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Abstract—There has been a recent rise in interest in building
networked control systems over a wireless network, whether
they be for robot navigation, multi-robot systems, or traditional
industrial automation. The wireless networks in these systems
must deliver packets between the controller and the actua-
tors/sensors reliably and with low latency. Furthermore, they
should be amenable to modeling and characterization so they
can be designed as part of a complete control system. Mesh
networks are particularly suited for control applications because
they provide greater reliability through path diversity.

This paper introduces tools for characterizing the end-to-
end connectivity of two points in a wireless mesh network as
a function of latency. In particular, we use tools derived from
Markov chain models to compare end-to-end connectivity in two
routing protocols running on the Data Link/MAC layer provided
by Dust Network’s Time Synchronized Mesh Protocol (TSMP):
Directed Staged Flooding (DSF) and Dust Network’s Unicast
Path Diversity (UPD). These models also allow us to calculate
the traffic load, the sensitivity of end-to-end connectivity to link
estimation error, and the robustness of the network to node
failure. The paper gives an example of how these tools can be
used to evaluate the feasibility of running control applications
over sensor networks.

I. INTRODUCTION

Wireless mesh networking has enabled a new generation
of pervasive devices with the potential to provide reliable
communication in environments with limited fixed infras-
tructure. Wireless sensor and actuator networks, sometimes
simply referred to as sensor networks, are one such class of
devices which can use mesh networking to connect sensors
and actuators that monitor our environment and control other
instruments [1]. Sensor networks enable a large variety of
applications including outdoor environmental monitoring for
scientific research, diagnosing civil structures for damage
under earthquakes, monitoring the sick and elderly for assisted
living at home, and sensing and control of industrial automa-
tion equipment, among others. Feedback control systems are
among the hardest types of applications for sensor networks
because they place stringent requirements on reliability and
latency. These applications motivate the need for tools to
characterize wireless mesh networking on sensor networks for
control systems.

A. Control over Lossy Networks

The recent increased interest in using wireless networks for
industrial automation culminated in the formation of the ISA-

SP100 committee to set up an industrial wireless standard [2].
The current version of the ISA-SP100 standard plans to build
on the PHY layer provided by the IEEE 802.15.4 standard [3]
for low-power, ad-hoc, wireless, personal area networks.

The key issues in using wireless communications for control
systems is reliability and latency. The designer of the control
system needs to know the probability of end-to-end delivery
of the packet, pnet, as a function of delay, td, to provide
performance guarantees on the controller. Many papers in the
area of Networked Control Systems study the impact of packet
loss on the stability of discrete-time estimators [4], [5], [6],
assuming that packets arriving after a deadline (the sampling
period) are lost. But despite using the moniker “network”,
many of these papers derive results using a simple, point-to-
point communication channel. For instance, in [5] Sinopoli et
al. assume the packet loss in the channel can be modeled by
an i.i.d. Bernoulli random variable.

The goal of this paper is to model examples from two
classes of TDMA mesh networks for control systems, multi-
path routing with retransmissions and constrained flooding.
We wish to derive the function p

(td)
net relating the probability

of end-to-end delivery to delay for a packet in a wireless mesh
network providing communication for a control system so we
can use the existing theory in Networked Control Systems
to characterize the system’s stability and performance. The
paper focuses on TDMA networks because of the difficulty
modeling and providing probabilistic guarantees on latency for
networks using CSMA/CA contention protocols. It focuses on
mesh networks because multiple paths between a source and
destination are necessary for good end-to-end reliability.

B. Related Work on Multi-path Routing

To increase reliable end-to-end delivery of packets, many
routing schemes propose sending multiple copies of a packet
on multiple paths. These range from controlled, probabilistic
flooding schemes like ARRIVE [7] to schemes that code the
data over a set of packets and send them along disjoint or
braided (partially disjoint) paths such that only a subset of the
packets need to be received for reconstruction [8]. Multi-path
routing schemes are also distinguished by whether an end-to-
end path is selected at the source for a packet, such as the
braided and disjoint paths of [9], or whether the packet can
switch paths during transit, as in “true mesh” routing protocols
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like Unicast Path Diversity (UPD) over Time Synchronized
Mesh Protocol (TSMP) [10]1 and ARRIVE. The protocols
studied in this paper will be of the latter type.

