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ABSTRACT
Service overlay networking is an emerging approach, which
employs overlay nodes to provide advanced services by dy-
namically composing it from basic services available on over-
lay nodes. Advanced service request from users can have
different and multiple quality-of-service (QoS) requirements
and finding a service path that meets these multiple re-
quirements is an open problem. Also, network operators
have operating requirements such as load-balancing to min-
imize hotspots and/or minimizing the overall utilization of
resources in their network. In this work, we describe a novel
algorithm K-Closest Pruning (KCP), based on proximity
based tree pruning, to efficiently determine a service path
meeting all the QoS requirements. An additional novel fea-
ture in this algorithm is that it incorporates the minimal
resource utilization or load-balancing constraints into the
path selection process. KCP algorithm achieves a polyno-
mial running time and is the first, in our knowledge, to take
both the QoS requirements (user/application perspective)
and resource utilization (operator perspective) into account.
We show that the KCP algorithm performs significantly bet-
ter than previous solutions in terms of meeting the QoS re-
quirements of user requests.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network com-
munications

General Terms
Performance

Keywords
Overlay network, service composition

1. INTRODUCTION
The Internet continues to evolve without any mechanism

to provide performance guarantees or explicit feedback about
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Figure 1: Service Overlay Network

network performance to the applications. Overlay networks
have been proposed as a work around to the limitations
of the Internet architecture for enabling new applications
and services. Examples of such proposals include multicast-
ing [4], end-to-end QoS [19] and secure overlay services [12].
The primary usage of overlay networks, initially, had been
limited to providing data forwarding for the applications/services.
Consider the example of a video delivery service to a set of
customers with diverse video playing capabilities and QoS
requirements. Traditional approaches tackled the needs of
these customers by storing the video in different formats at
a content server and utilizing the overlay network for trans-
mitting video along a path meeting the QoS requirements.
An alternative architecture, which reduces storage require-
ment of stored video, involves using the overlay nodes for
transcoding. The server would store the video only in one
format and use the transcoding service, in real-time, to de-
liver it in the users’ desired format. Overlay nodes with
such additional capabilities form the basis of Service Over-
lay Network (SON) [2, 8].

Each overlay node in the SON provides one or more ba-
sic services, referred to as component-services, that act as a
building block for the advanced-service. This process of com-
bining multiple component-services to provide a advanced-
service to the user is referred to as service composition. Fig-
ure 1 illustrates the use of SON to provide a advanced-service
to the users by joining several component-services. Recently,
service composition is becoming more and more prevalent
with the growing popularity of the service mash-ups us-
ing web service 2.0 framework for web service composition.
Such service composition has applications in e-commerce,
science, education etc. mappr.com, allconsuming.net and
yahoo! pipes are some examples of service mash-ups that
string together web services from different providers.
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The efficient delivery of advanced service using service
composition involves finding sequence of overlay nodes such
that QoS requirements for the advanced service are met.
This problem can be formulated, as described in § 3, as
a path selection problem in overlay network with an addi-
tional constraint: the path between source and destination
must pass through a specific set of overlay nodes. This set
of nodes depends on the user request which determines the
sequence of services (and therefore nodes) that must be se-
lected to satisfy user request. Given the exponential com-
plexity of path selection in large overlay networks, several
heuristic based algorithms for path selection, using both sin-
gle constraint [13] and multiple constraints [15], have been
proposed. However, the existing solutions for overlay path
selection are not suitable for path selection in SON due to
the additional constraint. Furthermore, there is a need to
incorporate the service providers requirements such as load-
balancing and reuse of overlay nodes/component-service in
the path selection process.

In this work, we propose a heuristic based algorithm,
K-Closest Pruning (KCP), to solve the problem of multi-
constrained service path selection for SON in polynomial
time by reducing the search space. The main feature of this
algorithm is that the selected path meets all QoS require-
ments specified by the user/application. The path search
algorithm gives precedence to the delay QoS parameter and
constrains the search to the nodes in close proximity to the
current node under consideration in the end-to-end path.
In the KCP algorithm, the distance of the node from the
user/application is used as an initial criteria to select nodes.
As we show later, the proximity based pruning of the search
space achieves the goal of reducing the running time of the
algorithm without sacrificing the quality of the results. Our
algorithm not only selects QoS-guaranteed path to meet user
requirements but also enables service providers to control
the load-balancing of resource usage across multiple replicas
or greater service reuse.

