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ABSTRACT 
Data streaming by swarming over peer-to-peer overlay 
networks has attracted much attention in recent years and 
initially the swarming solution is based on data-driven 
schemes. This paper presents a new request-driven 
swarming scheme. The scheme offers several advantages: 
high efficiency in data delivery, low control overhead, and 
flexibility in streaming control. Some key issues on the 
design of the relevant scheduling and forwarding 
mechanisms are discussed. We simulated our proposed 
request-driven scheme and compared it with an existing 
data-driven scheme. According to the simulation results, 
our request-driven scheme incurs much lower control 
overhead while providing comparable or better efficiency 
in data delivery. 

Categories and Subject Descriptors 
C.2.1 [COMPUTER-COMMUNICATION NETWORKS]: 
Network Architecture and Design – Distributed networks, 
Network communications. 

 

General Terms 
Design, Performance, Reliability. 

Keywords 
peer-to-peer, streaming, swarming, request-driven. 

1. INTRODUCTION 
With advances in broadband access, the Internet is 
increasingly being used as a new medium to provide 
multimedia service to the public. Multimedia service 
requires efficient and scalable delivery techniques for 
streaming data. Presently, IP Multicast is probably the first 
choice for this type of data delivery service due to its 

sophisticated design [5][7][8][9] and high performance [6]. 
Its deployment, however, is limited due to high cost, 
excessive management workload, and redeployment 
difficulties when network topology and user distribution 
change. Thus researchers pursue application-level solutions, 
which attempt to build a logical overlay network among 
cooperative nodes on IP Unicast networks. 

Peer-to-peer (P2P) technology has been suggested as the 
ideal platform to carry out application-level streaming. 
Numerous P2P-based streaming systems and theoretical 
studies have been completed. These can be broadly 
classified into two categories: tree-based and mesh-based. 
The former adopts similar design principles as the 
traditional IP Multicast which builds and maintains an 
explicit tree-like structure. This structure, however, is 
mismatched with the application-level overlay environment 
with dynamic nodes, and may offer poor streaming 
performance [1]. On the other hand, in the mesh-based 
approach, autonomous nodes exchange data with others 
spontaneously and there is no prescribed structure. This is 
the reason why it is also called swarming. It is simple and 
robust.  

The initial swarming design is driven by the streaming data 
and involves heavy control overhead, rendering it 
inefficient and unscalable. We propose a lightweight， 
flexible ， request-centric P2P streaming scheme named 
request-driven swarming. In this scheme, requests are 
utilized to construct the forwarding relationship before 
actual data delivery and to adjust the relationship during 
delivery. The simulation results and comparison with 
existing work demonstrate that the request-driven 
swarming scheme can greatly reduce the control overhead 
and delivery latency, while enjoying high efficiency at the 
same time. 

In this paper, challenges in realizing the request-driven 
swarming scheme are identified. We discuss the issues of 
how to use requests to guide data streaming among nodes 
in the system, including streaming abstraction, request 
definition, and data forwarding. We propose an initial 
design of the request format and request-forwarding 
mechanism, which satisfy the basic requirements of our 
simple request-driven prototype. 
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The rest of the paper is organized as follows. After a brief 
introduction of related work in multicast and in data-driven 
swarming over P2P in Section 2, Section 3 presents the 
detailed design of the request-driven swarming scheme, 
including the motivation of the design and the system 
architecture of the current prototype implementation. 
Evaluation based on simulation experiments and 
comparisons with existing work are included in Section 4. 
Finally conclusion is given in Section 5. 

2. RELATED WORK 
In the past, IP Multicast has been considered the most 
efficient vehicle for data streaming. Recently, however, 
systems implementing multimedia streaming applications 
on P2P overlay platforms have achieved much success. 
These systems can be generally classified into two 
categories according to their organizational characteristics: 
tree-based and mesh-based. The tree-based schemes 
organize the streaming relationship among all nodes 
following a prescribed tree-like structure. In the mesh-
based systems, autonomous nodes exchange data with 
others spontaneously. Our work, the request-driven 
streaming scheme, belongs to the second category. In this 
section we give a brief review of the existing P2P 
streaming schemes under these two categories. 

2.1 Tree-based Structure 
Derived from IP Multicast, the tree structure is employed in 
many early overlay streaming schemes [2] [10] [14]. In this 
type of overlay streaming, efficient algorithms for multicast 
tree construction and maintenance are the keys to system 
efficiency and robustness.  