Many of the multi-path routing papers use simulations to
demonstrate qualitative features of their routing schemes [9],
[7]. A small set of papers try to mathematically model and
analyze the benefits of multi-path routing, but they either
model at the level of paths or assume networks with a very
large number of nodes. In [8], Dulman et al. perform some
simple analysis to get the tradeoff between traffic and relia-
bility, but the analysis does not consider latency. Furthermore,
the calculations use the end-to-end connection probability of
disjoint paths, not individual link probabilities, and hence do
not account for varying path lengths or link probabilities. In
[11], Nasipuri et al. propose a multi-path extension to DSR
and the analysis focuses on finding the statistics of the time
between successive route discoveries. Again, the paper builds
on a path model with path lifetimes drawn from a distribution
instead of a link model with individual link probabilities. In
[12], the authors use a geometry-based argument on networks
with a very large number of nodes to argue that k-shortest path
routing algorithms only distribute the load evenly through a
network when it uses a very large number of paths.

This paper takes a different approach from the papers men-
tioned above, deriving link-probability-based analysis tools
applicable to networks of any size for two examples of
mesh routing protocols. We propose models for Unicast Path
Diversity and Directed Staged Flooding, with the goals of
computing the end-to-end connectivity of the network p

(td)
net ,

identifying hot spots in the network where traffic is concen-
trated, and finding the robustness of the calculations to link
probability modeling uncertainty. Most of the arguments in
this paper are presented in more detail in [13].

II. UNICAST PATH DIVERSITY

Dust Networks, Inc. proposed Unicast Path Diversity (UPD)
over Time Synchronized Mesh Protocol (TSMP) [10] for
reliable networking in sensor networks. The algorithm exploits
frequency, time, and space diversity to achieve what they claim
is over 99.9% typical network reliability [14]. We use a general
Mesh TDMA Markov Chain (MTMC) model to analyze the
performance of UPD over TSMP (hereafter referred to simply
as UPD) for incorporation into a control system.

A. Modeling Characteristics

We model UPD as a frequency-hopping TDMA scheme
with multi-path routing. UPD is a many-to-one routing pro-
tocol, i.e. there is one sink in the network. Each node in
the network has multiple parents and the routing graph has
no cycles. The links selected for routing are bidirectional,
and hence every link transmission can be acknowledged. If
a packet transmission is not acknowledged, it is queued in the
node for retransmission. As for scheduling, time is divided
into time slots, and grouped into superframes (See Figure 1).

1The name Unicast Path Diversity is not explicitly mentioned in the
reference, but this is the name of the routing protocol that is described.

Fig. 1. Example of a UPD schedule with superframes and time slots. Here,
only 8 of the 16 frequency channels are used.

At each time slot, pairs of nodes are scheduled for transmitting
a packet on different frequencies. The superframe containing
the schedule of transmissions is repeated over time. Our model
uses frequency hopping to justify the assumption that links are
independent over retransmissions.

To construct a model of mesh TDMA routing, we assume
knowledge of the routing topology, schedule, and all the link
probabilities. Furthermore, we study single packet transmis-
sion in the network and do not analyze the effects of queuing.

B. Mesh TDMA Markov Chain Model

Let us represent the routing topology as a graph G = (V, E),
and denote a node in the network as i ∈ V = 1, . . . , N , and
a link in the network as l ∈ E ⊂ {(i, j) | i, j ∈ V}, where
l = (i, j) is a link for transmitting packets from node i to
node j. Time t will be measured in units of time slots, and let
T denote the number of time slots in a superframe. The link
success probability for link l = (i, j) at time slot t is denoted
p
(t)
l , or p

(t)
ij . We set p

(t)
l = 0 when link l is not scheduled to

transmit at time t.
For a packet originating from a source node a routed to

a sink node b, we wish to compute p
(td)
net , the probability the

packet reaches b at or before time td has elapsed. This is done
by a time-varying, discrete-time Markov chain.

