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Abstract—Electronic chaining is the formation, and mainte-
nance, of a linked communication chain that maximizes the end-
to-end throughput using a cooperative team of mobile robotic
relays. For this paper, an optimal communication chain is defined
using the signal-to-noise ratio (SNR) of the communication
links along the chain. By using the SNR of the individual
communication channels, instead of relative position, an optimal
communication chain of robotic relays is formed that is able
to respond to changes in, and unexpected features of, the RF
environment that is simply not possible with position based
chaining solutions. Since the operating environment is generally
not known a priori to deployment of a robotic sensor network,
an adaptive model-free extremum seeking (ES) algorithm is
presented to control the motion of 2D nonholonomic vehicles
acting as communication relays. Even without specific knowledge
of the SNR field, the ES algorithm is able to drive the team
of vehicles to optimal locations with only local measures ofthe
SNR. A specific application using unmanned aircraft is simulated
to highlight the fact that the performance of the ES chaining
algorithm is limited due to the performance constraints and
capabilities of the individual vehicles within the chain.

I. I NTRODUCTION

Cooperative electronic chaining is the formation of a linked
communication chain using a team of robotic vehicles acting
as communication relays in an ad hoc network while allowing
the end nodes of the chain to move independently in an
unknown, dynamic environment [1]. Electronic chaining uti-
lizes the fact that with networked robotic vehicles the quality
of a wireless communication chain is directly influenced by
the motion and location of the vehicles within the radio
propagation environment. Thus, controlling the location of the
vehicles based on a measure of communication performance
can used to directly improve the communication performance
along the network chain. Inherent in the concept of electronic
chaining is the repair of disconnected networks using robotic
relays. The difference is that in electronic chaining the goal
is more than providing connectivity, it is to provide optimal
connectivity of the networks through the relay.

This paper presents a definition of an optimal commu-
nication chain using the signal-to-noise ratio (SNR) of the
radio frequency (RF) communication links between the robotic
nodes (or networks), as opposed to relative position as previ-
ously done in [2]. By moving the robotic relays based on the

local gradients of the SNR fields of the relay’s communication
links, the communication capability of the chain can be im-
proved regardless of the communication environment, which
could include RF jamming nodes. The use of the SNR as input
into a control system for robotic vehicles to improve and main-
tain communication performance was originally presented by
the authors in [3] and was further developed using extremum
seeking (ES) methods in [4].

While there has been significant work in robotic team
control requiring network communications (e.g. [5]–[7]),only
a small body of work (see [2], [8]–[10]) exists that explic-
itly incorporates communication objectives into larger multi-
objective control framework. Although the goal is to optimize
network parameters in these works, the performance metrics
are transformed into position based constraints and cost func-
tions.

For example, in [2] the authors make the claim that the set
of optimal positions of the relay nodes lies entirely on the
line between the source and destination nodes, and that the
relay nodes must be evenly spaced along this line. However,
as will be shown in this paper, in a physical environment the
assumptions required for position based control are typically
invalid since localized noise sources, terrain affects, power
differences, and antenna patterns will cause the optimal lo-
cation to move off of the center line between the two end
nodes and possibly away from the geometric center point of
the line. By defining the optimal communication chain in a
more generalized sense using the SNR, the communication
chain that is formed is more robust and can respond to changes
in the RF environment.

If the structure of the SNR field is known, it will be shown
in this paper that a decentralized controller, based on the
generalized gradient of a local performance function, willdrive
the robotic nodes to optimal relay locations. If however the
structure of the SNR field and the local environment is not
known, as is typically the case in real-world deployments of
robotic networks, then an adaptive model-free controller that
estimates the gradient of the SNR fields is required. To this
end, this paper also presents a decentralized ES controllerthat
has been designed for use on planar nonholonomic vehicles
for electronic chaining.
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Fundamental to the ES chaining algorithm is that to estimate
the gradient of the communication performance field, cyclic
motion of the vehicle is required. For generality in application
to different vehicle types, a bicycle-like kinematic vehicle
model [11], exhibiting Dubins’ vehicle constraints [12], is
assumed and a Lyapunov Guidance Vector Field (LGVF)
controller [13] is used to provide the cyclic motion by driving
the vehicle to a globally stable limit cycle (i.e. a circularorbit)
about a virtual center point.

