
Scalable and Practical Pursuit-Evasion
Marcos A. M. Vieira

Department of Computer Science
University of Southern California

mvieira@usc.edu

Ramesh Govindan
Department of Computer Science
University of Southern California

ramesh@usc.edu

Gaurav S.Sukhatme
Department of Computer Science
University of Southern California

gaurav@usc.edu

Abstract- In this paper, we consider the design and imple
mentation of practical, yet near-optimal, pursuit-evasion games.
In prior work, we developed, using the theory of zero-sum
games, minimal completion-time strategies for pursuit-evasion.
Unfortunately, those strategies do not scale beyond a small
number of robots. In this paper, we design and implement
a partition strategy where pursuers capture evaders by de
composing the game into multiple multi-pursuer single-evader
games. Our algorithm terminates, has bounded capture time,
is robust, and is scalable in the number of robots. In our
implementation, a sensor network provides sensing-at-a-distance,
as well as a communication backbone that enables tighter
coordination between pursuers. Our experiments in a challenging
office environment suggest that this approach is near-optimal,
at least for the configurations we have evaluated. Overall, our
work illustrates an innovative interplay between robotics and
communication.

I. INTRODUCTION

We are motivated by practical problems in security and
monitoring for large, structured, spaces (e.g., to ensure the
integrity of a large building or complex). The problem we
focus on is pursuit-evasion wherein robots must pursue and
catch evaders.

In Pursuit-Evasion Games (PEGs), multiple robots (the
pursuers) collectively determine the location of one or more
evaders, and try to corral them. The game terminates when
every evader has been corralled by one or more robots. Several
versions of the problem exist. In certain frameworks, it is
acceptable to merely "sight" an evader for it to be "located",
in others, a precise coordinate must be reported. Other for
mulations insist on a certain speed of convergence with fewer
constraints on accuracy. Finally, formulations vary depending
on whether the multi-robot control algorithm is required to
have provably correct behavior, whether the number of evaders
is known a priori, and whether they are malicious or benign.
Each variation of the problem brings with it a different set of
challenges, and several of these variations have been solved
to varying degrees.

We consider the class of PEGs played on a discrete graph.
Specifically, we use a topological map of the environment,

This material is based in part upon work supported by the National Science
Foundation under Grants No. CCF-0820230, CNS-0540420, CNS-0325875
and CCR-0120778 and a gift from the Okawa Foundation. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National
Science Foundation. Marcos Vieira was supported in part by Grant 2229/03-0
from CAPES, Brazil.

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5838
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5838

whose nodes correspond to coarse-grained regions and whose
links connect neighboring regions [1, 2]. Discrete graph based
games are acceptable for many uses of pursuit-evasion (e.g.,
surveillance, finding survivors). Of course, the physical multi
robot games run on a continuous space, but we discretize the
environmental for our localization and game model.

In this paper, we consider a version of the game in which p
pursuers collectively attempt to capture r evaders (Section II).
We are interested in the convergence time of the game (i.e.,
the minimum number of steps for the pursuers to capture the
evaders). We decompose the multi-player game into multiple
multi-pursuer single-evader games. We prove that our algo
rithm terminates, has bounded captured time, is robust, and is
scalable in the number of robots, being suited for practical
applications. Based on our previous work, where we have
designed the optimal policy that pursuers should use in order to
capture evaders with the minimum number of steps, we design
an assignment algorithm that optimally decomposes the game.

An embedded network provides sensing, communication
and computational resources to the robots. The pursuers make
use of the resources of an environment-embedded network,
wherein robot sensing and communication is enhanced by the
network, to have full knowledge of the game.

We present results from running an implementation of our
algorithm on a physical robot testbed (Section V). Please refer
to [3] for more details about this paper.

II. ASSUMPTIONS, TERMINOLOGY AND DEFINITIONS

In this section, we start by stating the sensing and com
munication assumptions for our PEGs, then discuss the class
of games we are interested in. We then lay down some
terminology, and formally define the objective of our PEGs.
This sets the stage for our main contribution, a scalable near
optimal algorithm for PEG, which is discussed in the next
section.

We focus on PEGs in bounded, spatially complex, environ
ments similar to today's office environments. Because such
environments are obstructed, they present limited line-of-sight
visibility. However, it is increasingly true that such envi
ronments are well provisioned with wireless communication
capability, and that many such environments will likely have
dense embedded sensing.control).

