
A request-driven swarming scheme
for P2P data streaming

Jialing Xu and Victor O.K. Li
Department of Electrical and Electronic Engineering

University of Hong Kong
Pokfulam Road, Hong Kong, China

{jlxu, vli }@eee.hku.hk

ABSTRACT
Data streaming by swarming over peer-to-peer overlay
networks has attracted much attention in recent years and
initially the swarming solution is based on data-driven
schemes. This paper presents a new request-driven
swarming scheme. The scheme offers several advantages:
high efficiency in data delivery, low control overhead, and
flexibility in streaming control. Some key issues on the
design of the relevant scheduling and forwarding
mechanisms are discussed. We simulated our proposed
request-driven scheme and compared it with an existing
data-driven scheme. According to the simulation results,
our request-driven scheme incurs much lower control
overhead while providing comparable or better efficiency
in data delivery.

Categories and Subject Descriptors
C.2.1 [COMPUTER-COMMUNICATION NETWORKS]:
Network Architecture and Design – Distributed networks,
Network communications.

General Terms
Design, Performance, Reliability.

Keywords
peer-to-peer, streaming, swarming, request-driven.

1. INTRODUCTION
With advances in broadband access, the Internet is
increasingly being used as a new medium to provide
multimedia service to the public. Multimedia service
requires efficient and scalable delivery techniques for
streaming data. Presently, IP Multicast is probably the first
choice for this type of data delivery service due to its

sophisticated design [5][7][8][9] and high performance [6].
Its deployment, however, is limited due to high cost,
excessive management workload, and redeployment
difficulties when network topology and user distribution
change. Thus researchers pursue application-level solutions,
which attempt to build a logical overlay network among
cooperative nodes on IP Unicast networks.

Peer-to-peer (P2P) technology has been suggested as the
ideal platform to carry out application-level streaming.
Numerous P2P-based streaming systems and theoretical
studies have been completed. These can be broadly
classified into two categories: tree-based and mesh-based.
The former adopts similar design principles as the
traditional IP Multicast which builds and maintains an
explicit tree-like structure. This structure, however, is
mismatched with the application-level overlay environment
with dynamic nodes, and may offer poor streaming
performance [1]. On the other hand, in the mesh-based
approach, autonomous nodes exchange data with others
spontaneously and there is no prescribed structure. This is
the reason why it is also called swarming. It is simple and
robust.

The initial swarming design is driven by the streaming data
and involves heavy control overhead, rendering it
inefficient and unscalable. We propose a lightweight，
flexible ， request-centric P2P streaming scheme named
request-driven swarming. In this scheme, requests are
utilized to construct the forwarding relationship before
actual data delivery and to adjust the relationship during
delivery. The simulation results and comparison with
existing work demonstrate that the request-driven
swarming scheme can greatly reduce the control overhead
and delivery latency, while enjoying high efficiency at the
same time.

In this paper, challenges in realizing the request-driven
swarming scheme are identified. We discuss the issues of
how to use requests to guide data streaming among nodes
in the system, including streaming abstraction, request
definition, and data forwarding. We propose an initial
design of the request format and request-forwarding
mechanism, which satisfy the basic requirements of our
simple request-driven prototype.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Qshine08 July 28-31, 2008, Hong Kong,
China

peri
Callout

peri
Typewriter

peri
Typewriter
QShine 2008, July 28-31, 2008, Hong Kong, Hong Kong.

Copyright 2008 ICST ISBN 978-963-9799-26-4

DOI 10.4108/ICST.QSHINE2008.3937

peri
Typewriter

peri
Typewriter

The rest of the paper is organized as follows. After a brief
introduction of related work in multicast and in data-driven
swarming over P2P in Section 2, Section 3 presents the
detailed design of the request-driven swarming scheme,
including the motivation of the design and the system
architecture of the current prototype implementation.
Evaluation based on simulation experiments and
comparisons with existing work are included in Section 4.
Finally conclusion is given in Section 5.

