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Abstract— The objective of this paper is decentralized swarm is assigned with a control law which is the sum of two
aggregation with collision avoidance. Specifically, each agent is elements: a repulsive potential field, which is responsible for
assigned with a control law which is the sum of two elements: 6 (g|lision avoidance objective, and an attractive potential

a repulsive potential field, which is responsible for the collision field. that f th ts t t fi fi
avoidance objective, and an attractive potential field, that forces ield, that Torces the agents 10 converge 1o a contiguraton

the agents to converge to a configuration where they are close Where they are close to each other. The key feature of
to each other. It is shown that under the proposed control law the control design is its decentralized nature. Agents have
agents converge to a configuration where each agent is located only limited information regarding the whereabouts of the
at a bounded distance from each of its neighbors. Connectivity others. It is shown that under the proposed control law
of the communication graph is then shown to be a sufficient . . .
condition for swarm aggregation. When a global objective is agents converge to a _conflguratlon where e_ach ggent IS
imposed’ name|y aggregation of the robotic swarm close to a located at a bounded distance from each of its ne|ghb0rs.
desired location we show that only one agent, which plays the Connectivity of the communication graph is then shown to
role of the leader of the swarm, has to be aware of this objective. pe a sufficient condition for swarm aggregation. A crucial
The leader is shown to be able to drag the swarm around the remark is that each agent updates its control law based

desired location. We also show that these results are applied to lel d tralized k led hile it d th
both cases of robots satisfying single integrator kinematics and Solely on decentralized knowiedge, while 1t does not have

kinematic unicycle-type robots. to be aware of any kind of global objective. When a global
objective is imposed, namely aggregation of the robotic
. INTRODUCTION swarm close to a desired location we show that only one

Navigation of multi-robot systems is a field that hagent, which plays the role of the leader of the swarm, has

recently gained increasing attention both in the robotics ant8 be aware of this objective. The leader is shown to be able

the control communities, due to the need for autonomoi_‘g dr?ﬁ the swarlin arourt:d the (I:!ezlrtedtlo;:;tlog. :Ne z.itlﬁo .Sh?W
control of more than one mobile robotic agents in th ow these results can be applied to both robots with singie

same workspace. While most efforts in the past focused g}tegrator kinematics and kinematic unicycle-type robots.

centralized planning , specific real-world applications have This madel has also been used in [5],[6] where the term

lead researchers throughout the globe to turn their attention govarm for the multi-agent team was used. The authors

decentralized concepts. The motivation for this work comelésed a potential field, consisting of the sum of a repulsive

from the field of micro robotics, where a team of a potentiallfnd an attractive term, and checked the stability of the overall

large number of autonomous micro robots must cooperate ﬁ?heme. The innovations of our approach with respect to the
the sub micron level aforementioned, is the fact that the control design is decen-

There have been many approaches to the decentraliztérfﬁl'zﬁ(?' we ?f?czwn:hatng?t?nne(f:tl:/lt)\/No;‘n:he c?mmttijnr:cart:gnr
multi-agent formation control problem in the past few year aph is a sutticient co on for swarm aggregation unde
éhe proposed control law. Furthermore, we show that a global

The main feature of formation control is the cooperativ biectiv 0 b hieved provided that onlv on i h
nature of the equilibria of the system. Agents must converq?e Jective can be achieved provided that only one agent has

to a desired configuration encoded by the inter-agent relativgowmdge of it. Finally, the results hold for the case of

positions. Many feedback control schemes that achieve Strégnholonomlc (unicycle type) robots as well.

bilization to a desire formation in a distributed manner hav The rest of the paper is organized as follows: Section

been proposed in literature (see for example [9],[8],[4] fo describes the system and states the problems treated in

some recent efforts). In many cases, the collision avoidanggis paper. Section Il presents the proposed control strategy

objective was not taken into account. It is obvious that thi or the single integrator case. The stability analysis for the

specification is necessary for the implementation of Sucﬁaderless case as well as for the inclusion of a leader in

algorithms in robotic systems. Collision avoidance was deatllfIe swarm s included in Seghon IV Sec_tlon V_extends
with in [2],[3.[12],[11], [10], [5]. the results to the case of unicycle-type kinematic robots.