In this paper, we assume such network-assisted environ
ments; these environments provide sensing-at-a-distance to
circumvent line-of-sight limitations. Moreover, they provide a

peri
Callout

peri
Typewriter
ROBOCOMM 2009, 31st Mar–2nd Apr 2009, Odense, Denmark.
Copyright © 2011–2012 ICST ISBN 978-963-9799-51-6 
DOI 10.4108/ICST.ROBOCOMM2009.5838

peri
Typewriter

peri
Typewriter



network communication capability that enables much tighter
coordination than would have been possible otherwise. More
specifically, the network a) contains sensors that are able
to approximately localize all participants, and b) provides a
communication backbone that enables participants to exchange
game state.

Based on these assumptions, we consider the class of
PEGs in which all participants have complete (but possibly
imprecise) knowledge of the positions of all participants. We
are interested in the class of games where enough pursuers (we
make this more precise in the next section) exist to guarantee
termination. Finally, we also assume that pursuers and evaders
move at the same speed (more precisely, we assume that they
move exactly one hop in the topology at each time step); we
have left a relaxation of this assumption to future work.

Within this framework, we are interested in the optimal
strategy that pursuers and evaders should play, where our
measure of optimality is the capture time (defined below).
Before we discuss this, we lay down some terminology.

Let G == (V,L) be a finite connected undirected graph with
V vertices and L links or edges. There are two sets of players
called pursuers P and evaders E. Initially, P and E occupy
some vertices of G. In describing the algorithm, we assume
that time is discrete and increments at steps of 1; in our
implementation, of course, we make no such assumption. At
each time step, all pursuers and evaders are given the positions
of all participants. Both teams play a game on G according
to the following rule. At each step, each pursuer chooses a
neighboring vertex of G to move to, then the evaders do
the same. They then move to the corresponding vertex in
G, as defined in [4], and repeat the previous step. The team
of pursuers P wins if it "captures" all evaders. If an evader
can avoid capture indefinitely, then the evader team wins the
game. In the literature [5], the necessary number of pursuers
to capture an evader in a graph G is denoted by (c(G)).

Let p=IPI, r=IEI, v=IVI. Let ~ be the current position of
the ith pursuer and Ei be the current position of the ith evader.
The tuple a ==< Po, ... ,Pp,Eo, ... ,Ee > represents the current
position of all participants. We define a boolean variable
T (turn) to denote if it is the pursuers' turn to move or not
(recall that, in our algorithm, pursuers and evaders alternate at
each time step). We say that the tuple < a, T > encodes the
state s of a game.

We can now define our game more formally as follows:
Input Coarse estimated positions of p robots and r evaders in
a bounded environment E.
Output Motion commands for p robots.
Goal Minimize the capture time of the evaders.
Restriction No motion model for the evaders available to
pursuers.

The game terminates when a capture state is reached. In a
capture state, at least one pursuer occupies the same vertex
in which an evader resides. There exists a different definition
of termination: if, during the evolution of the game, a pursuer
reaches an evader's position, the evader exits the game. Our
definition results in a game that is strictly harder than this

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5838
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5838

variant.

III. PURSUIT-EvASION STRATEGIES

In defining the game, we have avoided mention of the
particular strategy that the pursuers and evaders use. In this
section, we discuss this strategy, which is the main focus of
our paper. We start by discussing the optimal strategy, which
is computationally intractable. We then discuss a computa
tionally feasible strategy that, as we show experimentally is
near-optimal.

A. Optimal Strategy

In our game, we have assumed that both pursuers and
evaders have complete information about the positions of all
players. Consider now the optimal strategy for the pursuers and
evaders: for the former, to capture the evaders in the shortest
time, and for the latter, to avoid capture for the longest possible
time. To formalize this intuition, we turn to zero-sum games.

Pursuit-Evasion is a zero-sum game since the pursuers' gain
or loss is exactly balanced by the losses or gains of the evader.
The evader's goal is to escape as long as possible whereas the
pursuers have to capture the evaders as fast as possible. Zero
sum games have been extensively studied in the game theory
literature, and our solution models a PEG as a zero-sum game
that uses the minimax algorithm [6]. This algorithm minimizes
the maximum possible loss for each player in the game.