2. RELATED WORK
In the past, IP Multicast has been considered the most
efficient vehicle for data streaming. Recently, however,
systems implementing multimedia streaming applications
on P2P overlay platforms have achieved much success.
These systems can be generally classified into two
categories according to their organizational characteristics:
tree-based and mesh-based. The tree-based schemes
organize the streaming relationship among all nodes
following a prescribed tree-like structure. In the mesh-
based systems, autonomous nodes exchange data with
others spontaneously. Our work, the request-driven
streaming scheme, belongs to the second category. In this
section we give a brief review of the existing P2P
streaming schemes under these two categories.

2.1 Tree-based Structure
Derived from IP Multicast, the tree structure is employed in
many early overlay streaming schemes [2] [10] [14]. In this
type of overlay streaming, efficient algorithms for multicast
tree construction and maintenance are the keys to system
efficiency and robustness.

SplitStream [14] is a representative example of this type. In
SplitStream, the streaming content is striped across a forest
of interior-node-disjoint multicast trees that distribute the
forwarding load among all participating peers [4]. Such a
multi-tree based forest brings some guarantee of efficiency
and failure-tolerance, but is still vulnerable to churning and
needs assistance from content coding to combat topology
changes of the trees. Subsequent researchers [2] [10] have
addressed the issue of reliability by more complicated
algorithms. However, they are still not satisfactory.

Essentially, the tree structure is mismatched with the
application-level overlay environment with dynamic nodes
[3]. As the autonomous overlay nodes join and leave at will,
the tree-like prescribed relationship is highly vulnerable,
especially for streaming applications that require high
bandwidth and time-stringent delivery.

2.2 Unstructured Swarming
Swarming schemes have recently become popular since
they address the issue of robustness better than the tree-
based schemes. Swarming design is also known as data-

driven swarming, since it is the design principle of early
swarming schemes.

Coolstreaming [14] is the first significant swarming system
design based on the data-driven principle. In Coolstreaming,
each node periodically advertises data availability
information to a set of nodes called partners1, retrieves
locally unavailable data from them and supplies available
data to them. Thus, data arrival drives the dissemination of
availability information, then the information triggers the
request for data and finally data is delivered. The data acts
as the initiator of the procedure; hence the name data-
driven. Swarming system is more resilient to high rates of
churn, i.e. nodes joining and leaving; hence complicated
algorithms for relationship maintenance are not necessary
any longer.

Data-driven swarming, however, involves large control
overhead leading to low efficiency and scalability. In
multimedia applications, streaming must be timely to
ensure playback quality. Control information, including
data availability and data request, must be exchanged
following the pace of data delivery. Therefore, the
intensive data volume in multimedia applications leads to
intensive volume of these control messages. As a result,
large control overhead is incurred in data-driven swarming
schemes. To address these problems, we propose a new
swarming scheme for P2P streaming, called request-driven
swarming, in which request is used instead of data to guide
the streaming.

3. SYSTEM DESIGN AND OPTIMIZATION
3.1 Introduction of Request-driven Streaming
We propose the request-driven swarming scheme. In
comparison with data-driven swarming, our design offers
three advantages: efficiency in data delivery, low overhead
traffic, and flexibility in streaming control.

Figure 1 compares the processing cycles of data-driven and
request-driven swarming. The data-driven scheme contains
four stages and two waiting periods. First, data arrives and
then its availability is advertised periodically. When other
nodes receive the advertised availability information, they
then periodically send out requests for these data. Finally,
these requests are served by the delivery of the required
data. In this process, nodes wait for the periodical
advertising of availability information and the periodical
requests for data before data delivery. As a result, the four
process steps and two waiting periods lead to long latency.
On the contrary, the processing in the request-driven
scheme includes only three stages but no notable waiting.
In Figure 1, requests for streaming are sent to those nodes

1 A partner in Coolstreaming is a node that cooperates with the

given node in swarming for the same stream.

which have attached to the stream already 2 . If these
requests can be accepted according to current available
bandwidth,

they will be recorded. When these nodes receive data, they
can immediately forward them according to the previously
accepted requests. Obviously, from data arrival to data
delivery, only two steps and no notable waiting are
required. The latency is thus reduced significantly.