Mesh TDMA Markov Chain Model Let the set of states
in the Markov chain be the nodes in the network, V . The
transition probability from state i to state j at time t is simply
p
(t)
ij , with p

(t)
ii = 1−

∑
j 6=i p

(t)
ij . Let P (t) = [p(t)

ij ]T ∈ [0, 1]N×N

be the column stochastic transition probability matrix for a
time slot and P (T ) = P (T )P (T−1) . . . P (1) be the transition
probability matrix for a repeating superframe.2 Assume

P (T+h) = P (cT+h), ∀c, h ∈ Z+ (1)

meaning that the link probabilities in a time slot do not vary
over superframes.

A packet originating at node a is represented by p(0) = e[a],
where e[a] is an elementary vector with the a-th element equal

2[0, 1] denotes the closed interval between 0 and 1. [ · ]T denotes the
transpose of a matrix while P (T ) denotes the transition matrix at time T .



Fig. 2. Multi-path routing example corresponding to (3).

to 1 and all other elements equal to 0. Then,

p(td) = P (td) · · ·P (2T+1) P (2T )P (2T−1) · · ·P (T+1)  
P (T )

·

P (T )P (T−1) · · ·P (1)  
P (T )

p(0)
(2)

represents the probability distribution of the packet over the
nodes at time td.

The sink node b is an absorbing state in the Markov chain,
meaning there are no transitions out of that state. This means
p
(td)
net = p(td)b , the b-th element of the vector p(td). A good

routing schedule would have p
(td)
net

td→∞−−−−→ 1, meaning the
packet will eventually reach the sink. This condition is satisfied
when the MTMC model has only one recurrent class consisting
of the sink (See [15]).

C. MTMC Examples and Discussion

An example of a small UPD routing schedule is given in
Figure 2, where pij is the link probability for link (i, j) and
p̄ij = 1− pij . We get the transition probability matrices,

P (1) =


p̄12 0 0 0
p12 1 0 0
0 0 p̄34 0
0 0 p34 1


P (2) =


p̄14 0 0 0
0 p̄23 0 0
0 p23 1 0
p14 0 0 1



P (3) =


p̄13 0 0 0
0 p̄24 0 0
p13 0 1 0
0 p24 0 1



p(0) = [ 1 0 0 0 ]T P (3) = P (3)P (2)P (1)

(3)

The MTMC model can be modified to represent routing
topologies and schedules not used by UPD. For instance, UPD
avoids creating cycles in the routing graph, as one would want
from a good routing algorithm. The MTMC model, however,
can model routing cycles that may arise when the network
malfunctions. We can still calculate p

(td)
net , and we still have

p
(td)
net

td→∞−−−−→ 1 if no recurrent classes besides the sink are
added to the Markov chain. The MTMC model can also be
extended to represent mesh networks with multiple collection
points (ex. two Internet gateways to a sensor network). In this

case, if we let B be the set of sinks, p(td)net =


i∈B p
(td)
i .

Finally, if we wish to model schedules that never retransmit
packets, we simply remove the requirement in our MTMC
model that p(t)ii = 1 −


j =i p

(t)
ij , instead replacing it with

p
(t)
ii = 0. To ensure that the transition probability matrix P (t)

is a column stochastic matrix, we add a dummy state N+1 to
represent a packet being lost after transmission. Now, P (t) =
[p(t)ij ]T ∈ [0, 1]N+1×N+1, where p

(t)
i(N+1) = 1 −


j =i p

(t)
ij ,

p
(t)
(N+1)i = 0 for all i = N + 1, and p(t)(N+1)(N+1) = 1.

D. MTMC Analysis

1) Network-wide Rate of Convergence for p(td)net : Besides
calculating p

(td)
net for one node transmitting to the sink, we

would like to calculate the rate of convergence of p(td)net → 1
for the entire network from P (T ). This may be a useful metric
for designing routing schedules to optimize the performance
of the network.

Theorem 2.1 (MTMC p
(td)
net converges exponentially to 1):

Let P (T ) ∈ [0, 1]N×N be a diagonalizable, column stochastic
matrix with limk→∞(P (T ))kp = e[b] for all probability
vectors p. Here, e[b] is an elementary vector with the b-th
element equal to 1 and all other elements equal to 0, meaning
that the routing topology has a unique sink node b which is
the unique recurrent state in the Markov chain. Then,

p
(td)
net ≥ 1− C(ρ∗)k, k =


td
T


(4)

for some constant C dependent on the initial distribution p(0)

and ρ∗ = max{|λ| : λ is an eigenvalue of P (T ) and |λ| <
1}.
Therefore, p(td)net converges to 1 exponentially with a rate ρ∗.
The proof of this can be found in [13]. The rate ρ∗ gives a
sense of how the worse case end-to-end connection probability
in the network varies as a function of delay.

