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Abstract—The area of Swarm Robotics is still in its infancy. 

Key concepts at the basic level have to be invented and developed 

in order to achieve the future goal of building large scale physical 

and controllable autonomous robotic swarms. In this paper we 

extend the concept of Incremental Perception in swarm robotics 

into the domain of complete decentralization. Our work is aimed 

at micro-robotic swarms where the hardware resources available 

for the robots will be limited. Hence a decentralized system 

becomes inevitable because it does not require intra-dependence 

of robot agents, their monitoring system or a communication 

mechanism for the agents; absence of all these factors results in 

reduced hardware requirements for the agents. We focus on the 

co-operative behavior of robots rather than relying on their 

individual capabilities. We also propose the parameters and 

functions that are required for a completely decentralized system 

and show that such a system can be successfully modeled and 

analyzed. 

 
Index Terms—Artificial Intelligence, Mobile Robots, 

Intelligent Robots, Mobile Robot Motion Planning. 

 

I. INTRODUCTION 

HIS paper builds upon the research and findings of a 

previous paper [1] in which we developed and introduced   

the  term  and  concept of Incremental Perception; it was 

defined as the ability of individual members of a swarm to 

perceive part of a complex problem, and use these pieces of 

information to reach a goal which is unachievable by an 

individual agent. We postulate that the idea would be of key 

importance in the development of large scale physical robotic 

swarms.  

Our previous model was based upon a hybrid system while 

the current work takes the concept another step forward by 

presenting a completely decentralized system for 

heterogeneous robots. We have modeled an autonomous 

swarm which is able to make decentralized decisions and 

demonstrate stigmergy (indirect communication of agents 

through modification of their local environment). As a proof of 

the above claim, we assign the swarm a task of ring formation 

around an object and extraction of its 2-D shape.  

The decentralized heterogeneous model that we present here 
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is scalable and new behaviors and robot breeds can be added 

to it. At present the swarm has two types of robot models 

which differ in their architecture and behaviors. These 

autonomous agents can move around in a controlled world and 

pursue the predefined complex tasks of ring formation and 

shape extraction which are beyond the capability of an 

individual agent. We show that our model is scalable, robust, 

exhibits behavior based cooperation in the absence of any 

explicit communication and although the individual agents 

have limited capabilities, the swarm as a whole is able to 

perform increasingly complex tasks. Like a biological swarm 

(e.g. in ants) the success of these agents lies in their co-

operative behavior and not the intelligence of individual 

agents.  

The architecture introduced in [1] presents a hybrid model 

in which the swarm initially behaved in a decentralized way. 

This was followed by the initialization of a central controller 

for complex decision making which converted the architecture 

into centralized; this required the overhead of introducing a 

communication mechanism for robots. These mechanisms 

make the swarm dependent upon beacon agents which are in 

effect master nodes or decision makers [8], hence considerably 

reducing the important factors towards achieving true swarm 

architectures [3].  

It has been suggested in [4] that communication or the lack 

of it is a key design consideration which would eventually 

influence the complexity of a system. In the present work, our 

focus has been on micro-robotic swarms; hence system 

complexity is highly undesirable. [5] discusses the limitations 

of available resources in terms of batteries, sensor systems and 

communication mechanisms available for micro-robotic 

systems. We have therefore avoided any factors that might 

result in increased system complexity; the intelligence in our 

model is because of algorithms and the behaviors which 

emerge as a result of agents following these algorithms. 

Although the absence of explicit communication makes the 

development of behaviors very difficult, it adds to the 

robustness, flexibility and scalability of the system. These are 

the factors classified as the motivators behind a true swarm 

approach in [6].  

[9] and [10] mention three key factors for formation i.e. 

avoidance, aggregation and dispersion. We use a decentralized 

approach to these behaviors and show that combining them 

with a simple set of principals for robots results in complex 

swarm behaviors. 
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Fig. 1. Robots exist as two discrete breeds which have the same basic 

structure but completely different set of behaviors associated with them. 

