
Improving Activity Classification for Health

Applications on Mobile Devices using Active and

Semi-Supervised Learning

Brent Longstaff, Sasank Reddy, Deborah Estrin
Center for Embedded Networked Sensing

University of California Los Angeles

blongstaff, sasank@ucla.edu, destrin@cs.ucla.edu

Abstract-Mobile phones' increasing ubiquity has created
many opportunities for personal context sensing. Personal activity
is an important part of a user's context, and automatically rec·
ognizing it is vital for health and fitness monitoring applications.
Recording a stream of activity data enables monitoring patients
with chronic conditions affecting ambulation and motion, as well
as those undergoing rehabilitation treatments. Modern mobile
phones are powerful enough to perform activity classification in
real time, but they typically use a static classifier that is trained
in advance or require the user to manually add training data
after the application is on his/her device. This paper investigates
ways of automatically augmenting activity classifiers after they
are deployed in an application. It compares active learning and
three different semi· supervised learning methods, self-learning,
En-Co-Training, and democratic co-learning, to determine which
show promise for this purpose. The results show that active
learning, En-Co-Training, and democratic co-learning perform
well when the initial classifier's accuracy is low (75-80%). When
the initial accuracy is already high (90%), these methods are no
longer effective, but they do not hurt the accuracy either. Overall,
active learning gave the highest improvement, but democratic co
learning was almost as good and does not require user interaction.
Thus, democratic co-learning would be the best choice for most
applications, since it would significantly increase the accuracy
for initial classifiers that performed poorly.

I. INTRODUCTION

As mobile phones become increasingly pervasive and so

phisticated, they are being used for a greater variety of

applications. With their GPS speed and accelerometer motion

sensors, they can be used to monitor activity levels for health

applications. For example, Ambulation [11] is an application

that uses activity classification to monitor mobility patterns

over time to help doctors accurately determine the progress

of ambulatory patients. This type of system automatically

determines the user's mobility mode (still, walking, running,

etc). The user's activity data stream can be primary data,

contextlmetadata, and user interface input.

As primary data, activity levels can indicate disease pro

gression and clinical care plan efficacy in the context of heart

disease, neuromuscular disease, and mental illness. Activity

level tracking also provides quantitative feedback for health

behavior changes, as pedometers are currently used [4]. Ac

tivity is also a good metric by which to compare the efficacy

of rehabilitation treatments for stroke, hip replacement, and

other mobility-impacting treatments.

Digital Object Identifier: 10.410Bl/CST.PERVASIVEHEALTH2010.8851

http://dx.doi.org/10.410Bl/CST.PERVASIVEHEAL TH2010. 8851

Activity data are also useful as contextual data or meta

data. They provide context for other health measures such as

physiological self-tests (blood pressure, blood glucose, weight)

as well as reporting of symptoms and side effects. Finally,

activity traces can improve the user interface mechanisms

across a range of applications by increasing the relevance and

adherence of its users. For example, they could be reminded

or triggered for action or input at a convenient moment, or a

moment of interest to the study. Because of the importance of

this activity data stream, we investigate how to improve the

performance of activity classification using smartphones.

Smartphones classify activities using models created by

machine learning algorithms. The machine learning process

uses training data to create a model for the different activ

ities. These data serve as examples to the machine learning

algorithm, so it can associate certain attributes of the data

with each activity. Each training data point includes the label

of its associated activity as well as the attributes that are

chosen as indicators of the activity. In this case, activity

classification uses speed and acceleration data, which are

indicative of the user's motion, which is linked to hislher

activity. After a machine learning algorithm uses the training

data to create a model, it can be used to classify unlabeled

data to determine what activity was being performed when

the data were sampled.

In the past, activity classifiers for mobile devices have

been statically created ahead of time and then used as-is for

classification. Labeled data are collected and used to build

the model, which is then used in applications. To work well

for various users, classifiers must be robust to variations in

how each user does the activities. This is typically achieved

by training on data from multiple users, so that the classifier

is not overtrained towards any one user's particular data.

Applications like Apple's Nike+iPod [1], supplement this by

allowing the user to calibrate the classifier, but this requires

the user to indicate which activity they are calibrating and then

doing it, which is the same process as the original training of

a classifier.

This paper investigates ways of improving the classification

model even after the user has begun using the activity classi

fier. The reason for this is twofold: first, it is time-consuming

and difficult to collect all the training data necessary to create

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.PERVASIVEHEALTH 2010, March 22-25, Munchen, GermanyCopyright © 2010 ICST 978-963-9799-89-9DOI 10.4108/ICST.PERVASIVEHEALTH2010.8851

a robust classifier that is accurate out-of-the-box, and second,

even if a classifier is trained on multiple users, it can still

improve by adapting itself to the particular user. This work

investigates methods of further training classifiers after a user

begins to use them, using active and semi-supervised learning.