2) Traffic Distribution: To identify hot spots in the network,
we compute the probability that the packet visits a node i at
or before time t. This can be done by making i an absorbing
state in the MTMC model and finding p(t)i on the new model.

In other words, ∀t ∈ N,∀j ∈ V , let

P̃
(t)
ji = 0

P̃
(t)
ii = 1

P̃ (t)
mn = P (t)

mn ∀m,n ∈ V, n = i

(See Figure 3). The resulting model has two absorbing states,
b and i. α(t)i = p̃(t)i = P̃ (t) . . . P̃ (1)p(0) is the probability that
the packet visits node i in the original model at or before time
t, while α(t)b = p̃(t)b is the probability that the packet arrives at
the sink at or before time t through an alternate path disjoint
with node i.

To find αi = limt→∞ p̃
(t)
i , the probability the packet ever

visits node i, we solve a system of equations for the probability
that any state j = i is absorbed into state i.

Theorem 2.2 (Absorption Probability Equations [15]): For
a given Markov chain, choose an absorbing state i. Then, the



Fig. 3. Illustration of how to create absorbing states in the Markov chain
to calculate the probability that a packet sent from node 1 to node 4 passes
through node 2 by time t, using the routing topology of Figure 2.

probabilities αj of reaching state i starting from j are the
unique solution to the equations

αi = 1
αj = 0 for all absorbing j = i

αj =
N
k=1

pjkαk for all transient j

(5)

3) Link Perturbation: Sometimes, we only know that the
probability of a link lies within an interval (p(t)ij + , p

(t)
ij − ),

and estimate it as p(t)ij . Unfortunately, we cannot bound the
range of p(td)net by simply recomputing p(td)net using the endpoints
p
(t)
ij +  and p

(t)
ij − . This is argued carefully in [13], and is

essentially because our routing scheme keeps one copy of the
packet in the network and retransmits a packet when a link
transmission fails, causing p

(td)
net to be a polynomial function

of the link probability.
The alternative is to try bounding the distance of the eigen-

values λ̂ of the actual transition probability matrix P̂ (T ) from
the eigenvalues λ of our estimated transition probability matrix
P (T ), a standard problem in matrix perturbation analysis. In
other words, if λ̂x is an eigenvalue of P̂ (T ) = P (T ) + δF, δ ∈
(−,+) and F a matrix corresponding to the perturbed link
(Fii = −δ, Fji = δ and all other entries 0), then there is
some eigenvalue λy of P (T ) such that |λ̂x − λy| < C(F, ),
where C(·, ·) is some function of F and . There are several
standard techniques to do this, some that require P (T ) to be
diagonalizable or P (T ) to be normal (A∗A = AA∗), which
may not always hold. These techniques are applicable on a
case by case basis. For more details, see [16].

III. DIRECTED STAGED FLOODING

We propose a simple constrained flooding scheme called
Directed Staged Flooding (DSF) for one-to-many and one-
to-one routing, focusing on the latter. Unlike UPD, DSF
provides increased end-to-end connectivity with less latency
by multicasting packets instead of using acknowledgments and
retransmissions. We use a Directed Staged Flooding Markov
Chain (DSFMC) model to find p(td)net . As with UPD, we build
the model assuming we are provided with a routing schedule,
the way nodes are grouped into stages (discussed below), and
all the link probabilities. We leave the development of an
algorithm to construct such a routing schedule for future work.

Fig. 4. Directed Staged Flooding example on a wide path topology containing
stages with a path width of 3. Discussed in more detail in Section III-C.

A. Modeling Characteristics

Like UPD, DSF also assumes that the nodes follow a TDMA
routing schedule. During a transmission each node transmits
to a subset of its neighboring nodes. Furthermore, we group
the nodes along the end-to-end transmission path such that a
packet is modeled as being passed between groups of nodes,
and we call each group of nodes a stage. Figure 4 illustrates
this on a wide path topology between a source and destination
where the nodes lie on a regular grid and each stage, except
the first and last, consists of a column of 3 nodes.