The rest of the paper is organized as follows. § 2 presents
the issues in the area of SON and previous approaches. § 3
describes the overlay network model, path selection con-
straints and formulates the path selection problem. § 4
presents our heuristic algorithm, KCP, for multi-constrained
service path selection. § 5 presents the evaluation method-
ology, and performance results of KCP algorithm. Finally,
we discuss open issues and summarize in § 6.

2. RELATED WORK
There are three main issues in the area of service com-

position using overlay networks and several researchers have
looked at these problems. The first issue deals with the prob-
lem of service/node placement. Specifically, previous work
focuses on how to dynamically choose the number and loca-
tion of service/servers that will be able to satisfy the QoS
requirements and/or provide better end-to-end performance
than native routing [18, 5]. The second issue is that of end-
to-end network measurements i.e. inferring performance on
network paths using active or passive measurements from
end hosts. Several tools and techniques have been devel-
oped for accurate networks measurements [10, 17].

The third question, which is the focus of this work, is the
path selection problem in Service Overlay Network. It has
been known for some time that path selection with multiple
QoS constraints is an NP-complete problem [6, 21]. Hence,

only heuristics algorithm with polynomial time complexity
are considered feasible. This point of view has resulted in a
large number of proposed heuristic based algorithm for path
selection in SON during the last few years [7, 14, 16, 11].

Gu et al. [7] propose an algorithm, QoS-assured Service
Composition (QSC) algorithm, similar to Dijkstra algorithm
to find the best path to service user request. The authors
propose a single metric to represent “cost” on the edge in the
graph used by Dijkstra’s algorithm. For each user request,
the algorithm generates a candidate graph that is comprised
of all the overlay nodes that provide any component-service
from service template corresponding to user request. The
weight of each edge in candidate graph is derived by ag-
gregating the properties of corresponding edge and nodes
in SON network. The path selection problem then involves
finding the shortest path in the candidate graph. Choi et
al. [3] have proposed a graph mapping approach where the
actually topology is mapped to layered candidate graph.
Each layer corresponds to a QoS constraint or a compo-
nent service. Dijkstra’s algorithm is then used to find the
appropriate path in the candidate graph. Though, our ap-
proach also layers the overlay nodes according to the service
request, we use proximity based pruning to reduce the search
space.

Liang et al. [14] propose algorithms for path selection in
SON, which also considers the case of ”multicast” i.e. path
selection in the case of multiple destinations. Raman et
al. [16] focus on server load balancing and proposes a met-
ric, least inverse available capacity, for path selection. The
main limitation in these work is that they aggregate multiple
constraints using linear function. Jaffe [9] showed that the
use linear function to aggregate multiple constraints can not
satisfy all the QoS constraints. Furthermore, there are no
simple shortest path algorithms based on non-linear func-
tions.

3. SERVICE OVERLAY ROUTING
In this section, we first describe the service overlay net-

work model and introduce the terminology. Next, we present
the various cost functions and QoS constraints involved in
path selection and classify QoS constraints in to two classes,
user based and service provider based. Finally, we formulate
the service path selection problem in terms both user and
service provider based QoS constraints.

3.1 Service Overlay Network Model
The traditional IP network comprises of routers and links,

which form the network core, and end-systems, which are
connected to the network core. End-systems are the sources
and sinks of data on the network, and the network core pro-
vides best-effort datagram delivery service for this data. The
Service Overlay Network (SON) is formed by a subset of end-
systems, which are interconnected by overlay links. Overlay
links are virtual links and are formed using IP tunnels com-
prising of multiple physical links over the IP network.

We model SON as a set of N overlay nodes O1, . . . , ON

and N2 overlay links. Each overlay node Oi has some re-
sources including memory and processing capacity. We ag-
gregate all these resources into a single metric and represent
the maximum available resource (or node capacity) of over-
lay node Oi by Ri and its utilization by Ui. We character-
ize the overlay link between any node Oi and Oj by three
metrics: loss rate ρ(Oi, Oj), delay D(Oi, Oj) and available



bandwidth A(Oi, Oj). These three metrics depend on the
state of the underlying IP links that constitute the virtual
overlay link. We assume that the SON can infer or measure
these network properties by using the tools that are available
for e2e network measurements.