Low control overhead is another merit of the request-
driven scheme. In the data-driven scheme, high data
volume leads to large control overhead. In this scheme, the
data availability information is based on the description of
data segments rather than the stream, and hard to compress.
The stringent time constraint on data delivery requires that
data availability information is advertised frequently,
further intensifying the volume of control overhead. On the
contrary, our request-driven scheme focuses on describing
the stream. In most streaming application scenarios, a few
attributes like rate, start time and stop time, can
characterize the basic properties of a stream. Therefore
describing a stream in a request by stream attributes
reduces the message size and sending frequency, and thus
greatly decreases the total control overhead.

The flexibility in streaming control is an extra attraction of
the request-driven scheme. In the data-driven scheme, the
receiver nodes request data passively based on the data
availability information from partners. Therefore, the
potential of streaming control improvement is quite limited.
But in request-driven swarming the receiver nodes take an
active role in streaming. The request mechanism endows
nodes with the capability of manipulating various delivery
behaviors. Moreover, feedback from these behaviors helps
optimize the streaming performance.

3.2 Request Mechanism
The request mechanism is the core of our request-driven
scheme and greatly impacts the scheme’s performance and
efficiency. A generic request for our initial scheme design
and a simple scheduling algorithm are discussed here.

2 It is assumed that these attached nodes can be discovered

through existing P2P search and location mechanisms.

A request must first describe the stream. We simply
describe a node’s local view of a stream as a 3-tuple < Rate,
StartPosition, EndPosition>. The variables StartPosition
and EndPosition denote the starting point and the end point
of the requested stream, respectively. Here, Rate denotes
the streaming speed. These three attributes depict a basic
view of a stream in almost all applications.

A time unit is not used in quantifying StartPosition and
EndPosition, since it is unreasonable to assume the
existence of universal time for all nodes in a distributed
P2P network. Hence we suggest that the data stream be
divided into sequential segments with increasing sequence
IDs; and the sequence ID is used to denote the
StartPosition and EndPosition.

Based on the stream description above, the request is
defined as a 4-tuple <Rate, StartPosition, EndPosition,
Pattern>. Here, the first three variables have the same
meanings as above in depicting the requested stream. The
last variable Pattern denotes the expected data forwarding
behavior and is defined as an n-tuple <A1, A2, … An, B>,
representing modulo operation on segment sequence IDs.
In modulo operation, sequence ID of data segment is the
dividend, B denotes the divisor and A1, A2, … An are the
candidate remainders for segment selection: given a
sequence ID X, if the remainder (X mod B) ∈<A1, A2, …
An>, this segment is requested to be forwarded.

Figure 2 presents an example of using the request
definition in streaming control. First, node B sends a
request, <60, 101, 120, <1, 3, 5, 7, 8> >, to node A, asking
for the data segments with sequence ID in the range from
101 to 120. In addition, Pattern in the request specifies
modulo operation: each segment’s sequence ID is divided
by 8, if the remainder is 1, 3, 5, and 7, then the segment is
requested to be forwarded. Following the request, node A
should forward segments with IDs 101, 103, 105, …, 119
to node B.

In our implementation, a bitmap of a few bytes is used to
represent Pattern. For example, the pattern in Figure 2 is
implemented as a compound data structure consisting of a
four-byte-length array as the bitmap, 10101010…. and a
one-byte integer variable representing the divisor B=8,
which is also the effectual bit length of the bitmap.