SplitStream [14] is a representative example of this type. In 
SplitStream, the streaming content is striped across a forest 
of interior-node-disjoint multicast trees that distribute the 
forwarding load among all participating peers [4]. Such a 
multi-tree based forest brings some guarantee of efficiency 
and failure-tolerance, but is still vulnerable to churning and 
needs assistance from content coding to combat topology 
changes of the trees. Subsequent researchers [2] [10] have 
addressed the issue of reliability by more complicated 
algorithms. However, they are still not satisfactory. 

Essentially, the tree structure is mismatched with the 
application-level overlay environment with dynamic nodes 
[3]. As the autonomous overlay nodes join and leave at will, 
the tree-like prescribed relationship is highly vulnerable, 
especially for streaming applications that require high 
bandwidth and time-stringent delivery.  

2.2 Unstructured Swarming 
Swarming schemes have recently become popular since 
they address the issue of robustness better than the tree-
based schemes. Swarming design is also known as data-

driven swarming, since it is the design principle of early 
swarming schemes. 

Coolstreaming [14] is the first significant swarming system 
design based on the data-driven principle. In Coolstreaming, 
each node periodically advertises data availability 
information to a set of nodes called partners1, retrieves 
locally unavailable data from them and supplies available 
data to them. Thus, data arrival drives the dissemination of 
availability information, then the information triggers the 
request for data and finally data is delivered. The data acts 
as the initiator of the procedure; hence the name data-
driven. Swarming system is more resilient to high rates of 
churn, i.e. nodes joining and leaving; hence complicated 
algorithms for relationship maintenance are not necessary 
any longer.  

Data-driven swarming, however, involves large control 
overhead leading to low efficiency and scalability. In 
multimedia applications, streaming must be timely to 
ensure playback quality. Control information, including 
data availability and data request, must be exchanged 
following the pace of data delivery. Therefore, the 
intensive data volume in multimedia applications leads to 
intensive volume of these control messages. As a result, 
large control overhead is incurred in data-driven swarming 
schemes. To address these problems, we propose a new 
swarming scheme for P2P streaming, called request-driven 
swarming, in which request is used instead of data to guide 
the streaming.  

3. SYSTEM DESIGN AND OPTIMIZATION 
3.1 Introduction of Request-driven Streaming 
We propose the request-driven swarming scheme. In 
comparison with data-driven swarming, our design offers 
three advantages: efficiency in data delivery, low overhead 
traffic, and flexibility in streaming control. 

Figure 1 compares the processing cycles of data-driven and 
request-driven swarming. The data-driven scheme contains 
four stages and two waiting periods. First, data arrives and 
then its availability is advertised periodically. When other 
nodes receive the advertised availability information, they 
then periodically send out requests for these data. Finally, 
these requests are served by the delivery of the required 
data. In this process, nodes wait for the periodical 
advertising of availability information and the periodical 
requests for data before data delivery. As a result, the four 
process steps and two waiting periods lead to long latency.  
On the contrary, the processing in the request-driven 
scheme includes only three stages but no notable waiting. 
In Figure 1, requests for streaming are sent to those nodes 

                                                                 
1 A partner in Coolstreaming is a node that cooperates with the 

given node in swarming for the same stream.  



which have attached to the stream already 2 . If these 
requests can be accepted according to current available 
bandwidth, 

they will be recorded. When these nodes receive data, they 
can immediately forward them according to the previously 
accepted requests. Obviously, from data arrival to data 
delivery, only two steps and no notable waiting are 
required. The latency is thus reduced significantly. 

Low control overhead is another merit of the request-
driven scheme. In the data-driven scheme, high data 
volume leads to large control overhead. In this scheme, the 
data availability information is based on the description of 
data segments rather than the stream, and hard to compress. 
The stringent time constraint on data delivery requires that 
data availability information is advertised frequently, 
further intensifying the volume of control overhead. On the 
contrary, our request-driven scheme focuses on describing 
the stream. In most streaming application scenarios, a few 
attributes like rate, start time and stop time, can 
characterize the basic properties of a stream. Therefore 
describing a stream in a request by stream attributes 
reduces the message size and sending frequency, and thus 
greatly decreases the total control overhead. 

The flexibility in streaming control is an extra attraction of 
the request-driven scheme. In the data-driven scheme, the 
receiver nodes request data passively based on the data 
availability information from partners. Therefore, the 
potential of streaming control improvement is quite limited. 
But in request-driven swarming the receiver nodes take an 
active role in streaming. The request mechanism endows 
nodes with the capability of manipulating various delivery 
behaviors.  Moreover, feedback from these behaviors helps 
optimize the streaming performance. 