DSF does not use acknowledgments to signal a node to
retransmit a packet on a failed link. Thus, with careful
scheduling consecutive packets will not queue in the network
if there is only a single source transmitting to a single sink.

Our DSFMC model of DSF requires the sets of link trans-
missions between distinct pairs of stages to be independent.
Like UPD, DSF uses frequency hopping over time to help
justify this assumption. However, the model allows the link
transmissions between the same pair of stages to be correlated.
This mirrors reality because on any single multicast transmis-
sion, all the receiving nodes are listening on the same channel.

Our DSFMC model also assumes that all nodes in one
stage transmit their copy of the packet before the nodes in
the next stage transmit their copy of the packet. Furthermore,
the transmissions of nodes within a stage will interfere with
each other, so they must be scheduled in separate time slots.
We make this assumption because most sensor network nodes
have only one radio and can only listen to one channel at a
time.

In DSF routing schedules, a node can be shared between
multiple stages (See Figure 5). Like UPD, we assume that
the links in the routing topology for DSF do not form a
cycle. Complications arise when sharing nodes between stages
because unlike flooding, staged flooding puts the constraints
that a packet can only be transmitted from a node if it received
the packet prior to the time another node in its stage first
transmits. This is necessary for the DSFMC model developed
below to hold. To enforce this condition, packets may carry
with them a field indicating during which stage they were last
transmitted. Last of all, we assume that if a node i is shared
between stages k and k+1, then node i will retain the packet
after transmission in stage k so it “receives the packet” with
probability 1 in stage k + 1.



Fig. 5. Directed staged flooding example corresponding to (9).

B. Directed Staged Flooding Markov Chain Model

As before, we represent the routing topology as a graph G =
(V, E) and denote a node in the network as i ∈ V = 1, . . . , N
and a link in the network as l ∈ E ⊂ {(i, j) | i, j ∈ V}, where
l = (i, j) is a link for transmitting packets from node i to node
j. Because each link is used only once when transmitting a
single packet, the link success probability for link l = (i, j)
is treated as being time-invariant and is denoted pl, or pij .

Unlike the MTMC model, in the DSFMC model a state in
the Markov chain at a stage represents the set of nodes in
the stage that successfully received a copy of the packet. The
transition probabilities between the states depend on the joint
probability of successful link transmissions between stages.
We state the DSFMC model for the special case where the
links are all independent. For the general model, see [13].

Directed Staged Flooding Markov Chain Model Let’s as-
sume we have a routing topology with K+1 stages 0, . . . ,K.
Each stage k has Nk nodes, and the set of 2Nk possible
states in stage k is represented by the set of numbers S(k) =
{0, . . . , 2Nk − 1}. Let K(k) be the set of nodes in stage k and
for each state σ(k) ∈ S(k), let R(k)

σ ⊂ K(k) be the set of nodes
that have received a copy of the packet and U (k)

σ = K(k)\R(k)
σ

be the set of nodes that have not received a copy of the packet
(See Figure 6). Let ω(k) denote the state where no nodes
received a copy of the packet in stage k.

The conditional probability of the next state X(k+1) being
state σ(k+1) given that the current state X(k) is σ(k) can be
expressed as

P(X(k+1) = σ(k+1)|X(k) = ω(k)) =
1 : σ(k+1) = ω(k+1)

0 : otherwise

if σ(k) = ω(k)

P(X(k+1) = σ(k+1)|X(k) = σ(k)) =




u∈U(k+1)
σ

i∈R(k)
σ

(1− piu)






r∈R(k+1)
σ


1−



i∈R(k)
σ

(1− pir)




(6)

The transition probability matrices between stage k and k +
1 are P (k+1) ∈ [0, 1]Nk+1×Nk , where the entry in position
(σ(k+1), σ(k)) of the matrix is P(X(k+1) = σ(k+1)|X(k) =
σ(k)).

The initial state X(0) is the state σ(0) corresponding to
R(0)
σ = {a}, where a is the node sending the initial packet.

Fig. 6. Mapping of states to nodes that received a packet in the DSFMC
model. On the left is an example of a state σ(k) and on the right is the state
ω(k) where no packets have been received.