The N nodes in SON supports a set of M component-
services S1, . . . , SM , where M < N . Each service has mul-
tiple replicas i.e., each component-service is supported by
several overlay nodes. We denote a replica of service Si on
overlay node Op by Oi

p. End-user requests can arrive at
any overlay node in the network. Each user request has two
components: desired advanced service A and desired user
QoS constraints Q. The end-user request A is serviced as
follows. First, the user request is mapped to a service tem-
plate, denoted as Si, Sj , . . . , St. The service template spec-
ifies the sequence in which the component-services must be
connected to compose the advanced service1. The second
step is to map the service template corresponding to a se-
quence of replicas. The sequence of replicas that will be se-
lected to service user request constitute the service path for
the user request. Then, for service template Si, Sj , . . . , St,
we represent service path as Oi

p, Oj
q , . . . , O

t
x.

3.2 Path Selection Constraints
Selection of overlay nodes for the service path is subject to

two constraints - user QoS constraints and service provider
constraints. Q includes any constraints that may be spec-
ified directly by the user or be inherent to the desired ser-
vices. We consider loss rate (LQOS), available bandwidth
(AQOS), delay (DQOS) and node utilization (UQOS) as QoS
constraints for the selection of nodes. Service provider con-
straints, on the other hand, enable the SON operator to tune
the path selection by taking certain operational factors in to
account. We focus on two such operational factors, which we
deem important for most network operators: load balancing
and second is reuse.

3.2.1 User QoS Constraints:
Delay and loss rate can be formulated as an additive con-

straint. dq,z denotes the e2e delay of a service path from
node Oq to Oz.

dq,z = D(Oq , Or) + · · · + D(Oy , Oz) ≤ D
QOS (1)

If ρq,z denotes the e2e loss rate of a service path from node
Oq to Oz , then it can be expressed as,

ρq,z = 1− ((1− ρ(Oq, Or))× · · · × (1− ρ(Oy, Oz))) ≤ L
QOS

(2)
Available bandwidth and node utilization constraints can be
expressed as follows:

Aq,z = min{A(Oq , Or), . . . , A(Oy, Oz)} ≥ A
QOS (3)

∀Oi in the service path : U(Oi) ≤ U
QOS (4)

3.2.2 Service Provider Constraints:
As discussed earlier, to service a user request, a sequence

of overlay nodes must provide a component-service. Now,
consider the case when two user requests of same type ar-
rive. The two user requests can then be serviced in two
ways: creating two service paths with mutually exclusive set

1A one-to-one mapping from the user request to the service
template is assumed.

of overlay nodes or using one service path to service both
requests. These two approaches of servicing user requests
illustrate two mutually exclusive objectives that path se-
lection algorithm must satisfy: first is load balancing and
second is reuse. The goal of load balancing would be to dis-
tribute load for a service Si equally among its replicas. On
the other hand, the goal of reuse is to maximize the utility
of each

To model these two objectives, we must consider the cost
of providing the component-service on an overlay node C(Oi

p).
Two possibilities must considered while taking the cost of
component-service in to account: either the overlay node is
currently not providing the component-service or it is. The
service cost C(Oi

p) in the former case is equal to C(Si) and in
the latter case equals β × C(Si). β is referred to as service
reuse factor, which determines whether the service on the
overlay node is being reused. β = 0 implies that an existing
active instance of service can be used without increasing the
node utilization. On the other hand, β = 1 implies that a
new service instance needs to be created for each incoming
request. In general, reusing an existing replica on overlay
node to satisfy user request would imply the value of β be-
tween 0 and 1.

We present two metrics, service path cost (SPC) and ser-
vice path utilization (SPU), to select a path satisfying either
reuse or load balancing constraint, respectively. The SPC
for a potential service path (PSP), MSPC, is defined as the
sum of all the service costs, for creating active replica in-
stances, on the overlay nodes in the corresponding path.

MSPC(i) = C(Oi
f ) + C(Oj

r) + · · · + C(Ot
y) (5)

MSPC measures the effect of reuse along each node in the
PSP. According to reuse objective, the most suitable service
path P is the one with the maximum number of nodes doing
reuse. Such a path would have minimal service path cost,

P = k
th PSP such that k = arg min{MSPC(k)} (6)

Similarly, we define SPU for ith PSP, (MSPU), as the sum
of node utilization of all overlay nodes in the corresponding
path. This node utilization includes the increase in utiliza-
tion due to creation of active replica.