3.2 Request Mechanism   
The request mechanism is the core of our request-driven 
scheme and greatly impacts the scheme’s performance and 
efficiency. A generic request for our initial scheme design 
and a simple scheduling algorithm are discussed here. 
                                                                 
2  It is assumed that these attached nodes can be discovered 

through existing P2P search and location mechanisms. 

A request must first describe the stream. We simply 
describe a node’s local view of a stream as a 3-tuple < Rate, 
StartPosition, EndPosition>. The variables StartPosition 
and EndPosition denote the starting point and the end point 
of the requested stream, respectively. Here, Rate denotes 
the streaming speed. These three attributes depict a basic 
view of a stream in almost all applications. 

A time unit is not used in quantifying StartPosition and 
EndPosition, since it is unreasonable to assume the 
existence of universal time for all nodes in a distributed 
P2P network. Hence we suggest that the data stream be 
divided into sequential segments with increasing sequence 
IDs; and the sequence ID is used to denote the 
StartPosition and EndPosition.  

Based on the stream description above, the request is 
defined as a 4-tuple <Rate, StartPosition, EndPosition, 
Pattern>. Here, the first three variables have the same 
meanings as above in depicting the requested stream. The 
last variable Pattern denotes the expected data forwarding 
behavior and is defined as an n-tuple <A1, A2, … An, B>, 
representing modulo operation on segment sequence IDs. 
In modulo operation, sequence ID of data segment is the 
dividend, B denotes the divisor and A1, A2, … An are the 
candidate remainders for segment selection: given a 
sequence  ID X, if the remainder (X mod B) ∈<A1, A2, … 
An>, this segment is requested to be forwarded.  

Figure 2 presents an example of using the request 
definition in streaming control. First, node B sends a 
request, <60, 101, 120, <1, 3, 5, 7, 8> >, to node A, asking 
for the data segments with sequence ID in the range from 
101 to 120. In addition, Pattern in the request specifies 
modulo operation: each segment’s sequence ID is divided 
by 8, if the remainder is 1, 3, 5, and 7, then the segment is 
requested to be forwarded. Following the request, node A 
should forward segments with IDs 101, 103, 105, …, 119 
to node B.  

In our implementation, a bitmap of a few bytes is used to 
represent Pattern. For example, the pattern in Figure 2 is 
implemented as a compound data structure consisting of a 
four-byte-length array as the bitmap, 10101010…. and a 
one-byte integer variable representing the divisor B=8, 
which is also the effectual bit length of the bitmap.  
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3.3 System Implementation  
Figure 3 depicts the system diagram of our initial prototype. 
There are nine key modules in the architecture: four timers, 
three databases and two processors. Among these modules, 
the solid arrows indicate the data flows and the dashed 
ones are for control.  

The three database modules maintain the information for 
the normal operation of nodes. The NodeDB keeps 
statistics of upstream nodes and the connections with them. 
NodeRegDB contains information about the registered 
downstream nodes and the requests from them. The 
StatusDB keeps all the local information about the node 
itself.  All the maintained information is collected from and 
shared with other functional modules.  

The four timers are in charge of periodical routines: the 
ready timer checks the node’s status and informs the upper 
application about the current operation condition of the 
overlay; the status timer calculates the current overly status 
information based on the data in statusDB and updates the 
relative values for the two processors’ decision making; the 
freshDB timer periodically removes from databases the 
obsolete data including the records of non-responding 
upstream nodes and out-of-date requests; the update timer 
collects information of available nodes on the network and 
notifies the message processor to communicate with them 
through requests. 

The data processor and message processor take charge of 
real-time data and message processing, respectively. In 
particular, the data processor forwards received data to 
other nodes and to upper application such as media player. 
The pattern-based forwarding function in Section 3.2 is 
utilized in the data processor. The job of the message 
processor is to guide streaming by requests. Measuring 
current transmission condition, making scheduling decision, 
and controlling streaming with requests are the core 
functions of the message processor.  

In our initial implementation, message processor sends out 
requests at startup to the nodes which have already attached 

to the stream. When such a request is received, the message 
processor checks if it is possible to accept the request 
based on the node’s current available upload bandwidth 
and the specified data rate in the request. If this request is 
acceptable, message processor reduces the available 
bandwidth by the data rate specified in the request, records 
the request for data forwarding and sends a reply message 
to the request sender about the acceptance; otherwise, if the 
request is unacceptable, the request sender is also informed 
about the failure by a reply message. 