Then, the probability distribution p(k) ∈ [0, 1]Nk of the state
at stage k is

p(k) = P (k) · · ·P (2)P (1)  
P (k)

p(0) (7)

We can obtain the probability that a copy of the packet is
at a node i at time t directly from our model by translating
t to k from the relation t =

k−1
i=0 Ni and looking at

{σ(k)|i∈R(k)
σ } P(p(k) = σ(k)). In the case where the last

stage contains only the sink node and only the nodes in stage
K − 1 transmit to the sink, if b is the state in stage K where
the sink receives a copy of the packet, we have

p
(td)
net =


0 : td ≤

K−2
i=0 Ni

p(K)
b : td ≥

K−1
i=0 Ni

(8)

and 0 ≤ p
(td)
net ≤ p

(K)
b when

K−2
i=0 Ni < td <

K−1
i=0 Ni.

Finally, note that except in the special case where there
exists a path from the source to the destination with all link
probabilities equal to 1, p(td)net < 1 for all td. All copies of
a packet can be lost in the network because we do not use
acknowledgments and retransmissions to guarantee a copy of
the packet has been delivered.

C. DSFMC Examples and Discussion

As an example, let’s consider the stages with path width 3 in
Figure 4. Assume the links are independent, that each link has
the same transmission success probability p, and let p̄ = 1−p.
Then, the probability that a node in stage k+1 receives a copy
of the packet, given the state of stage k, is 1 minus the product
of incoming link failure probabilities, as shown in Figure 7.
The transition probability between states can be obtained by
applying (6). Figure 8 illustrates the transitions out of state
7. The full 8× 8 transition matrix is omitted here because of
space limitations.

In the example in Figure 5, the dimensions of the state
probability distribution vector vary with time, and also some
of the nodes are shared between stages. To represent the state
at each stage k, we first order the nodes in each stage from
smallest to largest node id and re-index them from 0, . . . , Nk−
1. Then, for each node with a new index n we set in = 1 if
the node has a copy of the packet and in = 0 otherwise. The
state is then just σ(k) =

Nk−1
n=0 in2n. Assuming the links are



Fig. 7. Markov chain states for the routing topology in Figure 4, excluding
the states for the source and the destination.

Fig. 8. Markov chain transition diagram for a stage of path width 3 in
the routing topology in Figure 4. Here, only the outgoing transitions and
associated transition probabilities from state 7 are shown.

independent, the equations that describe the DSFMC model
are

P (1) =


1 p̄12p̄13
0 p12p̄13
0 p̄12p13
0 p12p13


P (2) =


1 p̄23p̄24 0 0
0 p23p̄24 p̄34 p̄24p̄34
0 p̄23p24 0 0
0 p23p24 p34 (1−p̄24p̄34)



P (3) =
 1 p̄34 0 0
0 p34 p̄45 p̄45
0 0 0 0
0 0 p45 p45


P (4) =

 1 p̄45 0 0
0 p45 1 1



p(0) = [ 1 0 ]T P (4) = P (4)P (3)P (2)P (1)

(9)

where pij is indexed by the original node ids and again p̄ij =
1 − pij . As mentioned in Section III-A, we assume that if a
node i in stage k has a copy of the packet and node i is also
in stage k + 1, then node i will have a copy of the packet in
stage k + 1 with probability 1.

D. DSFMC Analysis

1) p(td)net for Wide Paths with Repeated Stages: For the
purposes of choosing a network topology before deployment,
it is useful to get a grasp of how p

(td)
net scales as we extend the

length K of a wide path topology without having to calculate
p
(td)
net for each new network explicitly. We consider the case of

a wide path with repeated stages containing a constant number
of nodes Nstage per stage and the same transition probability
matrix P (k) = P between all stages, like the middle stages in
the example in Figure 4. For simplicity, the discussion below
will ignore the first stage containing the source and the last
stage containing the destination.

A good characterization of how end-to-end connectivity
scales with the number of stages K comes from the eigen-
values of P .