While ES algorithms have been presented in [14] to drive a
nonholonomic vehicle in a sampled environment, driving the
vehicle directly using the ES framework limits the application
to limited vehicle types. Specifically the ES algorithm in
[14] can only be used on vehicles that can go forward and
backwards as the controller modulates the forward velocity
of the vehicle, while holding a constant turn rate. The use
of the LGVF controller to generate a circular motion, with
forward vehicle velocity and bounded turn rate capabilities,
can be applied to a much wider class of robotic vehicles; from
simple point mass models to unmanned aircraft. In addition,
the circular motion of the vehicle due to the LGVF is more
natural for certain vehicles such as unmanned aircraft.

The authors of [14] have proposed a second part to their
work (but is still unpublished) where the velocity of the vehicle
is held constant and the turning rate of the vehicle is modulated
by the ES algorithm. This resulting motion of this controller
is a forward motion of the vehicle with a ”wiggle.” The idea
being that if one can mount a sensor on a long boom to
the vehicle, a small wiggle of the vehicle will result in a
large displacement of the sensor in the sampled environment.
However, on some vehicles it is not practical to mount a long
boom sticking out the nose of the vehicle. In addition, thereare
some environments where the displacement of the sensor on
a boom will still not provide a large enough displacement for
the sensor to measure the change in the sampled environment,
either due to the field structure or the sensor resolution. Thus,
driving the vehicle in a circular motion, about a virtual center
point, provides a more generic ES framework for mobility
control of vehicles.

II. ELECTRONIC CHAINING PROBLEM STATEMENT

For a linked network chain, independent of the commu-
nication protocols used, the achievable chain capacity can
be directly related to the individual link capacities alongthe
chain. The relation of the local link capacity to the full chain
capacity is defined by the type of network being considered.
In this paper a Cascaded relay network [15] is considered.
A cascaded relay network represents a network model where
the relays can transmit and receive at the same time (and in
the same bandwidth). This is possible if the relay has two
antennas: one for receiving and one transmitting. While this
is typically not the case for cheap wireless network nodes that
use a single omnidirectional antenna, this network model lends
itself to decentralized control quite well, as will be shown.

Because of the assumption of simultaneous transmission and
reception of signals by a relay, the throughput capacity of a

cascaded network chain,T , is limited by the link with smallest
throughput capacity. Figure 1 provides a graphical exampleof
the problem where the link between nodes 3 and 4 is limited
to 1 megabit per second (Mbps), either due to distance or
environmental noise, and the rest of the chain has a 2Mbps
link capacity.

1 62 3 4 5
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Fig. 1. The overall chain capacity of a cascaded network is directly limited
to the link with the smallest capacity. For this chain, the throughput from
node 1 to node 6 is only 1 Mbps.

It is clear from the figure that even if node 1 tries to transmit
at 2Mbps to node 6, that the link between nodes 3 and 4
will limit the resulting throughput to node 6 from node 1
to be 1Mbps. Thus in a communication chain with mobile
nodes, the nodes should move so as to find the maximum
chain throughput capacity,

T ∗ = maxT = maxmin Tij (1)

whereT ∗ is the globally optimal communication throughput
capacity for a chain in an unknown environment with localized
noise sources (e.g. jamming sources).

It should be stated that the goal of this work is to improve
and maintain communication capacity of a wireless chain.
The actual throughput (or goodput) of a network chain is
dependent upon the network protocols, data encoding used
by the radio, signal strengths, interfering neighbors and the
amount of data being sent from the source. If the source is
not sending any data to the destination, then the throughputof
the chain is zero, and thus the gradient of the throughput is also
zero. However the communication chain should still respond
to the movements of the end nodes, to maintain an optimal
networked chain for when the source node does send data.
Thus, for the purpose of this paper, throughput is shorthand
for the throughput capacity of the chain, and is not the actual
data sent through the chain. In addition, it is assumed that
a fixed number of relays is to be used in the chain and that
this number is determined by a higher level controller, which
determines the optimal number of relay nodes that should be
used.