To handle the streaming scheduling task, a simple 
algorithm is embedded in the message processor. Its basic 
logic is shown in Figure 4. The main idea of the algorithm 
is to adjust the pattern to reduce duplicated data delivery to 
below a certain level, denoted by the parameter 
exptRedRatio. When all necessary segments are received, if 
the ratio of the number of all received segments to the 
number of effectual segments is greater than exptRedRatio, 
then the node stops sending out requests for more segments 
and starts to reduce the duplication by sending out requests 
with adjusted patterns to its current upstream nodes. In 
order to reduce the impact of different optimized 
scheduling algorithms on streaming, this simple algorithm 
merely fulfills the basic demands on redundancy reduction.  

Input: 
totalSegSum:              total number  of received segments 
effecualSegSum:        number of effectual segments  
newAvailNodeSet[ ]:  set of new available nodes on the network 
upstreamNodeSet[ ]:  set of  upstream nodes to which requests have been 

sent 
Parameters: 

exptSegSum:       expected number of received effectual segments  
exptRedRatio:     expected threshold of totalSegSum /effecualSegSum  

Scheduling: 
if effecualSegSum< exptSegSum then  
       // not all data segments are received 
      for i=0 to min(maxRequest, newAvailNodeSet.size() ) do 
          // send request to avail nodes for all data segment  
           requestSet.insert(newAvailNodeSet[i],                                                   

pattern(11111111,8)); 
    end for i; 
else  
    // all data segment have been received  
      if (totalSegSum/ effecualSegSum> exptRedRatio) then 
           // schedule to reduce the redundancy ratio 
 //randomly select two different nodes  
 j1=random(0, upstreamNodeSet.size( )/2 ); 
 j2=random(upstreamNodeSet.size()/2, 

                                            upstreamNodeSet.size( ) ); 
 // clear some set bits in j1’s bitmap which are also set  in j2’s 
 pattern1= upstreamNodeSet[j1].pattern()& 
                                   ~(upstreamNodeSet[j1].pattern()& 

                                          upstreamNodeSet[j2].pattern() ) 
                 //set request with new pattern to node j1 
                 requestSet.insert(upstreamNodeSet[j1], pattern1) 
    end if 
end if; 

Output: 
requestSet[ ]:  set of requests to be sent out 

Figure 4. Streaming scheduling algorithm 
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4. SIMULATION AND EVALUATION 
To evaluate the control overhead and efficiency of our 
request-driven scheme, we implemented a prototype under 
a simulation environment and conducted experiments on it. 
In this section, we first introduce the simulation platform. 
Then the prototype implementation and experimental 
parameter settings are presented. Finally, simulation results 
are presented and analyzed in a comparison with 
Coolstreaming, the representative system of data-driven 
swarming system. 

4.1 Simulation Environment 
The simulation platform consists of OMNeT++ [11] with 
its extension modules INET [12] and OverSim [3]. 
OMNeT is a component-based and open architecture 
discrete time event simulator. INET is a framework built on 
OMNeT++ and contains IPv4, IPv6, TCP, UDP and many 
other protocol implementations, and several application 
models. OverSim is an open-source overlay network 
simulation framework residing on top of the INET 
framework. The simulation suite provides an integrated 
P2P framework as shown in Figure 5(a). 

Figure 5(b) depicts the architecture of our prototype 
implementation according to the framework in Figure 5(a). 
In the implementation, OMNeT++ takes charge of message 
delivery and INET simulates the network communication 
scenario. On top of INET, the RDS (request-driven 
swarming) overlay realizes the system design presented in 
Figure 3.  Above the overlay, the application layer, named 
SimpleStream, acts as streaming provider or consumer, 
sending or receiving data from the RDS overlay.  

4.2 Evaluation  
Under this simulation environment, we evaluated overhead 
cost and efficiency of the prototype design. The request 
volume and the in-time delivery ratio are chosen as the 
metrics to compare with published data of Coolstreaming. 
The two metrics under different swarming scales are 
analyzed and discussed here.  

As the source code of Coolstreaming is not publicly 
available, it is impossible to transplant its implementation 
to the same simulation environment for comparison. So we 
choose similar simulation metrics as in [14]. To evaluate 
overhead traffic volume, we choose the number of request 
messages and the replies as the metric. With regard to 
evaluating the streaming efficiency, an index named in-
time delivery is used. The index has the same meaning as 
the metric continuity-index in Coolstreaming. 