           

Fig. 2. An Ant-Like robot (left) has a limited field of vision determined by 

antVision. It can step forward in an area bound by the angle antVision 

and unit length of a patch. Firefly-Like robots (right) move about randomly 

and can take a step forward in any direction. Both types of robots have only 

one touch sensor and can only sense an object when the sensor touches the 

object. 

 

 

Fig. 3. Patches have only one variable each, the field. The world holds a set of 

variables that are accessible both by patches and robots. 

II. THE DESIGN 

A. NetLogo and Design Parameters 

We have used the NetLogo modeling tool which is a cross 

platform multi-agent programmable modeling environment 

[7]. NetLogo is suitable for simulating  swarm-robotic systems 

because of its capabilities of handling large numbers of agents 

(thousands). It has the ability to define the rules for agent 

interaction in an efficient way and allows these agents to be 

simulated in a concurrent environment. 

The system consists of three major players i.e. robots, 

patches and the world. The term robot is self explanatory; we 

have designed two breeds of robots, the Ant-Like and Firefly-

Like (Fig. 1) which have different architectures. The first 

model for Incremental Perception in [1] is rather primitive. 

Although it used NetLogo breeds, it did not utilize the full 

potential of the facilities associated with it, this feature has 

however been exploited in our present work and has resulted 

in improvement of the basic algorithms and behaviors, this has 

also introduced better facilities to conduct experiments in 

which both types of robots can co-exist. 

Associated with robot breeds are the variables vision, 

found and sorted. Ant-Like robots check for the presence 

of an object at heading + (antVision/2) and heading – 

(antVision/2), and then move forward at one of these 

headings. Firefly-Like robots only check for an object in their 

current direction, and move forward in a random direction. 

Both breeds of robots have only one touch sensor and the 

heading of a robot is also the direction of the touch sensor.  

The variables found and sorted are the states of robots. A 

robot which has found an object will have the variable found 

set to true. A robot is sorted only when it has arranged 

itself around the object and is currently looking at it. The 

robots move around in an environment which is composed of 

patches, a NetLogo primitive that is a small division of the 

environment and allows defining rules under which robots and 

world may interact with each other. We have associated a 

variable field with each patch which is the strength of a 

potential field. The concept is similar to the real world in 

which a large number of cues e.g. temperature, humidity, 

strength of microwaves at different frequencies, are present 

and have different values at different spatial locations and 

time. Each robot has the ability to create a potential field (that 

attracts other robots) when it comes in contact with an object. 

The field strength in our model can have different values 

depending upon the number, state and motion of robots that 

generate it. Field strength at the point of origination is a 

constant represented by fieldC. Strength of field at any point 

is given by  

rC −=Φ                                (1) 

where Φ  is the field strength, C  is the constant fieldC and 

r  is the Euclidian distance between the point where the field is 

being determined to the point of origination of field. The 

constant fieldC corresponds to the gravitational potential 

energy possessed by an object at the surface of earth, and 

increases with the distance from the point of origination. This 

potential field is shown in Fig. 5 as red colored patches whose 

intensity is low at the center, the point of origination, and 

increases gradually with the distance. 

 The world is a set of global variables with which robots and 

patches may interact (Fig. 3). In fact it is the world that 

enables the simulation of behavior based coordination. In Fig. 

4,  note   the   directional   arrows   showing   behavior   based 

interaction between components.  The  robots and patches may  

interact    with    each   other    by    changing   their    variables 
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Fig. 4. Robots and patches may interact by changing each other’s variables, 

but world cannot do so. It only preserves states. 

 

Fig. 5. Potential Field as a factor of Euclidian distance from the center of 

field. The blue patches constitute an object. 

Fig. 6. The basic algorithm that controls the behaviors of robots. 