Data arrival

Request

Delivery

Request

Data arrival

Delivery

Short
delay

Short
cycle

Data-driven Request-driven

Wait

Wait

Figure 1. Comparison of data-driven
and request-driven schemes

Advertising

Figure 2. An example of request mechanism

A

B

 Request
<60, 101, 120,
 <1, 3, 5, 7, 8> >

A

B

….,99, 100, 101,
102, … 119, 120,
121…

101, 103, 105, 107,
109, 111, 113, 115,
117, 119

3.3 System Implementation
Figure 3 depicts the system diagram of our initial prototype.
There are nine key modules in the architecture: four timers,
three databases and two processors. Among these modules,
the solid arrows indicate the data flows and the dashed
ones are for control.

The three database modules maintain the information for
the normal operation of nodes. The NodeDB keeps
statistics of upstream nodes and the connections with them.
NodeRegDB contains information about the registered
downstream nodes and the requests from them. The
StatusDB keeps all the local information about the node
itself. All the maintained information is collected from and
shared with other functional modules.

The four timers are in charge of periodical routines: the
ready timer checks the node’s status and informs the upper
application about the current operation condition of the
overlay; the status timer calculates the current overly status
information based on the data in statusDB and updates the
relative values for the two processors’ decision making; the
freshDB timer periodically removes from databases the
obsolete data including the records of non-responding
upstream nodes and out-of-date requests; the update timer
collects information of available nodes on the network and
notifies the message processor to communicate with them
through requests.

The data processor and message processor take charge of
real-time data and message processing, respectively. In
particular, the data processor forwards received data to
other nodes and to upper application such as media player.
The pattern-based forwarding function in Section 3.2 is
utilized in the data processor. The job of the message
processor is to guide streaming by requests. Measuring
current transmission condition, making scheduling decision,
and controlling streaming with requests are the core
functions of the message processor.

In our initial implementation, message processor sends out
requests at startup to the nodes which have already attached

to the stream. When such a request is received, the message
processor checks if it is possible to accept the request
based on the node’s current available upload bandwidth
and the specified data rate in the request. If this request is
acceptable, message processor reduces the available
bandwidth by the data rate specified in the request, records
the request for data forwarding and sends a reply message
to the request sender about the acceptance; otherwise, if the
request is unacceptable, the request sender is also informed
about the failure by a reply message.

To handle the streaming scheduling task, a simple
algorithm is embedded in the message processor. Its basic
logic is shown in Figure 4. The main idea of the algorithm
is to adjust the pattern to reduce duplicated data delivery to
below a certain level, denoted by the parameter
exptRedRatio. When all necessary segments are received, if
the ratio of the number of all received segments to the
number of effectual segments is greater than exptRedRatio,
then the node stops sending out requests for more segments
and starts to reduce the duplication by sending out requests
with adjusted patterns to its current upstream nodes. In
order to reduce the impact of different optimized
scheduling algorithms on streaming, this simple algorithm
merely fulfills the basic demands on redundancy reduction.

Input:
totalSegSum: total number of received segments
effecualSegSum: number of effectual segments
newAvailNodeSet[]: set of new available nodes on the network
upstreamNodeSet[]: set of upstream nodes to which requests have been

sent
Parameters:

exptSegSum: expected number of received effectual segments
exptRedRatio: expected threshold of totalSegSum /effecualSegSum

Scheduling:
if effecualSegSum< exptSegSum then
 // not all data segments are received
 for i=0 to min(maxRequest, newAvailNodeSet.size()) do
 // send request to avail nodes for all data segment
 requestSet.insert(newAvailNodeSet[i],

pattern(11111111,8));
 end for i;
else
 // all data segment have been received
 if (totalSegSum/ effecualSegSum> exptRedRatio) then
 // schedule to reduce the redundancy ratio
 //randomly select two different nodes
 j1=random(0, upstreamNodeSet.size()/2);
 j2=random(upstreamNodeSet.size()/2,

 upstreamNodeSet.size());
 // clear some set bits in j1’s bitmap which are also set in j2’s
 pattern1= upstreamNodeSet[j1].pattern()&
 ~(upstreamNodeSet[j1].pattern()&

 upstreamNodeSet[j2].pattern())
 //set request with new pattern to node j1
 requestSet.insert(upstreamNodeSet[j1], pattern1)
 end if
end if;