Theorem 3.1 (DSFMC p
(td)
net converges exponentially to 0):

Let P be diagonalizable and limK→∞ PKp(0) = e[ω], where
ω is the state where no nodes received a copy of the packet.
Then

p
(td)
net ≤ C(ρ∗)K , td = KNstage (10)

for some constant C dependent on the initial distribution p(0)

and ρ∗ = max{|λ| : λ is an eigenvalue of P and |λ| < 1}.
While this relation is an upper bound, ρ∗ is the dominant
decay rate for large K because all the eigenvectors of P with
eigenvalue magnitudes less than 1 decay exponentially with
K. In practice, a good routing topology has ρ∗ very close to
1. When choosing a routing topology for wide paths, one can
use ρ∗ for wide paths with repeated stages of different widths
to quickly compare the gain in reliability at the cost of extra
latency.

2) Traffic Distribution: To calculate the probability that a
copy of the packet visits a node i at or before time t, α(t)i ,
we first remove all the outgoing edges of i, and add a “self
transmission” link of probability 1 from node i to itself over all
time slots. Then, we compute α(t)i =


{σ(k)|i∈R(k)

σ } P(p̃(k) =
σ(k)), where p̃(k) is the state probability distribution on the
modified routing schedule and topology.

3) Link Perturbation in Topology with Independent Links:
In the DSFMC model where no nodes are shared between
stages, it turns out that to compute the sensitivity of p(td)net

to errors in estimating a link probability pl, we can compute
bounds on the actual end-to-end connectivity p̂

(td)
net using the

maximum and minimum possible values of the real link prob-
ability p̂l, pl+ and pl− respectively. This is because unlike
UPD, there are no link retransmissions in DSF, which implies
that p(td)net is a linear function of the single-link estimation error
δ.

To see this, note that in (6), the transition probability
between states in adjacent stages are a linear function of the
individual link probabilities (the probability associated with
a link appears in the expression once). This means that the
transition matrices P̂ (k) are a linear function of each link
probability pl. Also, each link probability pl appears in only
one matrix P̂ (k) because each link is used only once to
transmit a packet. This is because there are no retransmissions
in the network and no nodes are shared between stages, so
no node will transmit more than once when routing a single
packet through the network. As a result, P̂ (K) is also a linear
function of pl. Finally, p(td)net is a linear function of P̂ (K)

and hence also a linear function of pl, meaning it is a linear
function of δ.

IV. UPD AND DSF COMPARISONS

We wish to compare UPD and DSF using end-to-end con-
nectivity as a function of latency, p(td)net , as the primary metric.
This is effectively a comparison to see when retransmissions in
UPD is better than “preemptive retransmissions” by multicast



Fig. 9. (left) UPD and (right) DSF schedules for routing on a grid of width
3, used in the calculations for the graphs in Section IV.

Fig. 10. End-to-end connectivity as a function of latency for varying link
probabilities using the routing schedules described in Figure 9.

in DSF. We chose the example of routing on a wide path
grid, where the width of the path is the number of rows and
the length of the path is the number of columns. Here, every
node in one column of a grid (a stage in DSF) can route to
every other node in the next column with equal, independent
link probabilities pl. The routing schedule for Directed Staged
Flooding and Unicast Path Diversity routing is described in
Figure 9 for paths of width 3. Also, for all our comparisons,
we assume that the time to send an acknowledgment for UPD
is negligible and can be sent back in the same time slot as the
original transmission.

A. End-to-end Connectivity Comparisons

Figure 10 compares p(td)net of the two routing schemes under a
range of different link probabilities.3 UPD has the potential to
deliver packets from the source to the sink in a shorter period
of time, but the packet delivery time has a larger variance.
Also, because limt→∞ p

(td)
net = 1 for UPD and pnet for DSF

is a fixed value less than 1 after the last stage transmits
(assuming pl = 1), UPD can always provide better end-to-
end connectivity at high latencies td.

3Note that in this and subsequent plots, we perform the DSFMC calculations
at the time granularity of time slots, not stages, unlike the description of (8)
in Section III-B.

Fig. 11. End-to-end connectivity as a function of latency for varying path
widths using the routing schedules described in Figure 9, with magnification
of the plot for pnet near 1.

Fig. 12. Traffic distribution of nodes in the middle stage K of routing
topologies of varying widths. Note that due to errors in rounding, the
probabilities for the middle stages in MTMC may not add exactly to 1. These
graphs use the routing schedules described in Figure 9.