  

  

Fig. 7. (Left) Path followed by an Ant-Like robot. Firefly-Like motion (right) 

with different values of fieldLinearity. 

e.g. when a robot touches an object, it creates a potential field 

around itself. Potential fields exist as a patch variable field; 

hence a robot is essentially manipulating a patch variable 

while generating the field. However, interaction with the world 

is limited in the way that the world may not directly affect any 

robot or patch, rather the world preserves certain states such as 

robotEnergy (the collective ability of swarm surrounding an 

object to perform a task) which may indirectly affect the 

decision making process. 

Since the system is decentralized, the agents in the swarm 

behave autonomously without having to depend upon other 

agents in order to accomplish their tasks. The swarm does not 

rely upon any central controller, not even for complex decision 

making which is accomplished merely depending upon the 

behaviors of robots mentioned in the next section. 

B. Swarm Behavior 

The basic algorithm is explained in Fig. 6 and is common for 

both breeds of robots; however the implementation of internal 

modules is different. A robot starts off by first checking if 

there are any objects in its vicinity. If not, it first looks around 

to check for any object by calling the function Look(). The 

function Look() has two implementations one for each breed 

of robots. The difference is that Ant-Like robots can only look 

around for an object in a limited area which is governed by the 

variable antVision while Firefly-like robots have a 360
o
 

viewing angle. 

If the robot has not found any objects until now, it prepares 

to move, first by calling the function Turn() which sets the 

heading of a robot for its next move. This function gives rise to 

the movement models. As in [1] Ant-Like motion is rectilinear 

followed by random sharp turns (Fig. 7 top left), while Firefly-

Like motion is Brownian motion (Fig. 7 top right). At this 

stage, a robot again checks the possibility of finding an object, 

failing which it calls the function Mov().  

The function Mov() in Fig. 8 has different implementations 

for both breeds of robots and is designed to investigate 

different behaviors. Ant-Like robots only check the possibility 

of a collision, and then move forward in a  direction that has 

already been adjusted by the function Turn(). The 

implementation for Firefly-Like robots is however different 

and is more complicated.  Their motion is affected  by  two  

factors,  namely  fieldLinearity  and fieldDefiance. 

The variable fieldLinearity introduces small rectilinear 

intervals between their random turns (Fig. 7). They take a 

number of steps forward (defined by fieldLinearity) in 

their present direction, before setting their heading to a random 

direction as shown in Fig.8. 

The second factor governing Firefly-Like motion is the 

variable  fieldDefiance.  In  [1]  we  added a field defiance 

factor to both kinds of motion which gave less flexibility in our 

previous investigations. Robots inside a potential field should 

ideally follow the field. This however results in an undesirable 

effect    where    the    whole    robot     population     ends    up 

fLinearity = 4 fLinearity = 7 

laws 
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Fig. 8. Mov and F_Mov. The prefix ‘F’ corresponds to Firefly-Like robots. 

 

 

Fig. 9. The function WalkAround introduces behavior based cooperation, 

formation and marching capabilities. 

   

   

   

Fig. 10. Marching and Formation. The robots in a ring formation (top left). 

Robots marching around a ‘+’ shaped object(top right). The rest of the images 

focus a robot that marches around the object after finding an object inside a 

field, and finally arranges itself next to the first robot that found the object. 

This behavior results in a ring formation (top left). 

at a point of lowest potential, whereas the idea behind 

introducing potential fields is to allow robots to continue their 

search within a constricted area around the object. The 

variable fieldDefiance introduces a factor of randomness 

that prevents robots from gathering at one point within the 

field. 

 The Function WalkAround() (Fig. 9) makes the robots 

march around an object and end up in a ring formation. The 

arrangement   of   robots   around   the  object   is  because  of 

stigmergy. It has already been mentioned that a robot creates a 

potential field when it touches an object in the absence of a 

field i.e. when it is the first robot to find an object.  However, 

if a robot touches an object within a field, it realizes that 

another robot near by has found the same object and is looking 

at it. The robot then tries to find the stationary robot by using 

the algorithm in Fig. 9. 