A. Radio Frequency (RF) Environment

The signal-to-noise ratio (SNR) of an RF communication
link is defined as

Sij(pi,pj) =
Pij(pi,pj)

N(pi)
(2)

wherePij(pi,pj) is the power received by nodei at position
pi ∈ R

2 from the transmission of nodej, located atpj ∈ R
2.

N(pi) is the environmental noise seen by nodei at locationpi,
and includes thermal and interference noise. For simplification
of notation letSij = Sij(pi,pj).

The Shannon-Hartley Theorem states that the channel ca-
pacityC, which is the theoretical maximum rate of clean (or



arbitrarily low bit error rate) data that can be sent with a given
average SNR is [16]

Cij(pi,pj) = B log2 (1 + Sij(pi,pj)), (3)

whereB is the bandwidth of the channel, andCij(pi,pj) is
the channel capacity for nodej at positionpj transmitting to
nodei at positionpi. The Shannon-Hartley Theorem provides
a very useful relation in that the maximum achievable rate is
related to the SNR of the channel. By increasing the SNR of a
wireless channel, the ability of the channel to send more data
is increased, providing a higher capacity capability.

For this paper it is assumed that the RF environment can
contain localized noise sources such thatN(pi) 6= N(pj),
giving Sij 6= Sji ⇒ Cij 6= Cji. That is to say, even though
node i can receive a transmission from nodej, nodej may
not be able to decode a transmission from nodei. This is
a fundamental assumption for any geographic, range-based
controller, and for the definition of an optimal chain given
in [2].

B. Optimal Communication Chain

Let a cascaded network chain with nodes 1 throughn,
ordered by their position in the chain, be designatedN . Let
R ⊂ N be the set of relay nodes in the networkN , i.e. the set
of relay nodes does not contain the two end nodes of the chain
which move independent of the chain. The two end nodes
represent the users of the communication chain and it is the
goal of the mobile relay nodes to position themselves so as
to obtain, and maintain, an optimal communication chain in
response to the movements of the two end nodes. Thus, nodes
1 andn are allowed to move freely and independently while
nodes 2 throughn − 1 are mobile relays that are controlled
by the electronic chaining algorithm.

Optimal bi-directional chain throughput capacity is foundby
maximizing the minimum individual link capacities by moving
the relay nodes in the environment so that

T ∗ = max
pi∈R2

min
i∈R,j∈N
|j+i|=1

{Cij(pi,pj), Cji(pj ,pi)} . (4)

Since link capacity is a monotonically increasing functionof
the SNR, it is desirable to introduce a measure of an optimal
chain similar to Eq. 4 but based solely on the individual link
SNRs as

S∗ = max
pi∈R2

min
i∈R,j∈N
|j+i|=1

{Sij(pi,pj), Sji(pj ,pi)} . (5)

Finally, the goal of electronic chaining as presented in this
paper is to find

p∗
i = arg max

pi∈R2

min
i∈R,j∈N
|j+i|=1

{Sij , Sji} (6)

in real time, using a globally stable decentralized controller
based on the SNR of only neighbor links and without any
specific model or knowledge of the SNR field.

III. D ECENTRALIZED GRADIENT BASED CONTROLLER

If the gradients of the SNR field are known, then a decentral-
ized (localized) controller based on thegeneralized gradient
[17] of a nonsmooth Lyapunov function can be used to drive
the robotic relays to a set of optimal locations as defined by
Eq. 6, with asymptotic stability [18].

Let xi ∈ R
2 be the state vector for nodei subject to

ẋi = ui (7)

whereui : R
2 × R

2 → R
2 is the control input to nodei.

First order dynamics are presented here for ease of discussion.
Extension to higher order dynamics is possible with a correct
choice of the Lyapunov function.

Define the Lyapunov candidate functionJi : R
2×R

2 → R
+

to be
Ji(xi) = max

j∈R
|j+i|=1

{1/Sij, 1/Sji} − 1/S∗
i (8)

for the locally optimal SNR of relayi, S∗
i , given some location

of node i’s neighbors in the environment. Thus,Ji(xi) > 0
unlessxi = p∗

i for which Ji(p∗
i ) = 0.