To describe this algorithm, consider first that the evolution
of any PEG can be represented by a game graph, a directed
graph with possible cycles. The start state (as defined by
the starting configuration of the pursuers and evaders) has a
directed edge from itself to all possible next states that the
pursuers can make from the start state. (In our game, we
assume that pursuers and evaders move alternatively). In turn,
from each of these states, there is a directed edge to all possible
next states resulting from evaders' moves from that state. The
graph can thus be recursively defined. In general, a game is a
traversal on this graph. If this traversal ends in a capture state,
the pursuers win the game. However, it is also possible for
the traversal to repeat states: such a traversal will result in a
non-terminating game and the evaders win.

We construct the game graph by generating all states and
all possible transitions between states. For each state, we can
calculate the cost to reach a capture state using a bottom-up
approach. Then, this is the strategy that pursuers and evaders
follow.

Y. Each pursuer's strategy is to move to the vertex
dictated by that neighboring state whose cost is
least. Each evader's strategy is to move to the vertex
dictated by that neighboring state whose cost is most
among all neighbors.

In previous work [7], we proved the following theorem:
Theorem 3.1: For any given topological graph G and any

given initial configuration of pursuers and evaders, Y termi
nates in the minimal number of steps.

In practice, to play the game, we first pre-compute a com
plete state transition diagram offline. This is pre-loaded on all



the robots, and each pursuer or evader makes a decentralized
local state transition decision, given the current state (the
positions of all the robots), to calculate next state.

The complexity of this precomputation is O(v2(p+r)). Un
fortunately, the computational cost of enumerating the state
transition diagram is not practical; for instance, using a modern
desktop, we have been unable to compute the robot's strategy
for 9 robots.

This motivates the work presented in this paper. In the next
section, we present a scalable algorithm, where we partition a
PEG into multiple multi-pursuer, single-evader games.

B. Partition Strategy

In our partitioning strategy, the pursuers divide the evaders
amongst themselves and play c(G)-1 sub-games (recall that
c(G) is the minimum number of pursuers required to guarantee
termination on a graph G). In each of these sub-games,
the pursuers and the evader each play the optimal strategy
discussed in Section III-A, and the goal is still to minimize the
time to capture the evader. The key insight is that computing
the state transition diagram for these partitioned games is
computationally feasible. This section discusses an assignment
algorithm that allocates c(G) pursuers to each evader.

Our assignment algorithm assumes p >== c(G) *r, i.e, that
the number of pursuers is at least that required to ensure that
c(G) pursuers can be assigned to each evader. The inputs
to the assignment algorithm include the graph G and the
initial positions of all pursuers and evaders. The assignment
algorithm outputs for each pursuer which evader to pursue
(and eventually capture).

We model the assignment problem of r teams and r evaders
as a matching problem. Consider the bipartite graph G ==
(T,E,L). The set T contains nodes, each of which represents a
team of pursuers: each team represents a distinct combination
of pursuer robots. Each node in the set E represents a single
evader. Finally, each edge I == (u, v) from the set L represents
the assignment of team u to evader v. Each edge I has a cost
Cuv which is the time to capture evader v with team u. It is
possible to compute Cuv , the expected time to capture evader v
by team u, by evaluating a c(G) - 1 game. Realize that we can
pre-compute this cost and we only need to verify one game
to know the cost of every position. We represent the cost Cuv

in a matrix C.
The goal is to find the assignment that minimizes the

maximum time to capture all evaders.
An assignment can be represented as a matrix X == [xi)]

where xi) is equal to 1 if team i is assigned to evader j,
and equal to 0 otherwise. The assignment problem is written
formally as follows:

min ..max CijXij
l,j=l, .. ,N

n
subject to L Xij == 1

j=l
n

LXi} == 1
i=l

Xij E {a, I}

V iEN

V jEN

V (i,j) EN.

This problem is called linear bottleneck assignment
(LBAP) [8] and can be solved optimally by any of the
polynomial-time algorithms based on network flow theory [9].

The assignment algorithm described above is summarized
in Algorithm 1.

Algorithm 1 Assignment of pursuers to evaders

1: Compute a cost metric for a c(G) - 1 game.
2: Generate all possible team configurations, with r teams which

has c(G) pursuers and one pursuer does not belong to more than
one team.

3: for all feasible team configuration do
4: calculate matching cost as a LBAP.
5: update assignment with minimum max game cost.
6: end for
7: return min max assignment.

Algorithm 1 assigns c(G) *r pursuers to r evaders. If p >
c(G) *r, the unassigned pursuers chose randomly which evader
to capture. This adds robustness to our algorithm in case of
robot failure.