Computer simulation results are included in section VI while

The objective of this paper is decentralized swarm ags'tect'on VIl provides a summary of the results of this paper
gregation with collision avoidance. Specifically, each agen ' provi u y u IS paper.

] ) - ) Il. SYSTEM AND PROBLEM DEFINITION
Dimos Dimarogonas is with the Automatic Control Lab., School of

Electrical Engineering, Royal Institute of Technology, SE-100 44,Stock- Consider a system ofV point agents operating in the

holm, Sweden{dimos@ee.kth.se }. Kostas Kyriakopoulos is with ggme workspac#l’ c R2. Let ¢; € R? denote the position
the Control Systems Lab, Department of Mechanical Engineering, National !

Technical University of Athens, 9 Heroon Polytechniou Street, Zografot?f agenti. The Conﬁguration space is_spanngd by=
15780, Greecd kkyria@mail.ntua.gr } [q1,---,qn]T. The motion of each agent is described by the
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single integrator: It is straightforward to see that if the potential field sat-
. , isfies these requirements, then agénteeds to have only
Gi=upi €N =,...,N] (@) knowledge of the states of agents withid; at each time
wherewu; denotes the velocity (control input) for each agenti_nstant to fulfil the collision avoidance objective. The fourth
The control objective of this paper @varm aggregation requirement also guarantees that, %VTJ =2 % The

with collision avoidance in a decentralized mann8pecifi gradient wrtq and the partial derivative of;; wrt ¢; are

cally, we aim to build control laws that drive the swarm to & Vi
! . computed b b= 20;:Diiq and 5L = 2p,5 (Dy5).
configuration where agents are located “close” to each other. P YVVij Pij~iid 94 pii (Di); 4

. . . A OV,
The level of swarm aggregatiois defined as the maximum Wherep;; = 55, and

distance between two arbitrary robotic swarm members. W%,, _ '

also aim to quantify this metric in the sequel. N
For the objective of swarm aggregation, each ageist

assigned with a static subséf; of the rest of the team,

O(i—1)xN
O1x@i-1) 1 Oixg—i—1y —1 Oixn—j

called agent’s communication sethat includes the agents 0. . OO(J'*“.”.XN 1 0 4 @I
with which it can communicate in order to achieve the Ix(i-1) Ix(=i=1) I (N=j)

: At : ot ON—j)xN
desired objective. Inter-agent communication can naturally (4)

be encoded in terms of @@mmunication graph

Definition 1: The communication graptG = {V, E} is
an undirected graph that consists of a set of vertices: (Dij); =
{1,..., N} indexed by the team members, (ii) a set of edges, [ Otx1y 1 Orxmimny =1 Onxvy) [ @ 12
E ={(i,j) € V xV|i € N;} containing pairs of nodes that The definition of the matriced;;,(D;;);, for i > j is
represent inter-agent communication specifications. straightforward.

Collision avoidance is meant in the sense that the point This definition of V;; guarantees that the potential field
agents are not found at the same point in the state spatas the following important symmetry property;; =
at each time instant. The collision avoidance procedure js;,Vi,j € N,i # j. We propose the following feedback
distributed in the sense that each agent has to have omyntrol law for each agent

local knowledge of the agents that are very close at each Vi, O
time instant. We assume that each agent has sense of agents U; = — Z B J ~ 9a (5)
(apart from the ones belonging to its communication set) jen, O e
that are found within a circle of radiug around the agent. The control law can also be written as
This circle is called thesensing zonef each agent and the
parameterd its sensing radiusThe subset of\" including Ui = —2 Z pij (@i —4j) — Z (4 — a5)
the agents that belong to the sensing zonée aff each time JeM; JEN
instant is denoted by/;. Hence Since the proposed control law dfequires knowledge only
) o of the states of agents belongingAg | M;, it respects the
M;={jeN,j#i:|a—ql <d} limited sensing and communication specifications imposed

Hence each agent requires knowledge of the states of tAB €ach agent. It is hence clearlydacentralizedcontrol
agents belonging to the sefs;, M, at each time instant. design. The proposed control strategy consists of a repulsive

Therefore the (distributed) control law is of the form and an attractive potential. The attractive potential tends
to minimize the distance between agenand the agents
u; = ui (¢i,q5) 5 € Ni UM; (2)  belonging toN;, while the repulsive potential is responsible
lIl. CONTROL STRATEGY for the collision avoidance specification.