In the evaluation, all the simulation runs share the same 
parameters. The duration time of all simulation run is 5000 
seconds, which is close to the playback time of a typical 
movie. The nodes’ creation and death follow the Weibull 
distribution [13], which is commonly used in life data 

analysis and P2P network simulation. The node’s 
bandwidth and delay follow uniform distributions over the 
intervals (128Kbps, 10Mpbs) and (50ms, 10ms), 
respectively. The end points of these intervals correspond 
to 

typical DSL (Digital Subscriber Line) and Ethernet 
parameters. Only one stream from one source node called 
the origin node is involved, and the origin node is set to 
generate one segment per second. Segment delivery uses 
UDP (User Datagram Protocol) and the segment length is 
set to 1000 bytes. Therefore a segment can be encapsulated 
in an individual packet. exptRedRatio in the scheduling 
algorithm is 1.5 for all nodes. All experiments for different 
metrics are repeated with various node numbers from 50 to 
1000. 

 
Figure 6 depicts the cumulative volume of messages as a 
function of time in different swarming scales. As shown in 
the figure, the cumulative message traffic volume increases 
with time and with the scale; and the increasing rates 
become stable. Figure 7 shows the volume in every 200-
second interval and gives an obvious view of the trend. For 
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all simulation runs with different swarming scales, the 
request volume in each interval is high at the beginning 
because of the initial construction of swarming 
relationships. Then when most of the nodes have attached 
to the stream the volume decreases and finally stays at 
stable low levels. 

Table 1 presents detailed statistics of the average message 
traffic volume sent per node in different swarming scales. 

The data indicates that the number of requests sent per 
node is limited and independent of the scale of the 
swarming. 

Table 1. The average number of requests sent per node 

Swarming scale 
(node number) 50 100 200 400 800 1000

Requests sent 
per node 0.34 0.403 0.488 0.478 0.337 0.336

 
In our prototype the request packet size is 80 bytes, and in 
200 seconds the number of requests sent by every node is 
less than 0.5 on the average. So the overhead cost of each 
node in 200 seconds is only 40 bytes. According to the data 
published in [14], the control overhead of Coolstreaming, 
which is defined as the ratio of message volume to the 
video data by byte, is about 0.006 when the number of 
partners is 2. This corresponds to exptRedRatio =1.5 in our 
scheme. Given the video data rate is 500Kbps, the number 
of nodes 100, the overhead cost of Coolstreaming in 200 
sec should be about 500kbps×200sec×0.006/100nodes/8 = 
768bytes/node, which is more than 19 times the overhead 
in our prototype. Therefore, we believe the request-driven 
swarming scheme can greatly reduce the volume of 
overhead. 
 
The efficiency of data delivery is another feature of the 
request-driven scheme. In the evaluation, we use the metric 
in-time delivery ratio to estimate the delivery efficiency. 
This metric is defined as the ratio of the number of 
received effectual segments to the segment numbers 
expected in a given interval. The metric has the same 
meaning as the metric of continuity index in the evaluation 
of Coolstreaming [14]. In the experiments, nodes are 

expected to receive segments at the same rate as the origin 
node, which is 60 segments per minute. Figure 8 shows the 
result under different swarming scales. When streaming 
starts up, the ratio is low since only a few nodes join the 
streaming and they have not received many effectual 
segments. Then the ratio increases quickly since more and 
more nodes participate in streaming. Finally, when almost 
all nodes have attached and are receiving data from 
streaming, the ratio reaches its upper bound, which is about 
0.983 in all simulation runs under different swarming 
scales. Compared with the upper bound of continuity in [14] 
which is 0.97, the request-driven scheme achieves high 
efficiency similar to Coolstreaming.  

 

5. CONCLUSION 
In this paper, a request-driven swarming scheme for P2P 
overlay streaming is proposed to address the issues of 
latency and control overhead reduction. This scheme does 
not maintain an explicit overlay structure but uses requests 
to guide the streaming adaptively. Experimental results 
show that the request-driven swarming scheme has low 
control overhead but does not sacrifice efficiency. In 
comparison with Coolstreaming, a representative system of 
data-driven swarming, the request-driven scheme promises 
more flexible control over streaming, much lower control 
overhead and similar efficiency in data delivery. To 
achieve better balance between performance and bandwidth 
expense, future work includes finding more sophisticated 
algorithms on upstream node selection and bandwidth 
estimation. 
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