Figure 11 shows that the final end-to-end connectivity pnet
for DSF is higher for wider paths at the cost of larger latency.
Also, the figure illustrates the limitations of our MTMC
model—the model is unable to capture the benefit of diversity
from using multiple paths instead of a single path because it
assumes that all links are independent. Hence, retransmission
on the same link is just as good as transmitting on a different
link. What is modeled is that wider paths require more time
slots to schedule transmissions from the nodes in the last
column to the sink, and hence Figure 11 shows that UPD
on wide paths with a smaller width tend to perform better.

B. Robustness Comparisons

We computed the traffic distribution α on the group of
nodes K in the middle column of our routing grid, assuming
the packet is sent during the first time slot. The traffic
distribution for UPD is highly dependent on the schedule and
link probabilities, where lower link probabilities generally tend
to spread the traffic throughout the network. Figure 12 shows
that even with the simple, regular schedule shown in Figure 9
and a relatively low link probability pl = 0.8, UPD does not
distribute the packets completely evenly over the nodes in K.
Finding an optimal schedule for spreading traffic in UPD is an
interesting area for future research. On the other hand, DSF
tends to spread copies of the packet over the nodes in K better
than UPD for all path widths because it multicasts the packets.

In the same sense, DSF is less sensitive than UPD to link
estimation error under short latencies because it multicasts



packets and thus tends to spread packets over more paths.
Given the routing schedule in Figure 9, with pl = 0.8 and
a link estimation error δ = −0.1 on a link in the middle of
the network, the maximum error in end-to-end link probability
estimates, ∆pnet, over all latencies is on the order of 0.01 for
DSF and on the order of 10−5 for UPD. Of course, because
limt→∞ p

(td)
net = 1 in UPD for all routing schedules with one

sink, ∆p
(td)
net for UPD is less than that of DSF for large td.

C. Communication Tradeoffs for Control Systems

In Section I-A we mentioned that when designing a control
application, it may be reasonable to impose a delivery deadline
and drop the packet if it takes too long to arrive. In UPD
routing, if a packet arrives at a node that has a queued old
packet, we can either combine the data in the two packets
into one packet or we can drop the older packet and send
only the newer packet. The implications of these two schemes
is studied in [4].

Using the graphs in Figure 10 and some simple calculations,
we can check the feasibility of running a control application
on an IEEE 802.15.4 wireless network running UPD or DSF
using the routing schedules in Figure 9. Assume we have a
width 3 path from the controller to the actuators, and a width
3 path from the sensors back to the controller, and all the links
have a transmission success probability pl = 0.8. Then after
24 time slots we can get end-to-end transmission probability
pnet > 0.95 between the controller and actuators and between
the sensors and controller, both of which are separated by 8
hops. In Dust Network’s UPD over TSMP 1.0, there are 32
slots a second, which corresponds to ≈ 1.5 seconds round trip
time. This round trip time can be decreased in future versions
of UPD because the theoretical limit of an 802.15.4 radio
is 250 kbps

(6+25+10 Bytes/pkt)(8 bits/Byte) ≈ 762 pkts/sec (10 Byte payload,
25 Byte MAC header and CRC, 6 Byte PHY header), resulting
in a round trip time of ≈ 63 ms. Therefore, the types of
control applications that we can hope to run on wireless sensor
networks spanning 8 hops would have to tolerate round trip
latencies on the order of magnitude of tenths of a second under
optimal conditions, and seconds if we use current routing
algorithms.

V. CONCLUSIONS

In this paper, we developed Markov chain models for UPD
and DSF routing algorithms that can be used for planning a
new network deployment. In order to construct these models
for existing networks, the user must have full knowledge of
the estimated link probabilities and routing schedule in the
network. One possibility is to have a network periodically
route back the routing schedule and link probability estimates
of all the links in the network. The assumption is that the time
scale over which the link probabilities change is much larger
than the time scale for sending a packet through the network
with high probability.

In wireless networked control systems, if we can calculate
p
(td)
net of the network in real-time, we can tune the con-

troller/switch controllers based on the conditions of the net-

work. For instance, in manufacturing we can use an aggressive
controller for higher yield when the wireless network is good
and a less aggressive controller that does not compromise
safety and the quality of the products when the network is
bad. We will study in detail the issues of running controllers
over mesh wireless networks in an upcoming paper.
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