In the sequel, we first examine the stability and equilibria
of the system (1) under the control law (5), for the case where
i A 1 Z g — q_Hz 3) no global objective is imposed. When a global objective is

‘2 v imposed, we show that only one agent, which plays the role
) _ ) _ of the leader of the swarm, has to be aware of this objective.
This function plays the role of an attractive potential betweetthe |eader is shown to be able to drag the swarm around a

agent: and agenty < N; in the control law ofi. Let us  gpecific location. We also provide the stability analysis and

avoidance specification between agentsnd j € M;. We

We define the following “goal” function for each agent

JEN;

require thatV;; has the following properties: IV. STABILITY ANALYSIS
1) Vi; is a function of the distance between agents A. Tools from Algebraic Graph Theory
i.e. Vij = Vi;(Bi;) with 8i; 2 |la; — ¢;* In this subsection we review some tools from algebraic
2) Vi; — oo wheneverg;; — 0. graph theory [1] that we use in the next sections.
3) It is everywhere continuously differentiable. For an undirected grapfy with n vertices theadjacency

4) %Lq’ = 0 andV;; = 0 whenever||g; — g,/ > d. matrix A = A(G) = (a;;) is then x n matrix given by



a;j = 1,if (4,5) € E anda,; = 0, otherwise. If there is an Henceq = — (L ® I5)q — 2(R, ® I5)q. Using now the
edge connecting two verticésj, i.e. (i, j) € F, theni, j are  symmetry of the potential functions we get; = p;; =
calledadjacent A pathof lengthr from a vertexi to a vertex R; = 2R», so that

j is a sequence af + 1 distinct vertices starting with and

ending withj such that consecutive vertices are adjacent. If V=)’

there is a path between any two vertices of the gr@pthen = 2(L®L)q+ (Ri®1L)q)"

G is calledconnectedotherwise it is calleddisconnectefd . R1=2R;

The degreed; of vertexi is defined as the number of its (Lok)g+2(R0k)g) =

neighboring vertices, i.el; = #j : (i,j) € E. It is easily . 9

derived thatd; = 3",y ai;. Let A be then x n diagonal =V==22((LeL)qg+2(R®12)q)|” <0 (6)
matrix of d;'s. The (combinatorial)Laplacian of G is the . .

symmetric positive semidefinite matrix = A — A. We now state the first result of this paper:

Theorem 1:Assume that the swarm (1) evolves under the
control law (5). Then the system reaches a configuration in
whichu =0, i.e.u; =0 for all s € V.

Proof: The level sets ofl’ define compact invariant sets
date Lyapunov funct|on or the multl -agent system. Differenwith respect to the agents’ relative positions. Specifically,
tiating V wrt time we getV = (VV)” - . Differentiatingy; the setQ. = {q : V(q) < ¢} for ¢ > 0 is closed by
wrt ¢; we haved%: = 3" (g; — ¢;). We can also compute the continuity of V. For all (i,j) € E we haveV <

B. Stability Analysis

The functionV = Z vi+ >, Vi; | is used as a candi-
j#i

JEN; c = v < c= |g—ql < V2c Connectivity of the
_om formation graph ensures that the maximum length of a path

a1 connecting two vertices i& — 1. Hence0 < ||¢; — ¢;]| <

: —(L®lz2)q V2¢(N —1), Vi,j € N. Eq. (6) and LaSalle’s principle
_g;ﬁ guarantee that the system converges to the largest invariant

subset of the sef = {¢: (L +2R2) ® Is) ¢ = 0}. Since
whereL is the Laplacian matrix of the communication graph — 4= —(L@L)g—2(Rs® I») q, we haveu — 0.

ande denotes the standaktronecker producbetween two The next Lemma shows that the control design guarantees
matrices ([7]). We can also derive, Vy;, = 2(L ® I1)q. . . gng
7 collision avoidance:

We also have Lemma 2:Consider the system of multiple kinematic
agents (1) driven by the control law (5) and start-
SV =2(> ) piiDij | ¢=2(Ri @ L)q ing from a feasible set of initial conditiong (q) =

i g i g {q| lg; — g;|| > 0,Vi,j € N,i# j}. Then the setZ (q) is
where matrixR; can be computed by invariant for the trajectories of the closed loop system.