We compare versions of self-learning [14], democratic co

learning [15], En-Co-Training [5], and active learning [6] to

determine which has the most potential for improving the

accuracy of mobile activity classifiers.

II. RELATED WORK

Activity classification has been an interesting field of re

search in machine learning. Most of the work has focused

on creating a static classifier, which would then be used for

activity classification as-is. For example, Bao and Intille [2]

developed algorithms to classify physical activities using data

from accelerometers worn on different parts of the body. They

collected user-annotated data by asking participants to perform

a series of everyday tasks. They then trained classifiers on

these user-annotated data, using mean, energy, frequency

domain entropy, and correlation of acceleration data. The

features were calculated on an overlapping sample window of

several seconds (each sample appears in two windows). Deci

sion table, IBL, C4.5, and naIve Bayes classifiers were tested,

and the C4.5 decision tree classifiers were found to be the

most accurate. The classifier was tested both by including and

excluding data from the test user in the training data. While

some activities were recognized well with subject-independent

training data, others required user-specific training data to be

accurate, and suggested the need for further study of the power

of user-specific training sets.

Lester et al. [7] developed a personal health activity recog

nition system using multimodal sensor devices at 3 locations

on the users' bodies: the waist, shoulder, and wrist. The

devices used a microphone, visible and IR light sensors,

an accelerometer, a compass, a barometer, and sensors for

detecting temperature and humidity. The data from these were

used to compute 651 features, of which the top 50 were se

lected for classification. Static classifiers were used to provide

inputs for hidden Markov models, which recognize activities

in continuous time chunks. They compared the accuracy of the

activity classifier when it was trained on a varying number (one

to twelve) of users and found that their classifier works well

out of the box if trained on a larger set of people. It performed

well even when the users whose data were used for testing

was not in the training set. However, when training with data

from users in the test set, accuracy was higher, showing that

personalized training data can improve accuracy.

Several different methods of improving an existing classifier

have been investigated [17]. One type, self learning, has been

shown to work for text analysis. Yarowsky [14] developed

an algorithm for classifying ambiguous word meanings, such

as "plant," which can be a life form or a manufacturing

facility. The classifier uses a small amount of labeled "seed"

data to train a classifier, which then is used to classify the

unlabeled data. Confidently classified samples are then added

Digital Object Identifier: 10.410BIICST.PERVAS/VEHEALTH2010.8851

http://dx.doi.org/10.410BIICST.PERVAS/VEHEAL TH2010. 8851

to the seed set and the classifier is augmented. This process

is repeated iteratively until the algorithm converges on a

stable set of training samples. If a previously added example

drops below the expected confidence with a later version of

the classifier, it is removed from the training set to remove

initial misclassifications. This method was able to achieve 97%

accuracy, an improvement to the 92% given by the existing

Schutze Algorithm.

Self-learning is also applied to image processing by Li et

al. [8], who introduced OPTIMaL, an algorithm which uses

Bayesian incremental learning to simultaneously build datasets

and learn the model describing them. It runs the classifier

on new images and accepts some that are selected by the

classifier. It then augments the dataset with the accepted new

data, and trains a new classifier on only these new data. It then

repeats the process. During each iteration, OPTIMaL only

accepts some of the images that the classifier selects in order

to avoid overly favoring images with a large resemblance to the

current ones, which would result in overspecialization. Also,

the classifier is only trained on the new data chosen in the

current iteration so that OPTIMaL can work with very large

datasets without having memory issues. In tests, OPTIMaL

achieved near-human accuracy in accurate dataset collection.

Another type of algorithm, co-learning, was first developed

by Blum et Mitchell [3]. Unlike self-learning, co-learning is

a multi-view semi-supervised algorithm. Co-learning uses two

classifiers, each trained on a different view, with the strong

assumption than each view is independently sufficient for

classification. The views must also not be perfectly correlated.

For example, web pages might be classified both by words on

the page and by the text of hyperlinks to that page on other

webpages. First, co-learning trains the two classifiers with the

labeled data. Both were naIve Bayes classifiers. These data

include all the features for both views. The classifiers then

iteratively label unlabeled data, and each classifier adds its

most confident predictions to the training set. Both classifiers

are retrained with the augmented data. The co-training method

was tested with the aforementioned web page example, and

had fewer than half the errors of a simple supervised training

method.

