classes (lying,
sitting, standing, and walking) are rather separate and not
affected by noise. Therefore, we have selected K=l and the
Manhattan distance as parameters ofthe classifier.

The experiments have been made using two sensor
nodes: one placed on the waist and one on the thigh of the
right leg. Then, we have run a SFFS offline implementation
to pick the smallest set of features to be activated on the
nodes to achieve a sufficiently accurate classification. Online
implementation of the selection algorithm might be run as
well. In the feature selection algorithm the accuracy has been
calculated taking into account half of the training set data to
pick the features and half to test the classifier. The identified
features are:

sensor on the waist: mean on the accelerometer axes
xyz, min value and max value on the accelerometer axis
x;

sensor on the leg: min value on the accelerometer axis x.

The application has been tested in a lab environment by 4
healthy subjects and soon will be tested in a hospital
environment by a larger sample ofusers.

The performance of the solution has been evaluated in
terms of classification accuracy and wireless channel usage.
Then the classification algorithm has been tested in a real
time deployment of the application. The classification

accuracy results are listed in the table below, where data
windows have 50% overlap.

TABLE VIII. CLASSIFICA nON ACCURACY

Sampling Frequency Data Window (samples) Accuracy
(Hz) (%)
40 80 96

10 20 98

2 4 88

Although the training set used was obtained by a setting
of sampling rate at 40Hz and a data window of 80 samples,
with 50% overlapping, the highest accuracy is achieved with
different settings. The experiments in table VIII result from
subjects whose data was included in the training set. When
the same experiment has been made on another subject
whose data was not included in the training set, accuracy
results slightly changed. For example, in the case of
sampling frequency 10Hz and data windows equal to 20
samples, accuracy decreased from 98% to 96%.

The radio optimization ofthe SPINE framework, together
with its on-node signal processing capabilities resulted in a
almost 6 times longer battery lifetime period. Battery life is
less the 24 hours of continuous monitoring when only raw
data readings are transmitted, while it is equal to 5 days if
only the most significant features at 1Hz are transmitted.
Using an higher capacity battery (during the tests we used a
standard camera 3.7V, 600mAh Li-Ion battery) would
naturally allow for even longer operation.

These results have been confirmed by an experimental
setup as well as by the theoretical calculation of the total
battery duration given the battery capacity and the power
needed by the sensor every cycle. The fall detection is
implemented on the waist sensor node and can be
activated/deactivated at run-time. When the fall detector is
active, the Alarm Engine monitors new accelerometer data
and checks if the total energy, calculated on three
accelerometer axes, is greater than a threshold (specified at
runtime by the user application). Values above the threshold
result in an alarm message to the CN. Upon reception of a
fall detection message, the CN waits for seven frames from
the sensors to evaluate the next seven positions ofthe person;
if it evaluates 4 out of 7 lying positions than an emergency
signal is issued.

The client-side application running on the BSN coordinator
node, called Physical Activity Monitoring v1.1, allows one to
start and control the entire BSN prototype using SPINE Java
APIs. In particular, it has four panels: Live Monitoring,
Statistics, Advanced and Developers panels. The Live
Monitor panel provides a real-time visualization of activity
and a log of main SPINE events as they occur. The Statistics
panel shows the fraction of time the subject has spent
performing each activity. The Advanced panel shows, for
each sensor node currently available, its sensor types,
available feature extractors, the selected feature extractor,
and battery voltage level. The Developers panel is intended
for debugging purposes as well as for node functionality

Digital Object Identifier: 10.410BIICST.PERVASIVEHEALTH2009.6004
http://dx.doi.org/10.410B/ICST.PERVASIVEHEALTH2009. 6004

tests. It also presents a graph of raw data or feature values as
requested, and a log ofalarm events.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented the architecture of SPINE and
the implementation parameters that are relevant to design
exploration. The latest release of SPINE greatly improves
the performance and the flexibility of the framework. In
particular, the duty cycling mechanism at the radio
controller allows extension of battery lifetime by a factor of
six. The definition of a generic sensor interface allows easy
introduction of new sensors without affecting the rest of the
architecture. We have also described two types of sensor
boards currently supported by SPINE, as well as
mechanisms to allow designers to specify new services and
features have been introduced.

Weare currently working on a new release of SPINE
with a core in plain C code that can be compiled for several
platforms. The aim is to make SPINE able to support
multiple SW environments and several existing certified
ZigBee platforms.
This work has been partially supported by CONET, the
Cooperating Objects Network of Excellence, funded by the
European Commission under FP7 with contract number
FP7-2007-2-224053. Authors also acknowledge Tekes
(Finnish funding agency for technology and innovation).

REFERENCES

[1] C. Lombriser, D. Roggen, M. Stager and G. Troster, "Titan: A Tiny
Task Network for Dynamically Reconfigurable Heterogeneous Sensor
Networks" In: 15. Fachtagung Kommunikation in Verteilten
Systemen (KiVS), pp. 127-138, February 2007.

[2] V. Shnayder, B. Chen, K. Lorincz, T.R.F. Fulford-Jones, and M.
Welsh, "Sensor Networks for Medical Care", Technical Report TR
08-05, Division of Engineering and Applied Sciences, Harvard
University, 2005.

[3] Pixie: An Operating System for Resource-Aware Programming of
Sensor Networks, http://fiji.eecs.harvard.edu/Pixie

[4] R. Gravina, A. Guerrieri, G. Fortino, F. Bellifemmine, R.
Giannantonio, M. Sgroi, "Development of BSN Applications using
SPINE", In 2008 IEEE Int. Conf. on Systems, Man, and Cybernetics
(SMC 2008) Singapore, 12-15 October 2008.

[5] SPINE website, http://spine.tilab.com

[6] TinyOS website, http://www.tinyos.net

[7] MoteIV website: http://www.moteiv.com

[8] Shimmer, http://www.shimmer-research.com/

[9] V.-P. Seppa, O. Lahtinen, 1. Vaisanen, and 1. Hyttinen, "Assessment
of breathing parameters during running with a wearable bioimpedance
device," in Proceedings of the 4th European Congress for Medical
and Biomedical Engineering, 2008

[10] T. Cover and P. Hart, "Nearest neighbour pattern classification", In
IEEE Trans. Inform. Theory Vol. 13, pp. 21-27, January 1967.

[11] P. Pudil, 1. Novovicova, and 1. Kittler, "Floating search methods in
feature selection," Pattern Recognition Letters, 15(11), 1119-1125.
Nov. 1994