 The result of this behavior is that the robots arrange 

themselves  in a  form  that is  visible in  Fig. 10  (top left).  In 

the figure, white colored robots are the first to find an object 

and hence they generate a field around themselves.  

A robot turns green when it has arranged itself around an 

object (Fig. 10 bottom right). The blue and red colored lines 

are the trails left behind by a robot while it marches around an 

object in search of its proper position. The object itself is 

shown in blue. If part of the object is in contact with an agent 

it is shown the yellow. 

III. RESULTS 

The effects of various system parameters on convergence 

time, and hence the ability to complete a task were 

investigated. These parameters are quite large in number as 

shown in Fig. 11, including fieldDefiance, antVision, 

fieldLinearity and signalRadius. The experiments 

were initially conducted with discrete breeds of robots 

followed by a study of their interoperability. The world size 

was set to 72x46 patches and the results were averaged over 

50 runs, so that they can be statistically analyzed.  

Given an overall complex task that cannot be accomplished by 

a single member of swarm, each agent has the capability of 

contributing to the collective goal. This individual capability  

of   robots   is  called  the  Robot  Energy.  Fig.  12  shows  an 

exponential decrease in convergence time while the robot 

energy increases. This rate of decrease is significant when the 

energy increases from 2 to 5, followed by the smoothening of 

the curve. 

In Firefly-Like robots, however this effect is not very 

smooth as shown in Fig. 13. The graph shows a steep decrease 

in convergence time when the robot energy increases from 2 to 

4 and from 9 to 11. This decrease is at a smaller rate between 

robot energy 4 and 9. 

As expected, an increase in swarm population results in a 

decrease in convergence time. Fig. 14 shows this phenomenon 

in Ant-Like robots while Fig. 15 corresponds to Firefly-Like 

robots. The rate of decrease is a smooth curve in the case of 

Firefly-Like robots as well as in Ant-Like robots. However in 

the  case  of  Firefly-Like  robots,  a  clearly  visible breakeven  
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Fig. 11. The NetLogo control panel. The sliders and buttons allow changes in 

a number of system parameters. 
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Fig. 12. Robot Energy Vs. Convergence Time in Ant-Like robots. The curve 

starts to smoothen at Energy of 4, and almost straightens at7. 
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Fig. 13. Robot Energy Vs. Convergence Time in Firefly-Like robots. For 

robot energy of 2 to 6, the curve is similar to that of Ant-Like robots. 
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Fig. 14. Swarm Population Vs. Convergence Time for Ant-Like robots 

occurs at a population size of 55, after   which   the   

convergence   time   starts to increase. 

Although not very clear in Ant-Like robots, a similar affect 

occurs when the population increases over 70 robots. This, we 

believe is because an increase in population results in 

increased collisions between robots, hence is dependent on 

population density. 

The spatial distribution of an object also effects the 

convergence time. The swarm takes a significantly longer time 

to converge around a bar shaped object as compared to a cross 

(+) shaped object where the surface area of both objects is the 

same. Fig. 16 and 17 show this phenomenon.  

 The variable antVision (the angle of vision of ants) has 

already been explained. An increase in antVision initially 

results in a decrease in convergence time. There is however a 

tradeoff to this and the convergence time actually starts 

increasing once the antVision exceeds 105º Fig. 18.  

In Firefly-Like Robots, fieldLinearity introduces small 

rectilinear movements between random turns at large angles 

and has an effect visible in Fig. 19, similar to the effect seen 

for Robot Energy (Fig. 11). 

Potential fields attract any Firefly-Like robots entering the 

field towards an object. The variable signalRadius governs the 

radius of these fields. Fig. 20 shows that the convergence time 

first increases with an increase in the radius but after reaching 

a breakeven, suddenly starts decreasing and hence its value 

should be chosen very carefully.  