MSPU (i) = U(Of ) + U(Or) + . . . U(Oy) (7)

SPU quantifies the aggregate load in the overlay nodes of a
service path and can be used to compare the distribution of
load in the PSPs. For two paths Pa and Pb, a lower value of
SPU for Pa relative to Pb indicates that the aggregate load
is higher in Pb than in Pa. Therefore, Pa is more suitable
according to load balancing constraint. In general, a path
with minimal service path utilization among PSPs is the
best candidate for service path,

P = k
th PSP such that k = arg min{MSPU (k)} (8)

3.3 Problem Statement
Given a set of N overlay nodes O1, . . . , ON and N2 overlay

links, where each node Oi is annotated with its utilization Ui

and each overlay link between Oi and Oj is annotated with
3 metrics: loss rate ρ(Oi, Oj), delay D(Oi, Oj) and available
bandwidth A(Oi, Oj). Then, for a given user request and
its associated QoS constraints, the goal is to find a service
path that satisfies the constraints specified in equation 1,
2, 3, 4 and lastly, either 6 or 8.



4. PROPOSED PATH SELECTION ALGO-
RITHMS

In this section, we describe a novel algorithm with proxim-
ity based tree pruning, K-Closest Pruning (KCP), to solve
path selection problem described in the previous section.
The key feature of our algorithm is that, unlike previous ap-
proaches mentioned in § 2, it does not aggregate multiple
QoS constraints into single constraints. Additionally, KCP
algorithm provides a control knob to either do load balanc-
ing or reuse. We also propose a simple modification to QSC
algorithm, called QSC-modification or QSC-M.

4.1 K-Closest Pruning(KCP): Proximity based
algorithm

The main idea in our approach is to reduce search space,
i.e. to reduce the number of qualified overlay nodes/links,
for service path selection for a given request. A service path
will satisfy a user QoS constraint only if the aggregated
node/link properties is better than the QoS constraint. This
aggregation could be additive such as link delays or max-min
such as service path capacity. If any link or node property
exceeds the corresponding QoS requirement, then the ser-
vice path containing such link or node would certainly fail
to meet the QoS requirement. Therefore, the key to reduc-
ing search space is to examine all the link and node proper-
ties and eliminate any links/nodes that do not meet all user
specified QoS requirements.

Next, we describe our algorithm, referred to as K-Closest
Pruning (KCP) algorithm, to do multi-constrained path se-
lection. Suppose a user request Sj , Sk . . . St, with QoS con-
straints Q, arrives at an overlay node Or. The significance of
the node Or is that it must be the last node in any service
path that is selected for this user request. There are two
main steps in this algorithm: first is search space reduction
and second is depth first search. The intuition in the search
space reduction is that overlay nodes which are close to node
Or are more likely to be able to meet the delay constraints
whereas the nodes that are distant from Or are less likely to
meet the delay constraints of user request.

More specifically, in the first step, we set Or as the root,
or level 0, of the tree. Then, we select K nodes, which
are closest to Or in terms of delay and can provide last
service Su

t from the service template. These K nodes form
the level 1 of the tree rooted at Or . We, then, iteratively
choose K-closest nodes providing service u − 1th for each
node providing service uth and put them at u − (u − 1) + 1
level in the tree. This iterative process results in K-ary tree
rooted at Or. The leaf nodes, at level u, in the resulting tree
provide the first service S1

j from the template. Any potential
service path must include one node from each level in this
tree.

As part of the second step, we use depth first search to find
all potential service paths. The potential service paths must
meet all the QoS requirements specified by user. This is en-
sured by performing the following steps. We start the tree
traversal at root node Or and proceed with tree traversal in
depth first manner. Suppose that we are at an intermediate
node On. We examine the path from On to Or and com-
pare the link/node properties with the user specified QoS
constraints Q. If the path from root till the node On meets
all the QoS requirements, then we continue tree traversal by
selecting the left first child of On. If On does not have any

child or all the children have been visited, then go the the
adjacent node of On. If the path from the root till On does
not meet all of the QoS requirements, we cutoff the sub-
tree below On and proceed to the adjacent node in the same
level. When we reach the leaf node Ol in level u, we record
the path from Ol to Or if the path meets QoS requirement.