. Proof: For every initial conditiong(0) € Z(q), the time

(Ry), = g;i Pij +]§i Piirt =J derivative ofV remains non-positive for atl > 0, by virtue

* —pij — pjisi £ of (6). HenceV (¢(t)) < V(¢(0)) < oo for all ¢ > 0. Since

o . V — oo whenl|g; — q;|| — 0 for at least one pait, j € N,
The last equation is derived based on the form (4Dgf. J ’
The gradient of V' is now given by VV we conclude thay(t) € (q), for all ¢ > 0. &

N In essence, starting from the s&fq), collisions are
2((Le I R ®I . We also have . ' ’ . .
(L®l)q+ (@ 1)q) avoided and the system reaches a stable configuration.

_ou - Y B
i O N JErh C. Bounds on the Swarm Size
_a'vN _ Z. AV The result of the previous section guarantees that the
0din JEMN 9gn resulting closed loop system is stable, while the swarm
Notice that members eventually reach a stationary configuration. Further-
ovi, ovi, more, the collision avoidance requirement is also satisfied.
- ,Z dq1 - Z da1 However, no precise information is given for the exact final
JEM 77 positions of the swarm members. In this section, we derive
. = : =-2(R2®12)¢  poynds on the swarm size and show that connectivity of
- > %‘2;1 -3 %‘ZVVJ' the communication graph is a sufficient condition for swarm
JEMN J#EN aggregation. Similarly to [6], the next result shows that the
The elements of the matriR, are computed based on the“swarm center” remains constant:
form (4) of the D,;; matrix and are given by Lemma 3:Consider the system of multiple kinematic
S piji= agents (1) dnven by the control law (5). Define the “swarm
(R2) { e center'g 2 L Z ¢i- Theng(t) = g(0) for all t > 0.
—Pij,? 7& J i=1



connected, then the swarm eventually splits into the different

2|~
M=
|

Proof: We have ¢ = G = q e
i=1 connected components of the communication graph.
N Z ( > 2pi; (¢ —qj) + Z (¢i — qj)> = 0. D. One stationary leader
=1 \jeM; eN; . .
and the result follows¢ In the previous paragraphs, we dealt with the leaderless

Since the poing is constant, we assume without loss ofc@se, namely each agent evolved under the control law (5)

generality that it is the origin of the coordinate system, i.e2Nd we examined the convergence of the overall control
g = 0. Moreover, at an equilibrium point we have= 0, by scheme. In this section, we extend the results to the case

virtue of Theorem 1. Considering the functidn= % S ol g where one of the agents beha\_/es as a stationary Iea_der in the
P group. Without loss of generality, we assume that this agent
and taking its time derivative we hade= ; >~ ¢/¢; = ® = is N. Hence, we have.y = 0 in this section.
Using the same analysis as in the previous section, we

T . ! .
> ¢; = 0. Hence, at steady state we have: ) o :
Zi:% ¢ Y deduce that the system reaches a configuration in which

. ((L+2R2)Z®Ig)q:0,’t:1,2,,N—l
d=-3dq/ |22 pij(e—a)+ X (a—q) = (10)
. ( ( séan R J an = qn(0)
) where the notatior{Z + 2R,), denotes the i-th row of the
— 1
=-2 621\24 pij llgi — ajlI” + gv 3 lgi = 45l matrix L + 2R». It is then obvious that the last equa-
g J i J i

tion is equivalent to((L+2R2%® I))§ = 0, whereg =

and hence at an equilibrium position: o\ ab L (an — qN(O))T _Hence the same results
SN e —ail*=> > 2lpilllai —q;lI>  (7) of the previous section hold. The agents eventually gather
i jEN; i jeM; around the stationary leader.