The performance function is presented in this form as
opposed to that suggested by Eq. 5 due to the structure of the
SNR fields having exponential decay with distance. Because of
this, the functionf = 1/Sij (Sij being non-zero by definition)
is continuous and convex about a bounded intervalB ∈ R

2

containing a critical point ofJi. From convex functional
calculus, if a(x) and b(x) are convex functions, then so is
h(x) = max{a(x), b(x)}.

Due to the fact that localized noise sources may be present
in the environment, it is possible forJi(xi) to have multiple
critical points, i.e. local and global extremum points. That is
to say,∇Ji(p

†
i ) = 0 even thoughp†

i 6= p∗
i . Thus, a controller

based on the generalized gradient ofJi cannot guarantee
convergence to the global optimum ofJi. Only that given
some initialpi(0) in a neighborhoodΩ about a critical point
p
†
i , that the system will asymptotically converge to the critical

point p†
i (notep∗

i ⊆ p
†
i ).

This is not considered to be a downfall of the gradient
controller as it still drives the position of the relay to a
more optimal location than can be obtained by simply placing
the relay in the geographic center. If the environment does
not contain localized effects, andSij = Sji then x

†
i =

x∗
i ⇒ X† = X∗ and the gradient based controller is globally

asymptotically stable to the global maximumT ∗ at X∗ since
V̇ (X) > 0 unlessV̇ (X∗) = 0.

Define the decentralized feedback controller to be

ui = −k∇Ji(xi) (9)

where ∇Ji(xi) is the gradient ofJi, and k ∈ R
+ is the

controller gain. It should be noted that since Eq. 8 is non-
smooth, the above equation abuses notation as the gradient
here is really the generalized gradient ofJi. The stability and
stabilization of dynamic systems using feedback of the form
of Eq. 9 for nonsmooth Lyapunov functions has been well
studied and presented in [18].



From [17], let f : R
m → R be locally lipschitz. Then the

generalized gradient off is defined as

∂f(x) = co{ lim
hi→0
i→∞

∇f(x + hi)} (10)

where co{} denotes the convex closure of the set. Iff is
differentiable atx ∈ R

m, then ∂f(x) = {∇f(x)}. Let Ωf
denote the set of points wheref fails to be differentiable. Then
for the purpose of this paper if0 ∈ ∂Ji(x) at x ∈ Ωf , then
∇Ji(x) will be taken to be zero. If however the zero vector is
not within the set, then∇Ji(x) can be chosen to be the any
vector v ∈ ∂Ji. To be consistent, the least-norm element of
∂Ji is chosen to represent the gradient of the system onΩf .
The notation of Eq. 8 will be used in this paper for readability
as it is intuitive for the reader.

It is desirable to show the differences between the decen-
tralized controller and a centralized one, working on a globally
valued performance function, to show that that the decentral-
ized controller solves the global optimization problem, and
does so more efficiently. Take the Lyapunov candidate function
for the localized controller to beVi = Ji(pi) from Eq. 8. Then
using the chain rule, realizing that in reality we are takinga
set-valued derivative of Vi with respect to the system of Eq.
7,

V̇i = ∂Vi ·
dxi
dt

= ∇Vi · ẋi

= ∇Vi · (−k∇Ji)

= −k||∇Ji||
2.

(11)

SinceVi(xi) > 0, except atxi = x∗
i ⇒ Vi(x

∗
i ) = 0, and

that V̇i ≤ 0, the local controller is asymptotically stable in the
sense of Lyapunov (i.s.L.) for some given neighbor positions,
pi±1, in the operating environment.