Output:
requestSet[]: set of requests to be sent out

Figure 4. Streaming scheduling algorithm

Ready timer

Update timer

Fresh DB timer

Status timer

Node
DB

NodeReg
DB

Status
 DB

Message
 processor

Data
processor

Network Interface

Application Interface

Node Node Node

Figure 3. A system diagram for a node

4. SIMULATION AND EVALUATION
To evaluate the control overhead and efficiency of our
request-driven scheme, we implemented a prototype under
a simulation environment and conducted experiments on it.
In this section, we first introduce the simulation platform.
Then the prototype implementation and experimental
parameter settings are presented. Finally, simulation results
are presented and analyzed in a comparison with
Coolstreaming, the representative system of data-driven
swarming system.

4.1 Simulation Environment
The simulation platform consists of OMNeT++ [11] with
its extension modules INET [12] and OverSim [3].
OMNeT is a component-based and open architecture
discrete time event simulator. INET is a framework built on
OMNeT++ and contains IPv4, IPv6, TCP, UDP and many
other protocol implementations, and several application
models. OverSim is an open-source overlay network
simulation framework residing on top of the INET
framework. The simulation suite provides an integrated
P2P framework as shown in Figure 5(a).

Figure 5(b) depicts the architecture of our prototype
implementation according to the framework in Figure 5(a).
In the implementation, OMNeT++ takes charge of message
delivery and INET simulates the network communication
scenario. On top of INET, the RDS (request-driven
swarming) overlay realizes the system design presented in
Figure 3. Above the overlay, the application layer, named
SimpleStream, acts as streaming provider or consumer,
sending or receiving data from the RDS overlay.

4.2 Evaluation
Under this simulation environment, we evaluated overhead
cost and efficiency of the prototype design. The request
volume and the in-time delivery ratio are chosen as the
metrics to compare with published data of Coolstreaming.
The two metrics under different swarming scales are
analyzed and discussed here.

As the source code of Coolstreaming is not publicly
available, it is impossible to transplant its implementation
to the same simulation environment for comparison. So we
choose similar simulation metrics as in [14]. To evaluate
overhead traffic volume, we choose the number of request
messages and the replies as the metric. With regard to
evaluating the streaming efficiency, an index named in-
time delivery is used. The index has the same meaning as
the metric continuity-index in Coolstreaming.

In the evaluation, all the simulation runs share the same
parameters. The duration time of all simulation run is 5000
seconds, which is close to the playback time of a typical
movie. The nodes’ creation and death follow the Weibull
distribution [13], which is commonly used in life data

analysis and P2P network simulation. The node’s
bandwidth and delay follow uniform distributions over the
intervals (128Kbps, 10Mpbs) and (50ms, 10ms),
respectively. The end points of these intervals correspond
to

typical DSL (Digital Subscriber Line) and Ethernet
parameters. Only one stream from one source node called
the origin node is involved, and the origin node is set to
generate one segment per second. Segment delivery uses
UDP (User Datagram Protocol) and the segment length is
set to 1000 bytes. Therefore a segment can be encapsulated
in an individual packet. exptRedRatio in the scheduling
algorithm is 1.5 for all nodes. All experiments for different
metrics are repeated with various node numbers from 50 to
1000.

Figure 6 depicts the cumulative volume of messages as a
function of time in different swarming scales. As shown in
the figure, the cumulative message traffic volume increases
with time and with the scale; and the increasing rates
become stable. Figure 7 shows the volume in every 200-
second interval and gives an obvious view of the trend. For

INET

OverSim

(a) OMNet++, INET, and OverSim

UDP TCP ICMP

Overlay

Application Layer

Tier1

Underlay
SimpleHost SimpleUnderla

IPv4Underlay

Tier2
Tier3

Oversim

Overlay

 Tier1:
RDS Overlay

Application Layer:
 SimpleStream

OMNeT++

(b) RDS Implementation

OMNeT++

INET
UDP

Underlay

SimpleUnderlay

Figure 5. Simulation framework
and prototype implementation

 Request Volume

0

1000
2000

3000
4000

5000

6000
7000

8000
9000

10000

200 1000 1800 2600 3400 4200 5000

Time(s)