since p;; < 0,Vj € M;. The last equation enables us to Application wise, the leader can initially have a control

derive bounds on the swarm size. These are based on {ﬁlﬁ’ to drag the swarm from an initial to a final configuration.

bounds on the designed repulsive potential. Specifically, thf?" €x@mple, if we assign the leader with a specific target
potential can be chosen so thay satisfies|p;;| < £ locationg?;, then the leader can reach a circle of radius 0

'6”’ around this location in finite time under the control law
where p > 0. We then have)_ Z lpijl g — qj||

i _ —(av —af)sif [jav — %] > € (11)
pZ |M;|, where|M;| is the cardmallty ofM Eq. (7) yields UNZ0 0, otherwise

Z Y e —gl? =% Z Bij < QpZ |M;|. The right Collision avoidance is ensured due to the existence of the
hzag]g cide is maX|m|zed whenever each agent is located a[ ulsive potentials in the control laws of the followers. Once
g He leader reaches the $kity — ¢% || < e, the whole system

distance less thad from all other agents, i.e. the repulsweconverges to the equilibria imposed by equation (10). Please

gg)tﬁ\?lal<|sjvacjt\|[ve Ior I?cl)lr Fgg]’j a?r é\]{ .avfnt??ﬂa??gfm note thate can be chosen arbitrarily small. The level of

- il = N( )- b 9 aggregation in this case depends again on the connectivity of

an edge, an ultimate bound is then given by: the communication graph. The result of Theorem 4 extends
B < 2pN (N —1), V(i,j) € E ®) to the stationary leader case in a straightforward manner.

Connectivity of the communication graph is now shown to V. THE NONHOLONOMIC KINEMATIC UNICYCLE CASE

be a sufficient condition for the level of aggregation of the In this section, we extend the results to the case of a

multi-agent team, by virtue of the following simple result: Swarm of multiple unicycles. Specifically, we considsr
Theorem 4:Assume that the swarm (1) evolves under th&onholonomic p0|nt agents operatmg in the same workspace

control law (5) and the communication graph is connected? C R?. Let ¢; = [z;,1]" € R? denote the position

Denote byfSmax the maximum distance between two mem-Of agenti. The configuration space is spanned by=

bers of the group, i.€0max = max |l¢; — g;|*. Then the [g1,-..,qn]". Each of theN mobile agents has a specific
JEN orientationd; with respect to the global coordinate frame.

following bound holds at stead state: X : .
9 y The orientation vector of the agents is represented by

Brax < 2pN(N —1)2 (9) [61-..6n]. The configuration of each agent is represented by
Proof: The proof is a direct corollary of the definition of p; = [ q; 0; ] € R? x (—m, nr]. Agent motion is described
connectivity and equation (8} by the following nonholonomic kinematics:

Hence, connectivity is a sufficient condition for swarm
aggregation. The upper bound obtained in Theorem 4 for
Omax IS calculated based on a worst case approach. The
exact connection between this bound and the structure of
the communication graph is currently under investigationwherew;,w; denote the translational and rotational velocity
On the other hand, if the communication graph fails to bef agent:, respectively. These are considered as the control

T; = u; cosb;
y‘i;uisinei ,iEN:[17~~'aN] (12)
0; = w;



inputs of the system. Similarly to the single integrator cas&ase: ((L® Iz) +2(R2 ® Iz))g = 0. The result now

the control law for each unicycle is of the form follows immediately from the result of Theorem &.
wi = s (pi, py) Hence the control design (14),(15) forces the nonholo-
¢ T WAPLDI) e N M i e N (13) nomic swarm to behave in exactly the same way as in the

wi = wi (i, p;) single integrator case.