It will now be shown that this local controller solves
the global optimization problem of Eq. 6. LetX =
[x1,x2, · · · ,xn]

T , andU = [u1,u2, · · · ,un]
T such that

Ẋ = U. (12)

Define the globally valued Lyapunov candidate function to be

V = J(X) = max
i∈R,j∈N
|j+i|=1

{1/Sij, 1/Sji} − 1/S∗ (13)

for the global maximum S∗. Even though V =
V (Skl(pk,pl)), givenk, l ∈ N and |k + l| = 1, is a function
of all neighbor links in both directions, the gradient ofV at
any one specific moment is only a function of one neighbor
set, e.g. the two neighbor nodes of the link with the smallest
SNR.

Let k, l be the indicies of the argument of the output link
from the max function in Eq. 13, e.g.

Skl = min
i∈R,j∈N
|j+i|=1

{Sij , Sji} (14)

such that
V = 1/Skl − 1/S∗. (15)

Now taking the gradient ofV with respect to (w.r.t.) all node
positions,

∇V =
∂

∂X
V =

∂

∂X

1

Skl

= [0, · · · , 0,
∂

∂xk

1

Skl
,
∂

∂xl

1

Skl
, 0, · · · , 0]T

= [0, · · · , 0,∇kVk,∇lVl, 0, · · · , 0]T

(16)

it is seen that at any one moment the global gradient is a
function of two localized gradients. Finally, it is shown that the
local controller acts to solve the global optimization problem
using a Lyapunov stability argument. Applying the chain rule
to V , and using the dynamics of Eq. 12,

V̇ = ∇V · Ẋ

= ∇V · U

= [0, · · · , 0,∇kVk,∇lVl, 0, · · · , 0]
T
· [u1,u2, · · · ,un]

T

= −k(||∇kVk||
2 + ||∇lVl||

2)
(17)

Then, sinceV̇ ≥ 0 and thatV ≤ 0 the system is asymp-
totically stable i.s.L. to a set of critical points of the global
performance function.

Because of this, a centralized controller would only move
two nodes at any given moment (or time step), while in
the case of the decentralized controller every node is always
responding to both of its neighbor nodes at a every time step.
Thus, the decentralized version will converge to optimal relay
locations faster than if the controller was ran at a central
location using the global objective function.

IV. ELECTRONIC CHAINING ES CONTROLLER

It was shown in the previous section that if the local
gradients are known by the nodes, then a decentralized con-
troller (based on the localized gradients) can be used to drive
individual nodes to their globally optimal locations. However,
in a physical environment with unknown localized noise
sources, either due to faulty nodes or jamming, the structure
of the SNR field is unknown and unpredictable and therefor
the gradient can not be directly deteremined. In addition, the
operating environment of the nodes will have an impact on
the communication performance. Which is difficult to predict
prior to deployment of the system to an unknown location.
Thus, a way to estimate the gradient of the performance
objective in real-time, and by each mobile node, is requiredso
that the system may be driven to optimal operating positions
(setpoints).

Extremum seeking (ES) [19] controllers are adaptive,
model-free controllers designed to drive the set point of a
dynamic system to an optimal, but unpredictable location
defined by a performance function that is only known to have
an extremum point. That is, given a sufficiently smooth cost
functionJ : R×R

m → R, ES controllers seek to solve in real
time the optimization problem

θ∗(t) = arg max
θ∈Rm

J(t, θ) (18)



whereJ is an unknown, possibly time varying, cost function
of the input parameterθ such thatDθJ(t, θ∗) = 0 and
D2
θJ(t, θ∗) < 0 1.
The standard ES algorithm works by generating a measure

of the local gradient of the mappingJ(θ) by injecting a
perturbation signal,α cos(ωt), directly into the plant. The
output of the plant will also be sinusoidal, with a DC (or
constant) offset that the HPF removes. This signal is then
demodulated byβ sin(ωt− γ) and low-pass filtered to obtain
the gradient estimate. The gradient estimate is then used to
update the estimate of the optimal location,θ̂. See [19], [20]
for formal discussions, including stability proofs and design
guidelines, on single and multivariable ES.

In two dimensions, the input into the performance function
has the appearance of a circular perturbation about a moving
(i.e. time varying) orbit center point. It is this specific structure
that the ES algorithm presented in this paper takes advantage
of in that some vehicles, like unmanned aircraft (UA), also
exhibit a cyclic (circular) motion about an orbit center point
when they are station keeping since they must always maintain
a forward speed.