At the end of depth first search, the user is admitted if we
have found at least one path. Otherwise, the user request
is rejected. Our algorithm also provides a new control knob
aimed at service providers to bias the path selection for load
balancing or service reuse. If more than one path is found,
then the selection of service path is based on whether the
service provider objective is load balancing or reuse. If the
objective is to have high degree of load balancing, then we
select the path with minimum SPU metric, otherwise, we
select the path with minimum SPC metric.

4.2 QSC-Modification (QSC-M)
Next, we propose QSC-M algorithm that builds on top of

QSC algorithm [7]. Both the approaches use the same path
selection algorithm to find the shortest path; the difference
between QSC-M and QSC is that QSC-M has an additional
step after the shortest path is found. QSC-M checks whether
the shortest path meets the QoS requirements or not. User
request is admitted if the shortest path satisfies all the QoS
requirements. Otherwise the user request is rejected. QSC,
on the other hand, does the path selection based only on
finding the shortest path and not on explicitly satisfying the
QoS requirements, and therefore a service request is never
rejected in QSC. As we later show in the evaluation section
QSC-M performs significantly better that QSC. This is be-
cause QSC-M does not hold resources for the sessions where
QoS constraints are violated.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of KCP al-

gorithm using simulations. We show the trade-offs between
the reuse and load balancing approach, and compare their
performance with QSC approach proposed in [7].

5.1 Evaluation Methodology
To evaluate KCP and QSC-M algorithm, we have imple-

mented a flow-level discrete-event simulator. We use two
methods to construct the Service Overlay Network topol-
ogy. In the first method, we use gt-itm [1] to generate na-
tive network topology based on transit-stub model. The key
parameters for the topology generated from gt-itm are: 3
transit network, 8 stub network per transmit network and
20 nodes per network. The total number of nodes in this
topology are 2000. In our simulation, the delay for the na-
tive links is uniformly distributed from 4 to 20 msec, loss
rate from 2% to 8% and the capacity from 10 to 100 Mbps.
The native layer routing uses Dijkstra’s shortest path (with
delay as the cost metric) algorithm.

The overlay network consists of 200 SON nodes which are
randomly selected from 2000 native network nodes. The
overlay nodes are connected in a full-mesh topology and the
capacity of the overlay link is equal to the narrow link ca-
pacity. SON provides a total of 5 distinct services and each
overlay node provides 1 out of these 5 services.

In the second method, we use the S3 Planet-lab measure-
ments [22] to construct SON topology. These Planet-lab
measurements provide the delay and capacity between over-



lay nodes and therefore the resulting topology has a realistic
delay and capacity distribution. Additionally, the topology
is not a full-meshed topology and the connectivity is deter-
mined based on the availability of data in the Planet-lab
data.

In addition to SON topology, the end-user workload is an-
other important parameter in evaluation of these algorithms.
Tang et. al [20] developed an open source synthetic workload
generator for streaming media applications (called MediSyn
). Medisyn generates realistic and reproducible synthetic
work load, which models a number of characteristics unique
to streaming media services, including file duration, session
duration and non-stationary popularity of media accesses.
We have also evaluated the performance of these algorithms
with end-user requests which are generated from a Poisson
process i.e. the request inter-arrival follows an exponential
distribution. In both the end-user request generation model,
each user request arrives randomly at one of the overlay
nodes in SON. A user request is admitted into the system if
a service path meeting the QoS requirements exists. Other-
wise, the user request is rejected.

We have also implemented QSC algorithm, as described
in [7], in our simulator to compare its performance with
KCP and QSC-M. The QSC algorithm is based on Dijk-
stra’s shortest path algorithm. For each user request, the
algorithm generates a candidate graph that is comprised of
all the overlay nodes that provide any component-service
from service template corresponding to user request. The
weight of each edge in candidate graph is derived by aggre-
gating the properties of corresponding edges and nodes in
the SON network. The cost of overlay link between Oi and
Oj is given as

D(Oi, Oj)

DQoS
+

ρ(Oi, Oj)

LQoS
+

C(Si)

U(Oi)
+

AQOS

A(Oi, Oj)

At this time, we do not simulate any cross traffic in our ex-
periments. Consequently, any load fluctuations in a network
link can happen only due the assignment of a user request to
that link. The use of cross-traffic to introduce random and
independent load fluctuations in native links and therefore
in overlay links will be examined in future work.