S
u
m

o
f

O
v
e
r
h
ea
d

M
e
s
s
a
g
e

n=50

n=100

n=200

n=400

n=800

n=1000

Figure 6. Cumulative request volume as a function of
time under different swarming scales

all simulation runs with different swarming scales, the
request volume in each interval is high at the beginning
because of the initial construction of swarming
relationships. Then when most of the nodes have attached
to the stream the volume decreases and finally stays at
stable low levels.

Table 1 presents detailed statistics of the average message
traffic volume sent per node in different swarming scales.

The data indicates that the number of requests sent per
node is limited and independent of the scale of the
swarming.

Table 1. The average number of requests sent per node

Swarming scale
(node number) 50 100 200 400 800 1000

Requests sent
per node 0.34 0.403 0.488 0.478 0.337 0.336

In our prototype the request packet size is 80 bytes, and in
200 seconds the number of requests sent by every node is
less than 0.5 on the average. So the overhead cost of each
node in 200 seconds is only 40 bytes. According to the data
published in [14], the control overhead of Coolstreaming,
which is defined as the ratio of message volume to the
video data by byte, is about 0.006 when the number of
partners is 2. This corresponds to exptRedRatio =1.5 in our
scheme. Given the video data rate is 500Kbps, the number
of nodes 100, the overhead cost of Coolstreaming in 200
sec should be about 500kbps×200sec×0.006/100nodes/8 =
768bytes/node, which is more than 19 times the overhead
in our prototype. Therefore, we believe the request-driven
swarming scheme can greatly reduce the volume of
overhead.

The efficiency of data delivery is another feature of the
request-driven scheme. In the evaluation, we use the metric
in-time delivery ratio to estimate the delivery efficiency.
This metric is defined as the ratio of the number of
received effectual segments to the segment numbers
expected in a given interval. The metric has the same
meaning as the metric of continuity index in the evaluation
of Coolstreaming [14]. In the experiments, nodes are

expected to receive segments at the same rate as the origin
node, which is 60 segments per minute. Figure 8 shows the
result under different swarming scales. When streaming
starts up, the ratio is low since only a few nodes join the
streaming and they have not received many effectual
segments. Then the ratio increases quickly since more and
more nodes participate in streaming. Finally, when almost
all nodes have attached and are receiving data from
streaming, the ratio reaches its upper bound, which is about
0.983 in all simulation runs under different swarming
scales. Compared with the upper bound of continuity in [14]
which is 0.97, the request-driven scheme achieves high
efficiency similar to Coolstreaming.

5. CONCLUSION
In this paper, a request-driven swarming scheme for P2P
overlay streaming is proposed to address the issues of
latency and control overhead reduction. This scheme does
not maintain an explicit overlay structure but uses requests
to guide the streaming adaptively. Experimental results
show that the request-driven swarming scheme has low
control overhead but does not sacrifice efficiency. In
comparison with Coolstreaming, a representative system of
data-driven swarming, the request-driven scheme promises
more flexible control over streaming, much lower control
overhead and similar efficiency in data delivery. To
achieve better balance between performance and bandwidth
expense, future work includes finding more sophisticated
algorithms on upstream node selection and bandwidth
estimation.

6. REFERENCES
[1] ANNAPUREDDY, S., GUHUA, S., GKANTSIDIS, C.,

GUNAWARDENA, D., AND RODRIGUEZ, P. 2007.
Exploring VoD in P2P Swarming Systems. In Proceedings of
IEEE INFOCOM 2007, Anchorage, Alaska, USA, MAY
2007, 2571- 2575.