Guan et al. introduced En-Co-Training [5], which modifies

Blum's algorithm to work without requiring multiple views.

It uses three classifiers that are trained on the same view of

the data, and relies on different machine learning methods to

create the diversity required for co-learning to perform well. It

adds unlabeled data to the training set when all three classifiers

agree on the prediction. By using three classifiers instead of the

two used by Blum, they can use majority voting for predictions

and also ensure a higher degree of confidence in the samples

that are added to the training set. They implemented this with

activity classification using 40 accelerometers strapped to the

users' legs and found that it resulted in a lower error rate than

using each classifier separately. Just using the voting method to

decide using three classifiers helped, but the semi-supervised

learning also contributed to decreasing the error rate as well.

Zhou and Goldman[15] have a method called democratic

co-learning, a single-view semi-supervised technique that uses

multiple classifiers with different inductive bias. These classi

fiers are trained on the same data to vote for predictions for

unlabeled data. Their predictions are used to label unlabeled

data which are then added to the training sets of the classifiers

that voted differently than the majority. This approach is

different from co-learning because it is single view instead

of multi-view. It relies on the difference in inductive bias

instead of different feature sets. This relaxes the restrictive

constraint imposed by [3], so it can be used when there

are not multiple sufficient and redundant feature sets. They

also presented another use for democratic classifiers in active

learning. This method uses multiple classifiers to make a

prediction on an unlabeled sample and takes their confidence

weighted vote entropy to determine the priority for active

sampling. The greater the disagreement among the classifiers

is, the less confident the combined prediction is, so the priority

of prompting the user for a label is higher.

Zhou and Li [16] describe tri-training, which overcomes

[3]'s requirement for multiple sufficient and redundant fea

tures sets as well. Tri-training first generates three different

classifiers with the same labeled training data, and then uses

them to classify unlabeled data. When two of them agree on

a prediction, they label the example with their prediction and

augment the third classifier with the newly labeled example.

They tested the tri-training algorithm using 14.8 decision trees,

BP neural networks, and naIve Bayes classifiers as the three

classifiers. When tested on UCI data sets, it had a lower

average classification error rate than self-training and co

training, although the co-training was not done under ideal

circumstances, since there were not two redundant, sufficient

views. Instead, the features were randomly partitioned.

Unlike self-learning and co-learning, active learning re

quires user input. Thus, the challenge changes from choosing

the most accurately classified samples to deciding which

samples to ask the user to label. Kapoor and Horvitz [6]

compare several methods of determining when to prompt the

user for data labels, the goal being to prompt the user to

label a data sample when the value of the label justifies the

cost of interrupting the user. The methods used were random

probe, uncertainty probe (uncertain classification), decision

theoretic probe, which weighs the costs as well as the benefits

of the probe, and decision-theoretic dynamic probe, which

has different models for different contexts. The random probe

issues probes at random times. The uncertainty one uses a

predictive model on the data collected up to that point and

issues probes when the classifier's prediction in the current

situation has low confidence. The decision-theoretic probe

takes into account the user's state (busy or not) as well

as the benefit of the probe. When the benefit outweighs

the predicted cost, a probe is sent. Finally, the decision

theoretic dynamic probe extends the decision-theoretic one

by adding flexibility across different contexts that the model

may not necessarily recognize. To test the different methods,

a program named BusyBody was installed on subjects' PCs.

It would issue probes asking the subjects if they were busy

Digital Object Identifier: 10.410BIICST.PERVASIVEHEALTH2010.8851

http://dx.doi.org/10.410BIICST.PERVASIVEHEAL TH2010. 8851

or not to build a model to predict when the user is highly

uninterruptable. Versions of BusyBody with the four different

probing policies were given to different users. The annoyance

the interruptions caused and the accuracy of the generated

model were measured. The best methods built a better model

and were less annoying to users. The decision-theoretic ones

performed better because they considered the cost of issuing

a probe, rather than just when it was beneficial to get a label.

Uncertainty probing was slightly better than random probing

because it prompted for the most valuable labels even though

it did not take into account the cost.