A block diagram of the decentralized ES chaining algorithm
is shown in Fig. 2 and consists of a Lyapunov Guidance Vector
Field Controller steering a 2D kinematic vehicle operating
within an ad hoc network. The basic ES framework within
the controller is used to estimate the gradient of the commu-
nication performance field that is used to drive the motion of
the orbit center point for the LGVF controller using virtual
point mass dynamics with a bounded center point velocity.
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Fig. 2. Decentralized ES algorithm for a 2D kinematic vehicle using a LGVF
controller to provide the orbital motion of the vehicle about a virtual center
point driven by the gradient estimate of the performance of acommunication
chain.

The most significant difference in the design of this ES
algorithm is that it is a self-exciting system. That is, there is
a natural limit cycle that persists in the system (the orbital
motion of the vehicle) and this limit cycle provides the re-
quired dither signal into a measureable performance function.
Because the limit cycle that exsists due to the plant dynamics
generates the sinusoidal dither signal, the performance and
stability of the controller are dependent upon the performance
capabilities of the vehicle. Thus to maintain stability of the ES
chaining algorithm, appropriate values for the ES filters, the
ES feedback gainkES , and the maximum center point velocity

1Di

θ
(·) denotes theith directional derivative ofJ w.r.t. θ.

must be designed for each different vehicle type with different
performance abilities.

A. Kinematic Vehicle Model

It is assumed that the robotic nodes in the network are
equipped with a low-level control system that presents a 2-D
kinematic model for use by the higher-level ES algorithm. Let
pj ∈ R

2, denoted aspj = [xj , yj]
T , be the position of vehicle

j with inertial speed[ẋj , ẏj ]T ∈ R
2 that evolves according to

the standard (Cartesian) bicycle-like kinematic model

ẋj = vj cosψj
ẏj = vj sinψj
ψ̇j = vjcj

(19)

where[xj , yj]
T ∈ R

2 is the two-dimensional inertial position
of node j, ψj ∈ [0, 2π) is the track angle (compass head-
ing), vj is the commanded speed (held constant), andcj is
the bounded path curvature. The bicycle kinematic model is
chosen over a unicycle model because this model covers a
wider class of 2D nonholonomic vehicles, moving in only a
forward direction and that cannot turn on the spot, such as
bicycles, cars, and autonomous underwater and aerial vehicles
[11] .

It should be noted that the major difference of the bicycle-
like model from the unicycle model is that the heading rate is
a function of the vehicle speed and the curvature constraints
of the vehicle. For bicycles, the curvature is related directly
to the steering angle of the front wheel. For an aircraft in a
steady-state coordinated turn, the path curvature is

c(v) =
g tanφ

v2
, (20)

whereφ is the aircraft bank angle andg is the gravitational
constant.

Due to vehicle performance constraints, the path curvature
for a vehicle is bounded by upper and lower limits. For an
aircraft at a speedv,

ωmax(v) =
g tanφmax

v
(21)

whereφmax is the maximum bank angle of the vehicle at speed
v. Thus the steering input into vehiclej is bounded such that
|uj| ≤ ωmax and gives a minimum orbital radius of

rmin(v) =
v

ωmax(v)
. (22)

For bicycles and car-like vehicles, the path curvature bound
is directly related to the physical limitations in the motion of
the steering wheels.

This minimum radius, as will be seen later, is the effectively
the lower bound on the final error (or distance) of the vehicle
from the optimal communication location, which will be the
location of orbit center point for the loiter circle. While the
orbit center point can be driven to the location of optimal
communication, the robitc relay will always be at best no
closer thanrmin.



Because of the wide range of dynamics and physical con-
straints of different types of robotic nodes, it is not practical
to drive the vehicle speed or heading directly by the ES dither
signal as done in [14]. Instead a Lyapunov guidance vector
field (LGVF) controller is used to drive the vehicle to an
orbital (limit cycle) motion about a center point. The center
point is then driven with vitural point mass dynamics by the
ES framework in the chaining algorithm.