[2] BANERJEE, S., KOMMAREDDY, C., KAR, K., AND
BHATTACHARJEE, B. 2003. Construction of an efficient

Figure 8. In-time delivery ratio as a function of time
under different swarming scales

 In-time delivery Ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

200 1000 1800 2600 3400 4200 5000
time(s)

R
a
t
i
o
n=50

n=100

n=200

n=400

n=800

n=1000

 Request Volume per 200 sec

0

100

200

300

400

500

600

700

800

900

1000

200 1000 1800 2600 3400 4200

Time(s)

S
u
m

o
f

O
v
e
r
h
e
a
d

M
e
s
s
a
g
e

n=50

n=100

n=200

n=400

n=800

n=1000

Figure 7. Request volume per 200 sec as a function of
time under different swarming scales

overlay multicast infrastructure for real-time applications. In:
Proceedings of IEEE INFOCOM 2003, San Francisco,
California, USA, APRIL 2003, vol. 2 1521- 1531.

[3] BAUMGART, I., HEEP, B., AND KRAUSE, S. 2007.
OverSim: A Flexible Overlay Network Simulation
Framework. In Proceedings of 10th IEEE Global Internet
Symposium, Anchorage, AK, May, 2007, 79 - 84.

[4] CASTRO, M., DRUSCHEL, P., KERMARREC, A., NANDI,
A., ROWSTRON, A., AND SINGH, A. 2003. SplitStream:
high-bandwidth multicast in cooperative environments. In
Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles. Bolton Landing, NY, USA,
OCTOBER, 2003, SOSP '03. ACM, New York, NY, 298-
313. DOI= http://doi.acm.org/10.1145/945445.945474.

[5] HIM, K. A., CAI, Y., AND SHEO, S. 1998. Patching: A
multicast technique for true video-on-demand. in
Proceedings of ACM Multimedia, Bristol, England, SEP
1998, 191-200.

[6] LIU, J., LI, B., AND ZHANG, Y.-Q. 2003. Adaptive video
multicast over the Internet. IEEE Multimedia 2003, vol. 10,
no. 1, 22-31.

[7] POON, W.-F., LO, K.-T., AND FENG, J. 2001. Adaptive
batching scheme for multicast video-on-demand systems.
IEEE Transactions on Broadcasting, vol. 47 no. 1 66 -70.

[8] RAMESH, S., RHEE, L., AND GUO, K. 2001. Multicast
with cache (Mcache): an adaptive zero-delay video-on-
demand service IEEE Transactions on Circuits and Systems
for Video Technology, vol. 11 no. 3 440-456.

[9] SEN, S., GAO, L., REXFORD, J., AND TOWSLEY, D.
1999. Optimal patching scheme for efficient multimedia
streaming. In Proceedings of. NOSSDAV.1999, AT&T
Learning Center, Basking Ridge NJ, JUNE, 1999.

[10] TIAN, R., ZHANG, Q., XIANG, Z., XIONG, Y. LI, X.,
AND ZHU, W. 2005. Robust and efficient path diversity in
application-layer multicast for video streaming Circuits and
Systems for Video Technology, IEEE Transactions. vol 15,
issue 8, 961- 972.

[11] VARAGA, A. 2001. The OMNeT++ discrete event
simulation system. In Proceedings of European Simulation
Multiconference (ESM’2001), Berlin, Germany, Prague,
Czech Republic,
http://www.omnetpp.org/portal.php?what=link&item=20030
407013804784.

[12] VARGA, A. 2007. INET Framework for
OMNeT++/OMNEST. http://www.omnetpp.org/doc/INET/

[13] WEIBULL, W. 1951. A statistical distribution function of
wide applicability. J. Appl. Mech.-Trans. ASME 18(3), 293-
297.

[14] ZHANG, X., LIU, J., LI, B., AND YUM, T.-S. P.2005.
CoolStreaming/DONet: a data-driven overlay network for
peer-to-peer live media streaming. In Proceedings of IEEE
INFOCOM 2005 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. vol. 3 2102-2111.