Stikic et al. [12] examined semi-supervised (both self

training and co-training) and active learning for improving

activity recognition. For self-training, a classifier was built

with labeled data, and then iteratively augmented with the

samples having the fifty most confidently predictions from

each iteration. The co-training algorithm was multi-view, like

in [3], using two types of sensors, each of which is sufficient

for classification. They used accelerometers and infra-red mo

tion sensors. Co-training performed better than self-learning,

but the latter usually increased performance as well over the

starting classifier. The active learning algorithm had two ways

of triggering a user prompt, both based on classification uncer

tainty. The first was to prompt for the classifications which had

the lowest confidence, and the second was two prompt when

the two classifiers (from co-learning) disagreed. Performance

was better with the former method, but both provided accuracy

improvements. Unlike the approach analysed in this paper,

these active and semi-supervised learning algorithms were

only evaluated as a way to facilitate the creation of the initial

classifier by requiring less training, rather than as a way to

improve a classifier in use.

Lu et al. also worked on a machine learning system for

mobile devices. They created SoundSense [9], an application

which uses sound recorded by the microphone on iPhones

to determine the context and sound type. It starts with some

general classes of sound contexts, such as music or talking. It

uses an unsupervised learning algorithm to discern new classes

of context and prompts the user to identify them. For example,

if the user is driving and the phone detects from the noises

associated with driving are a different from or a subclass of

the existing classes of sound, it will prompt the user, who will

input driving as the name. From then on, the phone will be

able to classify driving by the sound. SoundSense, like this

work, uses the phone for machine learning, but for a different

purpose. They used unsupervised learning to distinguish new

classes for classification, while here it is used to improve the

classification accuracy within predetermined classes.

In this paper, we compare the performance of semi

supervised and active learning methods for personalization of

activity classifiers. Activity classification can work well out of

the box, but training it for each user can improve accuracy,

so an automatic or convenient way of making the classifier

more personalized would be useful. We implement a self

learning technique similar to Stikic et al.'s method, where the

most confident predictions are used to label unlabeled data and

Add sample
.-----------------l to training

set

Build
classifier on

training data

Classify
motion

Output
prediction

Fig. I. Classifier improvement

Yes

Selected

augment the existing classifier. We implement two co-learning

algorithms. The first is Guan's En-Co-Training. The other one

is a version of Zhou and Goldman's democratic co-learning

that is slightly modified to work on a mobile phone. Since we

do not have two sufficient and redundant views, we could not

use Blum's original co-learning method. Finally, we simulate

the active learning method of prompting the user when the

confidence of classification was low, similar to Stikic's method

and Kapoor's uncertainty probe. Kapoor's decision-theoretic

probing methods would not work in this case however, since

the activity classifier needs to learn uncertain data from all

of the mobility classes, and there is no additional busyness

classifier. Thus, the decision to request a label is based solely

on the confidence of the prediction.

III. METHODS

A typical way of implementing activity classification in

mobile systems is to first train a classification and then

implement that classifier as static logic in the program. It does

not change unless the software is updated. However, this does

not allow the classification to adapt to the user or improve

over time. Work in semi-supervised learning suggests that if

learning continues after deployment of the software, it can

improve the accuracy of the classification over time. These

improvement algorithms collect new samples to add to the

training data and the classifier is periodically retrained on the

augmented training dataset. Figure 1 shows the basic logic of

this process. In this paper the performance of several semi

supervised learning methods, as well as the potential of active

learning, are compared in the context of activity classification.

A. Self-learning

The first of the semi-supervised learning methods investi

gated is self-learning. Self-learning employs a single classifier,

which is used to classify unlabeled data. When the classifier's

confidence in its prediction for a sample is high, it labels that

sample with its prediction and adds it to the training set. If

only the most confident predictions are used as labels, it should

increase the accuracy of the classifier. In general, adding more

data tends to increase the accuracy of a classifier. However,

Digital Object Identifier: 10.410BIICST.PERVASIVEHEALTH2010.8851

http://dx.doi.org/10.410BIICST.PERVASIVEHEAL TH2010. 8851

adding a data point with the wrong label can decrease it. To

make the ratio of new training data with the correct label

to those labeled incorrectly high enough to raise the overall

accuracy, only the samples with the highest confidence are

used.

B. Co-learning

Another type of semi-supervised learning method is co

learning, which uses multiple classifiers which can learn from

each other. There are two different approaches considered

here: En-Co-Training [5] and a method based on democratic

co-learning [15]. Both of these are single-view adaptations

of Blum's [3] co-learning algorithm; all the classifiers are

initially trained on the same data, but differ in the machine

learning method (for example, one may be a decision tree,

while another could be a naive Bayes classifier).

1) En-Co-Training: En-Co-Training is like self-learning but

with two important differences. First, it uses the consensus of

three different classifiers, rather than the confidence of one,

to determine that it is confident enough with a prediction. It

labels data for the training set when there is consensus and

all three classifiers are retrained on the common training set.