B. Lyapunov Guidance Vector Field Controller

To provide the sinusoidal perterbation signal required by
the ES framework, A Lyapunov guidance vector field (LGVF)
controller [13] is used to drive the vehicle to a circular limit
cycle about a virtual center point,pcp ∈ R

2. Since the vehicle
is orbiting pcp, the ES framework does not drive the vehicle
directly to the optimal communication location, but instead
pushespcp to the optimal communication location that the
vehicle orbits about using the LGVF controller.

The LGVF controller is split into two components, a guid-
ance vector field (GVF) generator and a heading tracker (HT)
controller. The heading tracker drives the robotic relay tothe
desired loiter circle at a radial distance ofrd from the orbit
center pointpcp = [xcp, ycp]

T as given by the generated vector
field

f (pr) =

[

ẋd
ẏd

]

= β

[

−(r2 − r2d) −2rrd
−2rrd −(r2 − r2d)

] [

x− xcp
y − ycp

]

+

[

ẋcp
ẏcp

]

(23)

wherer2 = pr · pr = (x− xcp)
2

+ (y − ycp)
2 is the squared

radial distance of the UAV from the loiter center point,pcp,
β is a non-negative scalar that guarantees convergence to the
desired loiter circle when the center point is moving [13], and
vcp = [ẋcp, ẏcp]

T is the center point velocity.
The guidance vector field gives the desired velocity, which

is used to generate a turn rate command to the vehicle through
the HT. Let eψ = ψ − ψd whereψd is the desired compass
heading given as

ψd = arctan

(

ẏd
ẋd

)

. (24)

The heading angle error is driven to zero by the turn rate
command

ω = ψ̇d − λ · (ψ − ψd) (25)

where

ψ̇d =
v

rd
. (26)

This controller is globally stable limit cycle aboutpcp and is
stable for any value ofvcp. However, since it is assumed that
the vehicles have bounded turn rate capabilities,rd should be
chosen such thatrd < rmin.

C. Center Point Dynamics

For the ES framework to be stable, and to generate the
appropriate gradient estimate, the system needs to exhibitthree
different time scales [21] :

1) Fast – tracking of the center point
2) Medium – the orbital motion
3) Slow – the LPF filter in the ES

Since the amplitude and excitation frequency of the perturba-
tion signal are set byv and rd, the fast and slow dynamics
must also be functions of the vehicle performance. Due to the
speed constraints placed on the dynamics of the center point,
the convergence rate of the center point to the optimal location
is bounded by the maximum speed of the center point.

For the error dynamics of the center point to be fast, and
to maintain the cyclic orbit about the center point, the motion
of the center point must be slow as compared to the speed of
the vehicle, i.e.vcp << vj . In the ES chaining algorithm the
center point velocity is bounded byVcp so thatvcp ≤ Vcp and
Vcp << vj .

It should be pointed out that center point velocity saturation
is required in the loop because even though we can choosek
small enough that the speed of the orbit center point remains
slow, as compared to the UA for a given environment and
performance function, the output of the ES framework depends
upon the magnitude and shape of the performance function,
which is not necessarily known a priori. Thus, there could be
unexpected environments in which if the center point speed
was not bounded, it could reach the maximum flight speed of
the aircraft. At this point, the motion of the UA about the cen-
ter point is no longer cyclic and is not generating the periodic
perturbation signal of the performance function required for
the ES framework to generate the gradient estimate.

V. ELECTRONIC CHAINING SIMULATION RESULTS

In this section, simulations of the decentralized ES elec-
tronic chaining algorithm for the control of a team of un-
manned aircraft are presented. Simulations of electronic chain-
ing using the gradient directly are not presented in this paper
since in physical environments the true gradient will not be
known, so it is of interest to present results of the ES controller
which can be used in any unknown environment. For the
simulations, the aircraft are limited to a maximum 30 degree
bank angle, flying at 25m/s, and their ordering is preset and
maintained depending upon the starting location of the UAs.
The maximum center point velocity is set to 5m/s.