Our algorithm solves the global optimization problem de
scribed above even with the restriction that a pursuer can
participate in at most one team. Would a simple greedy
algorithm have worked? A greedy assignment strategy can
result in a non-terminating game. Consider a 2 - 2 game where

the c(G) = 1 and the cost matrix C = [~ .: 1. The optimal

assignment that minimizes the time to capture 0' all evaders for
this matrix is pursuer 1 to evader 2 and pursuer 2 to evader 1,
which gives max time to capture c == 3. The greedy assignment
would instead assign pursuer 1 to evader 1 and pursuer 2 to
evader 2, with cost c == 00. Figure 2(a) illustrates such a game.

Each pursuer robot runs the assignment algorithm locally.
The inputs to the algorithm are the current positions of all
pursuers and evaders; this information is obtained from the
network (and may, of course, be inexact because of sensing
noise). Each pursuer executes the assignment only once, and
sticks with the assignment until the game terminates.

1) Complexity: The number of evaluated team configura
tions x can be modelled as the number of ways to put p distinct
balls in r identical boxes. Each distinct ball represents a
pursuer and each identical box represents an evader. The boxes
are identical because we do not need to determine the identity
of the evaders, the matching will determine this. Moreover,
each box should have c(G) balls. Hence, the number of

configuration x we have is x == (c(G{6!r*(r!).

Given that n! ~ nn (Stirling's approximation), we have

x c::o (c(Gncro)*,*(r')' If p = c(G) *r, we have the number of

evaluated configuration x ~ rP-r. The complexity of the Linear
Bottleneck Assignment Problem (LBAP) with N nodes is
O(N2) [10]. Thus, this part of our algorithm is O(x2). We
also need to evaluate a c(G) - 1 game to know the cost
metric, which has complexity O(v2(c(G)+1)) (from Section IlI
A). Thus, our overall complexity is O(x2 +v2(c(G)+1)), where

p! p-r . d f . O(·?(p+r)) S·
X == (c(G)!Y*(r!) ~ r Instea 0 prevIous IT . Ince

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5838
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5838



C. Navigation

We design a simple wall-following behavior for the
Create to traverse the environment using the IR sensor.

The navigation component calculates the goal position, and
invokes wall-following to move from one topological
node to the adjacent one. Navigation is executed every time
the robot changes its position (as well as when any evader

running Linux), and a lower-tier containing 56 TelosB motes
(tiny commercial sensor nodes).

The network provides the robots two capabilities. The
upper-tier nodes form a wireless communication backbone
that can be used for inter-robot communication and coordi
nation.The presence of a static network infrastructure ensures
that robots can quickly communicate with each other, and
thereby coordinate more effectively. The lower-tier nodes
provide the capability of a virtual position sensor, and can
sense the position of pursuers and evaders. We describe the
details of this capability below.

(b)

.-
101

2 TelosB

3 Micaz

4 MaxforTIP810

• Stargate

(a)

44
.53
108 49 47~745

32------4 -"1
42414039.3736353433.

1

3
106 105 30

Fig. 1. a)Layout of the network testbed b)robot platform

7 1

2827262.2423221918.7161514131.111098

56 55 104 43 103 102

B. Network-Assisted Localization

Our robots do not have extra hardware such as sonar or
lasers to determine robot poses. In our system, the network
estimates robot position. We use a topological map as a
representation of the environment. The goal of our network
assisted localization subsystem is to approximately place each
robot at a node in this topological map.

This subsystem uses the signal strength of periodic "beacon"
messages emitted roughly once every second (we add some
randomization to the interval to reduce collisions) by the
robots themselves.

The second-tier motes receive these beacons, and report all
beacons whose signal strength is above a certain threshold.
Tenet [12], a readily available open-source software package
for programming wireless sensor networks, is the software
that collects the beacon signal strength. A centralized robot
location server then applies a voting scheme on a sliding
window of reports to generate a location estimate.

Our architecture also allows for a decentralized location sys
tem. Instead of retrieving location information from the server,
this information is flooded on the upper-tier network, of which
the robots are a part. We have experimented with this version
as well, and the performance of the system is comparable to
the centralized system, as we show in Section V.

A. Platform

The Robot Platform. We use a commoditized robotics plat
form and made minimal modifications to it using COTS. Our
platform consists of an iRobot Create and a small embedded
computer mounted on top of it (Figure l(b)).