The second difference is that it takes advantage of having

three classifiers and takes the majority vote to determine the

prediction for each sample.

2) Democratic co-learning: Democratic co-learning also

uses multiple classifiers, but has a different way of select

ing and using new samples as training data than En-Co

Training does. Each classifier has its own separate data set,

although all are initialized with the same starting data. Then

the classifiers are run on new, unlabeled data. The majority

classification of each sample is used to label it, and then the

labeled sample is added to the training set of the classifiers

whose predictions disagreed with the majority. Zhou and

Goldman's version of democratic co-learning ran tests on these

values to predict whether the potential noise of mislabeled

data would be offset by the larger training set. The version

implemented in this comparison instead uses the confidence

of the predictions to indicate the priority, so the new training

data will have the largest difference between the sum of the

confidences of the majority predictions and the sum of the

confidences of the dissenting predictions. This modification

would allow a mobile phone to identify the samples to use for

retraining without having the entire original training set stored

on the phone. That way the phone could identify the samples

for retraining, but offload the classification process to a server,

which would receive the new samples from the phone, update

the model, and send the updated classifier to the phone.

C. Active learning

Active learning, as opposed to semi-supervised learn

ing methods like co-learning and self-learning, does not use

predictions as labels. Rather, it chooses samples of interest

and asks the user to label them manually. The data labeled by

the user are then added into the training data to recreate the

classifier. Samples are chosen based on the confidence of pre

diction, but instead of using those with a high confidence like

self-learning, those with the lowest confidence are selected.

Since the prediction is not going to be used as the label, there

is no reason to want an highly confident prediction. Rather,

active learning seeks to find the most informative samples so

as to get the most benefit out of inconveniencing the user.

Predictions that have a low confidence indicate that the model

could benefit from that kind of example.

IV. ApPROACH

This work used a simple activity classification scenario to

compare the different semi-supervised learning methods. The

possible activities were staying in one place, walking, and

running. These activities were accessible to all participants,

since they required no specific equipment (bicycle, car, etc.).

The features used for classification were GPS speed and

statistics on the magnitude of acceleration calculated once per

second. These statistics were the mean, variance, and the FFT

coefficients between 1 and 10 Hz, similar to those used by

Reddy et al. [10] in their activity classifier. Reddy achieved a

high level of accuracy using GPS and accelerometer features,

so they were a good choice for the classifiers in this research.

The subjects who collected the data for the classifier used

an HTC Android Dev Phone 1, which had an application

that allowed them to keep track of the amount time they

had recorded for each activity. First, 17 participants collected

labeled training data for the base classifiers. This relatively

large group size provided a variety of training data so the initial

classifier can be more robust. Then, 15 other subjects collected

data to use as the unlabeled data in the tests, although the data

were collected with labels to determine the accuracy of the

results. They collected 30 minutes of each activity, for a total

of 90 minutes of data per participant. The walking and running

paces were left to individual preference, as was the position

(standing or sitting) of the still activity, since a real application

should be able to detect activities as each user is accustomed

to doing them. The phones were held in the hand or worn

on the hip (belt or pocket) or armband of the participants.

Participants were requested to consistently wear the phone in

the same place on their bodies for all the activities, but users

could individually choose where they preferred to keep it.

The machine learning algorithms used Weka's [13] imple

mentation of machine learning algorithms. The performance of

the semi-supervised learning methods were tested with several

different sizes of initial training datasets. To compare the

quality of the samples chosen by each method fairly, the same

number of samples was added to the training data for each

method. Each method ranks the samples it chooses according

to its selection criteria. For instance, self-learning ranks by

confidence (with high confidence coming first). Multiple itera

tions were tested, so that the training set could be updated after

each part of the new data is classified to allow the algorithm

to augment the classifier as it went along. For example,

algorithm 1 shows the algorithm for testing self-learning. The

co-learning algorithms classify with a vote since they use three

Digital Object Identifier: 10.410Bl/CST.PERVASIVEHEALTH2010.8851

http://dx.doi.org/10.410Bl/CST.PERVASIVEHEAL TH2010. 8851

classifiers. To discern the effect of this from the effect of the

actual co-learning process, the performance of the classifier is

measured both democratically and with only a decision tree.

The democratic one would be used in practice, but the decision

tree shows the effect of the augmented classifier without the

added advantage of voting.

For self-learning and active learning, the machine learn

ing method was a C4.5 decision tree. The co-learning al

gorithms use three types of classifier: a C4.5 decision tree,

naIve Bayes classifier, and a support vector machine using the

Sequential Minimal Optimization algorithm. All decision trees

had a minimum leaf size of 10.