Though it is not know by the ES controller, the radios in
the simulation are assumed to follow the standard exponential
decay model

Pij = Pij = Krd
−α
ij (27)

whereKr is the link gain,dij is the separation distance of
the receiver from the transmitter,α is the exponential decay
rate, andPij is the received power. The radio values are set to
Kr=3822 andα =3.5. For the simulation with a noise source,
the noise source is taken to be a faulty radio transmitting
with Kr=382. Note, the choice of using the exponential
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Fig. 3. Simulation of three (3) UA relay nodes reacting to a localized noise source. (a) Motion of UAs within the environment also showing noise source
location and the SNR contours of the two end nodes. (b) The minimum SNR value along the chain during the simulation.
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Fig. 4. Location of the orbit center point for a single UA and no localized noise showing the linear (fort ∈ (50, 500)s) and asympototic convergence (for
t > 500s) of the UA location to the optimal X-Y location

decay model was for ease of programming in the simulation.
However, by assuming that the noise source is a faulty radio
that is acting as a jamming node, even in the simulation the
SNR models are no longer concetric circles about the radio
nodes. Instead, depending upon the power and location of the
a noise source the SNR contour lines are extremely skewed
and non-symmetric.

Figure 3 shows a simulation run with three UAs and two
static end nodes, with Fig. 3a being a top down view of the
simulation environment and Fig. 3b is the minimum link SNR
along the chain. At the beginning of the simulation, the UA
relays are aligned along the chain as would be a result of
running a position based controller such as in [2]. At time
t = 0s a noise source located at [2500,1000]m is introduced.
Since position based controllers would not sense the change
in the RF environment, the nodes would maintain their current
position. However, using the electronic chaining algorithm the

figure shows that the UAs react appropriately to the jamming
signal source and form a bowed communication chain. Figure
3b shows that att = 0s the minimum SNR at the orbit center
points along the communication chain was less then 19 dBm
and that the electronic chaining controller was able to improve
the minimum value to above 24 dBm by moving the location
of the vehicles orbit center point.

Figure 4 shows results from a simulation with a single
UA, two end nodes and no localized no source. In Fig.
4a, the position of the UA and the center point are shown.
From this figure one can see that when the UA was far
away, it headed directly in the direction of improving the
minimum SNR (which is the SNR from the far right node)
at the maximum speed of the center point. Figure 4b shows
just the X-Y position of the orbit center point is shown to
highlight the bounded convergence rate of the ES algorithm.
For t ∈ (50, 500)s the positional errors (especially on the Y-



axis) show the bounded convergence rate due to the bounded
center point speed.

VI. CONCLUSION

In this paper a definition of an optimal communication chain
of relay nodes in an ad hoc network was presented based on the
SNR instead of relative position. By using the SNR instead of
position, a communication chain of robotic relays can respond
to changes and unexpected features in the RF environment that
is not possible with position based chaining solutions.

Since the operating environment is generally not known a
priori to deployment of a network, an adaptive model-free ES
chaining algorithm was presented to control the motion of 2D
nonholonomic vehicles acting as communication relays. Even
without specific knowledge of the SNR field, the ES algorithm
is able to drive the team of vehicles to an optimal locations
with only local measures of the SNR. The mobility of the
vehicle was modeled as a bicycle-like kinematic model and is
chosen over the unicycle model because the model covers a
wider class of 2D nonholonomic vehicles, including unmanned
aircraft. An orbital motion of the vehicle due to a LGVF
controller was applied to extremum seeking in a unique way
in that the orbital motion of the vehicle about an orbit center
point generated the dither and demodulation signals required
by the ES algorithm. A specific application using UAs was
and simulated to highlight the fact that the performance of the
ES algorithm is limited due to the performance constraints and
capabilities of the individual vehicles within the chain.

Future work will include varying the aircraft flight speed so
as to change the orbiting radius to improve the performance
of the ES framework. By slowing the aircraft down when it
approaches the optimal location, a smaller orbital radius can
be tracked and the aircraft will generate a smaller dither signal
and will improve the estimation of the optimal communication
location. In addition, since the convergence rate is bounded by
the flight speed of the aircraft, it is desirable to have the UA
fly close to its maximum flight speed when the center point
is far away from the optimal location.
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