We consider again the functiod = > [ v, + > Vi, | as VI. SIMULATIONS

a candidate Lyapunov function. Its glra ient ijs;éé;iven by To verify the results of the previous paragraphs we provide
a series of computer simulations.
VV=2((L®L)qg+ (R ®I)q) = The first simulation in Fig. 1 involves evolution of a swarm
=2((L®l)g+2(R2®I2)q) of nine single integrator agents navigating under (5). The
_ A communication sets have been chosen in such a way so that

In the sequel, we use the notatidn+ 2R, = F. We alS0  he resulting communication graph is connected. The first
denote the stack vectar= [x,3]" into the coefficients that gcreenshot shows the initial positions of the agents while the
correspond to ther, y directions of the agents respectively.gecond one the evolution of their trajectories in time. Swarm

We also use the functiomgn(z) = 1, if # > 0 and aggregation is eventually achieved, since the communication
sgn(z) = —1, otherwise. The derivative of the candidateyraph is connected. The values of the parameters in this
Lyapunov function is now calculated as simulation are:d®> = le — 5,h = la = (4/27)1e — 15.
V=V 4=V=
uy cos 6
Ul sin 01 0025 o o : °
2((L® ) q+2(Ro®12)q)" : =
UunN COS 0N 001
unN SinoN 0005| o
u7 cos 01 g sin 6 ° °
2(Fa)" : +2(Fy)" :
upy cos Oy uy sinfy 0::2
= > {2u; (Fz),cos0; + (Fy),sinb;)} ‘ ‘ _ o

o
0.02

iEN -0.03

79,‘02_ -0.01 6_ . o001
Initial Conditions

where the notatiofia),; denotes the-th element of the vector
a. The following theorem states the result of this section:
Theorem 5:Assume that the nonholonomic swarm (12)

evolves under the control law
u; = —sgn { fyi cos8; + fyisinb;} - ( 57; + fzi) (14) o
w; = — (6; — arctan 2 (fyi, fzi)) (15) o0t
where (F'z), = fui, (Fy);, = fyi. Then the system reaches ooz
the equilibrium points of the single integrator case, i.e. a e 0
configuration in which((L ® I5) + (2R ® I2)) ¢ = 0. Evolution in time

Proof: With this choice of control laws, we have _ o
Fig. 1. Evolution in time of the swarm under the control law (5). The

|4 = —2 Z;V {( 32 + 31) “| feicos O0; + fyisin 9i|}’ communication graph is connected.

which is neﬁative semidefinite. Using LaSalle’s

invariance Principle, we conclude that the agents In the second simulation of Fig. 2, we are using the
converge to the largest invariant subset of the Set=same communication graph, initial positions and control
{(fei = fyi =0) V (fzicosb; + fy;sin6;, = 0),Vi € N}. parameters as in the first simulation. In the first screenshot
However, for eachi € N, we have|w;] = § whenever the blue agent is now assigned the role of the leader of the
freicosO; + fyisinf; =0, due to the proposed angularswarm. In that screenshot, L-i denotes the initial position
velocity control law. In particular, this choice of angularof the leader, while L-d the desired location around which
velocity renders the surfacef,;cos6; + f,;sind; =0 the swarm should be aggregated. Hence the red agents
repulsive for agenti, wheneveri is not located at the (followers) evolve under (5) while the blue agent (leader)

desired equilibrium, namely wherf,; = f,; = 0. under (11). We have set= le —10. The second screenshot
Hence the largest invariant sef, contained in S shows the evolution of the trajectories of the swarm members
is S D Sy = {fei=/fyi=0,Vie N} which is intime. The blue line represents the trajectory of the leader.

equivalent to the equilibria of the single integratorThe swarm is eventually aggregated around the leader, which



reaches the circléqy — ¢&|| < e around the target location

in finite time . This is of course due to the connectivity of
the communication graph. Collision avoidance between the
followers and the leader is guaranteed due to the existence

of the repulsive potential in the followers’ control law.

L-d

3

L L (o3 s o} L
-0.06 -0.04 0.02 0 0.02 0.04

Initial Conditions

Leader
Trajectory

L L L s L L
-0.06 -0.04 -0.02 0 0.02 0.04

Evolution in time

Fig. 2. Evolution in time of the swarm under the control law (5). The

swarm is eventually gathered around the final position of the leader.
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Fig. 3. Evolution in time of the nonholonomic swarm under the control
laws (14,15). The communication graph is connected.

The leader was shown to be able to drag the swarm around
the desired location. We also extended the results to the case
of kinematic unicycle-type robots.
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