Algorithm 1 Self-learning test

for i E iterations do
new Data *- unlabeled.subset(i)
for sample E new Data do

prediction *- classifier.classify(sample)
priority *- 1 - prediction.getConfidenceO
priorityQueue.add(sample, prediction, confidence)

end for
for j � newSamplesPer Iteration do

trainingData.add(priorityQueue.popO)
end for
classi fier. rebuild(training Data)

end for

V. RESULTS

The comparison of the active and semi-supervised learn

ing algorithms revealed several results. First, all but self

learning significantly increase the accuracy if the base clas

sifier is around 80%. However, they did not improve on clas

sifiers that already had an accuracy closer to 90%. Adding new

data over multiple iterations instead of all at once increases

their effect on the accuracy of the classifier. Table I shows

the performance of the different methods. The "Unlabeled"

column specifies what percentage of the total data used was

unlabeled. The table gives the mean and 95% confidence inter

val of the change in accuracy between the original classifier

and the one augmented with new data. These values reflect

the increase or decrease of the percentage of the correctly

classified instances, rather than the percentage increase of the

original number of correct instances. For example, a value

of 5% would mean that if the original classifier had 85%

accuracy, the new one would have 90% correct. The top

480 points (about 10%) of new data chosen by the learning

algorithms were added to the classifier. Evaluation was done

using 1O-fold cross-validation over the new data.

For six of the ten starting classifiers, the active learning and

two of the three semi-supervised learning methods signifi

cantly boosted the classification accuracy. For the remaining

four initial classifiers, most or all of the results do not

deviate significantly from zero. The methods that improve the

accuracy (active learning, En-Co-Training, and democratic co

learning) perform consistently for a given starting classifier;

TABLE I
PERCENTAGE CHANGE FROM BASE CLASSIFIER WITH 480 NEW DATAPOINTS OVER EIGHT ITERATIONS AND A CONFIDENCE INTERVAL OF 95%

Self-Learning Active Learning En-Co-Training Democratic Co-learning
Unlabeled DT only DT only DT only Democratic DT only Democratic

50% -l.27% ± 2.07% 2.15% ± 2.85% -0.91% ± 2.15% -0.34% ± 2.67% -2.06% ± 3.08% -0.63% ± 2.85%
55% -5.35% ± 5.66% 3.17% ± 4.87% -6.64% ± 6.46% 0.67% ± 0.66% -l.46% ± 3.14% 0.38% ± 0.87%
60% 3.31 % ± 4.41 % 17.13% ± 7.95% 5.53% ± 5.29% 13.05% ± 7.20% 14.38% ± 8.31 % 15.07% ± 8.00%
65% 0.05% ± 0.28% 12.38% ± 7.28% 0.88% ± l.66% 6.34% ± 3.43% 8.59% ± 8.08% 10.48% ± 6.34%
70% 0.17% ± 0.54% 9.35% ± 6.41% 0.04% ± 0.58% 5.04% ± 3.14% 7.99% ± 5.76% 8.41% ± 5.82%
75% 3.31 % ± 4.41 % 9.79% ± 6.44% l.65% ± 6.51 % 6.69% ± 4.61 % 9.03% ± 6.31% 9.12% ± 6.31 %
80% -0.02% ± 0.03% 1.48% ± 2.31% -0.01 % ± 0.03% 1.14% ± 0.80% 0.54% ± 1.40% l.03% ± l.11%
85% l.38% ± l.87% 8.77% ± 6.57% 0.23% ± 0.55% 5.45% ± 3.51 % 7.80% ± 6.40% 8.84% ± 6.12%
90% -0.63% ± 0.89% 3.13% ± 4.50% 0.10% ± l.54% l.41 % ± l.56% 0.51% ± 2.15% l.02% ± l.95%
95% -l.74% ± l.33% 8.90% ± 5.03% l.82% ± 2.79% 6.27% ± 4.08% 8.72% ± 6.48% 8.97% ± 6.56%

14

'"
c:

12 0
U
'6
Q)