Fig. 21 shows how field defiance affects convergence time 

in Firefly-Like robots. Note that fieldDefiance does not have 

any effect on movement of Ant-Like robots. This effect has 

intentionally been introduced in order to investigate different 

behaviors. 

The graph in Fig. 22 shows the affect of the ratio between 

Firefly-Like and Ant-Like robots on convergence time. Ant-

Like robots converge in less time as compared to Firefly-Like 

robots. The curve shows how convergence time varies for 

different populations of Ant-Like and Firefly-Like robots.  
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Fig. 15. SwarmPopulation Vs. Convergence Time for Firefly-Like robots. 

Minimum convergence time occurs at robot population 55, beyond which 

convergence time actually increases. 
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The above analysis leads to the fact that convergence time 

depends on a number of factors as given by the following 

relationship: 

   

rrs

d

ENR

f
t

××
∝                             (2) 

where t is the convergence time, 
df is field defiance, 

sR is the 

signal radius (greater than the minimum threshold),
rN is the 

robot population (less than the maximum threshold) and 
rE is 

the robot energy. 

Fig. 23 demonstrates shape extraction and due to a varying 

number of robot agents in the arena. In the figures, the blue 

patches correspond to a bar shaped object while yellow 

patches are the points on the boundary of the object that has 

been recognized by the robots. The shape is represented by the 

x-y coordinates of robots that have found an object and have 

correctly arranged themselves around the object.  
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Fig. 16. Object Shape Vs. Convergence Time for Ant-Like robots 
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Fig. 17. Object Shape Vs. Convergence Time in Firefly-Like robots 
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Fig. 18. AntVision Vs. Convergence Time in Ant-Like robots 
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Fig. 19. Field Linearity Vs. Convergence Time in Firefly-Like robots 
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Fig. 20. Signal Radius Vs. Convergence Time in Firefly-Like robots 
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Fig. 21. fieldDefiance Vs. Convergence time in Firefly-Like robots 
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Fig. 22. Firefly-Like : Ant-Like robots Vs. convergence Time 
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Fig. 23. Shape extraction, over time, of a bar shaped object using a varying 

number of robot agents. The yellow patches are patches that are in contact 

with a robot. 

The top left image is generated when the first robot touches the 

object and hence stops moving. The rest of the images show 

how the perception of object improves as more and more 

robots find the object. The bottom right image is the final 

shape extracted with 19 robots. Three visible disconnections in 

the boundary formed around the object are due to the physical 

locations of robots that did not allow further robots to 

complete the boundary. We achieved a 90% shape extraction 

averaged over 50 runs. The percentage of the shape extracted 

is determined by  

    n =         number of robots surrounding the object               (3) 

            number of robots required for 100% shape extractions 

 

IV. CONCLUSION 

 In this paper we have extended the concept of Incremental 

Perception into the decentralized domain. By doing so, the 

requirement of a central controller is removed and thus true 

swarm behavior can be achieved. We have further identified 

the parameters and functions required for modeling a fully 

decentralized system. 

Two kinds of swarm movements were modeled: Ant-Like 

and Firefly-Like. The tradeoffs between the different 

parameters have been experimented on and analyzed. In the 

future, we will extend the study to include environments with 

multiple simultaneous objects. In this scenario an optimal 

number of agents are required to perceive the object 

efficiently. We postulate that repulsive potential fields can be 

used to prevent overcrowding of agents around single objects, 

and    to    reduce    the    probability   of   collisions.    Further 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

investigation will also be carried out to determine the 

relationship between object shape/size to population density. 

[11] presents a theoretical framework for design and 

analysis of distributed flocking algorithms in free-space and in 

the presence of multiple obstacle where as our experiments, so 

far, have been carried out in a 2-D environment, and in the 

presence of only one stationary object. Our future experiments 

will be carried out in the presence of multiple moving objects. 
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