5.2 Performance Metrics
We evaluate path selection based on five performance met-

rics: reject ratio, QoS violation rate, QoS violation degree,
idle node ratio and node utilization. First three metrics,
which are more relevant to the performance perceived by
user, examine algorithm performance by quantifying the frac-
tion of admitted requests to total requests, and the rate and
the extent of violations of various QoS constraints. Last
two metrics, which are indicators of network utilization, are
a measure of the number of idle nodes and distribution of
load on the nodes in the network.

Specifically, reject ratio is a measure of how many user
requests are not accepted (i.e. rejected) due to incapabil-
ity of SON to meet their QoS requirements. It is defined
as the fraction of number of requests rejected to the total
number of request that arrive in the system. Smaller re-
ject ratio would mean that larger number of user requests
were admitted into the system. This is desirable as long as
the user requests that are admitted have their QoS satis-
fied. On the other hand, network operators may not prefer
a smaller reject ratio that is is achieved by admitting user

requests without satisfying their QoS requirement because it
will violate the service level agreements with users. We use
QoS violation ratio to quantify the the number of user re-
quest whose QoS requirements were violated even once over
their duration. It is defined as the fraction of admitted user
requests that experience at least one QoS violation. QoS vi-
olation degree measures the magnitude of QoS violation and
is defined as the difference between the measured QoS value
and the desired QoS value relative to desired QoS value.
Idle node ratio is measures the average number of of idle
nodes (i.e. the nodes with zero utilization). Node utilization
measures the averages node utilization over all the nodes in
SON.

5.3 Evaluation using Medisyn based workload
and Planet-lab based topology

We next examine the performance of two variants of KCP
algorithm for different values of K and different load con-
ditions, and compare its performance with QSC algorithm.
The user requests are generated from Medisyn. For the re-
sults in Figure 2 to 4, the request arrival rate is varied from
200 to 700 requests. The average duration of all the requests
is generated from a Zipf distribution in Medisyn with one
of the following four mean and standard deviation values,
(20, 30, 63, 98) and (60, 40, 60, 122), respectively. The QoS
requirement associated with each user request is distributed
as follows: delay QoS from 30 to 150 msec, bandwidth QoS
from.3 to 65 Mbps and loss rate QoS from 8% to 25%. We
have used planet-lab traces to construct the SON topology.
Therefore, the overlay link delay and capacities in the trace
driven topology correspond to delay and capacities in planet-
lab and allows us to evaluate algorithms in a more realistic
scenario. Note that we have set the loss rate to 0 for all the
links because the loss rate information was not available in
the planet-lab traces. In the following figures, KCP-R refers
to KCP algorithm using reuse as objective for path selection,
while KCP-L refers to using load balancing as objective.

Figure 2 shows both the reject ratio and QoS violation
ratio for KCP variants, QSC and QSC-M algorithms for
increasing user request arrival rate. First observation is that
only QSC algorithm has non-zero QoS violation ratio. The
main reason for a non-zero QoS violation ratio is that QSC
algorithms admits a user request as long as shortest path
is found and does not check whether the QoS requirements
have been met. Since QSC algorithm only looks for shortest
path, it is able to admit all the user requests and has a
reject ratio equal to 0. KCP algorithm, on the other hand,
admits a request only if a service path that meets all the
QoS requirement is found. If such a service path is not
found, then the user request is rejected. Similarly, QSC-M
approach also rejects the request if the shortest path does
not meet all QoS requirement.

Second observation is that both the reject ratio and QoS
violation ratio increase with the user request arrival rate.
This is not unexpected because higher request arrival rate
leads to higher network/node resource utilization and con-
sequently lower chances of finding service paths that match
the QoS requirements of user request.

Figure 3 and 4 show the load variation and idle node ratio
for all algorithm. We show the standard deviation of node
utilization as a metric for load variation. The standard de-
viation is an important metric to quantify how much load
balancing does a given algorithm achieve. The goal of load
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balancing is to distribute the load from user requests among
all the nodes in the network i.e. reduce the variation of load
among overlay nodes. A higher value of standard deviation,
therefore, would imply poor load balancing. Figure 3 clearly
shows that KCP-L outperforms KCP-R in terms of load bal-
ancing objective. Also note that the standard deviation of
node utilization shows a non-monotonic increase for all al-
gorithms except QSC. As the node utilization approaches
100%, the node utilization is ”clamped” by node capacity.
This clamping effect causes the reduction in load variation
at high loads.