10 C.
U
� 8
8
'0
Q) 6 +

'" +

.llI
c:
Q) 4 0
i!i
c.
.!: 2
Q) '" + c: '" 0

+
+

.t::

u

-2

75 77 79 81 83 85 87 89 91

Percentage accuracy of initial classifier

Fig. 2. Correlation between initial classifier accuracy and average increase
in accuracy from the four methods

either they all perform well or none of them do. This suggests

that the potential effectiveness of the semi-supervised and

active learning methods are highly dependent on the starting

classifier. If the starting classifier is conducive to improvement,

then they are more successful. As Figure 2 shows, the overall

performance is correlated to the accuracy of the original

classifier. When the initial accuracy is low (around 75-80%) to

begin with, active and semi-supervised learning increase accu

racy, whereas when it starts at around 90%, the improvement

methods have little effect. Since all the methods (except self

learning, which has little effect) exhibit this trend, it is not

specific to a particular algorithm. Rather, it shows that active

and semi-supervised learning algorithms increase accuracy

when the initial classifier has a lower accuracy, but if the

accuracy is already high, then the algorithms have little effect.

While this keeps these learning methods from producing a

classifier that approaches perfection, they are still able to

significantly increase performance when the existing classifier

is in need of improvement.

Another detail to note in Table I is that the En-eo

Training algorithm only performs well when using the vote of

the three classifiers instead of just the decision tree, indicating

Digital Object Identifier: 10.41081ICST.PERVASIVEHEALTH2010.8851

htlp:lldx.doi.orgI1O.41081ICST.PERVASIVEHEAL TH2010.8851

0.92
1

0.91 2

4
0.9 8

0.89
Original

0.88

0.87

0.86

0.85

0.84

0.83

0.82

Sl AI.. ECl DCl

Fig. 3. Classification accuracy by method and number of iterations

that the democratic classification, not just the co-learning,

is responsible for the success of the method. On the other

hand, democratic co-learning increases accuracy even when

only classifying with the decision tree. The democratic clas

sification process offers an added boost to performance, but

democratic co-learning's semi-supervised learning algorithm

that is responsible for most of the improvement.

A final point to consider in Table I is that democratic

co-learning is quite competitive with active learning, which

means that application developers can achieve comparable

accuracy without the drawbacks of active learning. As a

supervised learning method, active learning does not have to

rely on the classifier's guesses, but it has the disadvantages

of disturbing the user or missing data when the user is too

busy to provide a label. When possible, an automatic process

is preferable, so it is very fortunate that one of the semi

supervised learning algorithms provides similar performance.

In an application using one of these methods, the user would

periodically run the algorithm to update the classifier with new

data collected since the previous time. To evaluate the effect

of multiple iterations, the algorithms were run with different

numbers of iterations. Figure 3 shows the results with 1, 2,

4, and 8 iterations. The amount of new data added is the

same regardless of how many iterations there are. For more

iterations, a corresponding fraction of the new data is added.

The original classifier's performance is shown by a horizontal

line. For most of the methods, the more iterations, the higher

the accuracy. This is because, even though the same amount of

new data is being added, multiple iterations allow the classifier

to improve while it is still selecting and labeling new points.

VI. FUTURE WORK

Another interesting area of investigation is the effect of

semi-supervised and active learning on a classifier's accuracy

when the user's way of performing activities differs from how

it was done when the training data were recorded. For example,

someone who has a limp or uses a walker would have a

different gait from those of the people in the training set, so

the classifier would be less accurate for them. In applications

like Ambulation [11], this case would not be uncommon, since

it is designed for ambulatory patients. Data for cases such as

these would show if the personalization methods described in

this work could help the classifier adjust to these variations.

VII. CONCLUSIONS

This paper tested the feasibility of using various semi

supervised and active learning methods to improve activity

classification on mobile phones after application deployment.

This would allow health and fitness monitoring applications

to record the user's activity data stream with an increasing

degree of accuracy as it adapts to each user. In cases where

the original classifier's performance was around the 75-80%

accuracy range, most of them had significant improvement

over the original classifier, but when the starting accuracy

was already high (about 90%) they did not. Self-learning

never demonstrated any improvement, while active learning

and both varieties of co-learning performed well, depending

on the initial classifier. For any given starting classifier, either

all three classifiers succeeded, or none did. On average, none

of the methods (except self-learning in one case) showed a

statistically significant decrease in accuracy, so an application

could implement one of them for the possible improvement

without a corresponding risk of losing accuracy. Although the

drop could be significant for some individual users, the gain

could be as well. This is nothing new to classification however,

as the initial classifier will vary in accuracy between users even

without applying semi-supervised or active learning methods.