KCP-R, on the other hand, has more number of idle nodes
than KCP-L, as shown in figure 4. This implies that KCP-R
achieves better reuse performance than KCP-L for a given
K. In other words, KCP-R has low fragmentation of node
resources and always has resources to admit user requests
that may require 100% of node resources. Thus it is evident
that both KCP-L and KCP-R achieve their individual goals
and the service providers can control the load distribution on
various service nodes by choosing either the load-balancing
objective or the service reuse objective.

We have also evaluated the performance of these algo-
rithms when the average duration of request is considerably
longer. Specifically, the average duration of all the requests
has one of the following four mean and standard deviation
values, (4000, 7000, 9300, 11821) and (600, 400, 600, 1223),
respectively. The results were similar to the case when the
average duration of user request is shorter.

5.4 Evaluation using Random Workload and
Planet-lab based topology
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Figure 4: Idle node ratio (Medisyn Workload and
Planet-lab Topology)
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Figure 5: Reject/Violation Ratio (Random Work-
load and Planet-lab Topology)

Next, we show results comparing the performance of pro-
posed algorithms against QSC approach when the user re-
quests are generated from Poisson distribution, as described
in §5.1. Specifically, the user request interarrivals follow an
exponential distribution with their arrival rate in the range
[200,700]. The request duration is uniformly distributed be-
tween 15 and 45 secs, delay QoS from 200 to.30 msec and
bandwidth QoS from 7 to 45 Mbps.

Figure 5 shows reject ratios for KCP and QSC-M algo-
rithms, and violation ratio for QSC algorithm. The main
observation is that KCP variants and QSC-M algorithms are
able to meet all the QoS requirements by rejecting 10-25%
requests under a range of load conditions. Additionally, the
fraction of rejected request is less than 50% of the requests
that experienced QoS violation in QSC.

Figure 6 and 7 show the load variation and idle node ra-
tio for all algorithms. Similar to the result from previous
section, we observe that KCP-L algorithm has the mini-
mum load variation and therefore achieves the highest de-
gree of load balancing. The advantage of KCP-R approach
is evident in figure 7 which clearly shows that KCP-R has
maximum fraction of completely idle nodes under all load
conditions.

6. CONCLUSION
In this work, we have presented a novel algorithm for path

selection in service overlay network. Our simulation results
validate that the algorithm achieves the following: first, the
value of K can be tuned to balance the performance re-
quirements and the computation complexity; second, the al-
gorithm is able to guarantee multiple QoS requirements of a



100 200 300 400 500 600 700 800
Request Arrival Rate (per second)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

St
an

da
rd

 D
ev

ia
tio

n 
of

 N
od

e 
U

til
iz

at
io

n

KCP-L (K=5)
KCP-R (K=5)
KCP-L (K=25)
KCP-R (K=25)
QSC
QSC-M

Figure 6: Node Utilization Variability (Random
Workload and Planet-lab Topology)
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Figure 7: Idle Node Ratio (Random Workload and
Planet-lab Topology)

given service composition request; third, the algorithm keeps
the request reject ratio low by better utilization of resources.
We have also introduced two distinct service provider objec-
tives of reuse and load balancing and show that using sim-
pler metrics such as SPC or SPU can help in modifying the
path selection of KCP algorithm to achieve these objectives
without affecting performance of KCP algorithm. The use
of these two objectives coupled with algorithm’s ability to
guarantee each QoS constraint essentially provides simple
tunable knobs for customizing this algorithm for different
deployment scenarios.

Several important problems remain open for future work.
What should be the value of K for a network with arbi-
trary number of nodes? Initial investigation shows that K

depends on the user request arrival rate and resource avail-
ability. Other factors that K would depend on include size
of SON, user request load/request-duration distribution and
total number of services provided by SON. It would be use-
ful to dynamically determine the value of K based on SON
state. We have identified that Reuse and Load balancing
have their own advantages for doing path selection. An open
question is how to dynamically choose one of the two ob-
jectives according to network conditions or service provider
utility functions.
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