Finally, one of the most encouraging results is the fact that

this version of democratic co-learning performs almost as well

as active learning. Active learning is much more difficult to

implement effectively and requires user interaction, which is

a considerable drawback. Many patients would not want to

burden themselves with the task, so it is very advantageous

to have a semi-supervised learning method that can perform

as well or better than supervised ones. Taking this into

consideration, the algorithm that shows the most promise is

democratic co-learning. However, it does have the downside

of running three classifiers at once on the mobile device. If

this becomes too energy-intensive or difficult, active learning

Digital Object Identifier: 10.410Bl/CST.PERVASIVEHEALTH2010.8851

http://dx.doi.org/10.410Bl/CST.PERVASIVEHEAL TH2010. 8851

could be used instead, but it would force the user to provide

input. There is no reason to prefer En-Co-Training because

it has the same requirements as democratic co-learning and

does not increase performance as much. Overall, democratic

co-learning is the best choice for medical applications, since it

significantly increases accuracy without burdening the patient

with additional interaction with the device.

VIII. ACKNOWLEDGMENTS

This work is supported in part by NSF Cooperative Agree

ment #CCR-0120778 and NSF Grant #CNS-0627084. Any

opinions, findings and conclusions or recommendations ex

pressed in this material are those of the author(s) and do not

necessarily reflect the views of the funding entities. We thank

Google for their mobile phone hardware donation.

REFERENCES

[1] Apple. Nike+ipod. http://www.apple.comlipodlnikeJ.
[2] L. Bao and S. Intille. Activity recognition from user·annotated acceler

ation data. Lecture Notes in Computer Science, pages 1-17, 2004.
[3] A. Blum and T. Mitchell. Combining labeled and unlabeled data

with co-training. In Proceedings of the eleventh annual conference on
Computational learning theory, page 100. ACM, 1998.

[4] S. Consolvo, D. McDonald, T. Toscos, M. Chen, 1. Froehlich, B. Har
rison, P. Klasnja, A. LaMarca, L. LeGrand, R. Libby, et al. Activity
sensing in the wild: a field trial of ubifit garden. 2008.

[5] D. Guan, W. Yuan, Y. Lee, A. Gavrilov, and S. Lee. Activity recognition
based on semi-supervised learning. In Proceedings of the 13th IEEE In
ternational Conference on Embedded and Real-Time Computing Systems
and Applications, pages 469-475. IEEE Computer Society, 2007.

[6] A. Kapoor and E. Horvitz. Experience sampling for building predictive
user models: a comparative study. 2008.

[7] 1. Lester, T. Choudhury, and G. Borriello. A practical approach to
recognizing physical activities. Lecture Notes in Computer Science,
3968:1-16, 2006.

[8] L. Li and L. Fei-Fei. Optimol: automatic online picture collection via
incremental model learning. International Journal of Computer Vision,
pages 1-22.

[9] H. Lu, W. Pan, N. Lane, T. Choudhury, and A. Campbell. SoundSense:
scalable sound sensing for people-centric applications on mobile phones.
In Proceedings of the 7th international conference on Mobile systems,
applications, and services, pages 165-178. ACM New York, NY, USA,
2009.

[10] S. Reddy, 1. Burke, D. Estrin, M. Hansen, and M. S rivastava. Deter
mining transportation mode on mobile phones. In Proceedings of The
12th IEEE Int. Symposium on Wearable Computers, 2008.

[11] J. Ryder, B. Longstaff, S. Reddy, and D. Estrin. Ambulation: a tool for
monitoring mobility patterns over time using mobile phones. In 2009
International Conference on Computational Science and Engineering,
pages 927-931, 2009.

[12] M. Stikic, K. Laerhoven, and B. Schiele. Exploring Semi-Supervised
and Active Learning for Activity Recognition. In Proceedings of the
12th IEEE International Symposium on Wearable Computers (ISWC),
2008.

[13] I. Witten. Weka: Practical Machine Learning Tools and Techniques
with Java Implementations. Dept. of Computer Science, University of
Waikato, 1999.

[14] D. Yarowsky. Unsupervised word sense disambiguation rivaling su
pervised methods. In Proceedings of the 33rd annual meeting on
Association for Computational Linguistics, pages 189-196. Association
for Computational Linguistics Morristown, NJ, USA, 1995.

[15] Y. Zhou and S. Goldman. Democratic co-learning. In Proceedings of the
16th IEEE international conference on tools with artificial intelligence,
pages 594-202. Washington, DC: IEEE Computer Society Press, 2004.

[16] Z. Zhou and M. Li. Tri-training: Exploiting unlabeled data using three
classifiers. IEEE Transactions on Knowledge and Data Engineering,
pages 1529-1541, 2005.

[17] X. Zhu. Semi-supervised learning literature survey. Computer Science,
University of Wisconsin-Madison, 2007.