The embedded computer, Ebox 3854, runs Linux Fedora
Core 6 as the operating system. For sensing and control, we
developed a Create driver for Player [11], using which we are
able to move the robot, turn on/off LEDs, read the bumpers,
buttons and IR sensors. We set the nominal speed to 0.2 mls.
The Network. The robots use the network shown in Fig
ure l(a). This network is deployed above the false ceiling on
one floor of a large office building and consists of two tiers:
an upper tier containing 6 Stargates (embedded computers

IV. DESIGN

In this section, we discuss the hardware and network testbed
which form the basis for our pursuit-evasion experiments. We
then describe, in some detail, our PEG software design and
implementation. This sets the stage for our system evaluation,
which is discussed in the next section.

r << IvI, this algorithm is significantly more computationally
efficient.

2) Properties: Here we enumerate the properties of the
partition strategy.

Termination: Lemma 3.2 guarantees game will terminate,
assuming no robot fails.

Lemma 3.2: Our algorithm guarantees that the p - r game
will terminate.

Proof' Since we decompose the p - r game into r parallel
c(G) - 1 sub-games, and each of these games is guaranteed to
terminate by Theorem 3.1, the overall p - r game terminates.

•
Optimality of partitioning: Our algorithm optimally par-

titions the evaders across the pursuers, subject to the cost
metric. This property follows from the optimality of the LBAP
assignment algorithm.

Bounded capture time: The completion time for the p - r
game is the maximum completion time across the c(G) - 1
sub-game. However, is it still an open question how far off
from the optimal completion time this partition strategy is.

Scalability: Our algorithm scales better than the optimal
strategy, since its scaling is dominate by rp-r, while the
optimal scales as IVI 2(p+r), and usually r« IVI.

Robustness: If p > c(G) *r, our algorithm can assign extra
pursuers to evaders to ensure robustness to robot failures.

To summarize, our algorithm works as follows. In a de
centralized manner, each robot pre-computes a c(G) - 1 state
transition diagram. Then, after being informed by the network
of the positions of all robots, each robot runs the assignment
algorithm described above once. Thereafter, using the pre
computed state transition diagram and network localization
updates, all robots continuously play the game until all evaders
are captured.

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5838
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5838



changes its position), so the robot continuously updates its
trajectory.

The navigation component calculates the goal position given
its team's position and that of its assigned evader. Using [7],
we pre-compute a state transition diagram for a given team
configuration. This state transition diagram is pre-loaded on all
the robots, and each pursuer or evader makes a decentralized
local state transition decision, given the current state. This
decision tells the robot which topological node to move to
next.

However, there exists an important subtlety in the navigation
algorithm imposed by the minimality of our platform. Our
robot has no inherent proprioception capability, it can only
travel parallel to a wall, keeping the wall to its right (since
the robot has only one IR wall sensor positioned on its right).
As a result, the robot might actually move in a direction
opposite to that intended by the navigation component. To
rectify this, we add a simple a posteriori correction to the
navigation component. If the wall-follower moves the
robot to a node that it does not expect to arrive at, it invokes
the detach behavior to reverse direction.

V. EVALUATION

In this section, we describe the results from several games
played on the physical robot testbed described in Section IV.

We play the games on the floor plan shown in Figure l(a),
using the network whose nodes are shown in that figure.

The convergence time of a game depends on the initial
configuration. We play our games using a worst-case initial
configuration (there can be many). To calculate the worst
case configuration, we implemented an idealized game sim
ulatorand exhaustively enumerated all configurations.

We can also use the simulator to compare the partition
strategy with the optimal (Table I) for various topologies.
The first column is the topology. The second column is the
necessary number of pursuers to guarantee the termination of
the game for that topology. The third column is the maximum
number of steps to terminate the game (t) with 1 evader, which
of course is the same in both strategies. The fourth and fifth
columns give the maximum number of steps to terminate the
game using optimal and partition strategy for two evaders. For
these topologies, the partition strategy has the same completion
time as optimal strategy.

The drawback of our partition strategy is we might use more
pursuers than the minimum necessary. In a ring topology, 3
pursuers are sufficient to capture 2 evaders. In the partition
strategy, we need 4 pursuers. We believe that this tradeoff
is acceptable, since the partition strategy enables efficient
capture.

We played a few (specifically, 2 - 1, 4 - 2, and 6 - 3) games
on our real world testbed, and we discuss the results below.

An Illustrative Game Instance. Figure 2(b) shows the
trajectory of each pursuer during one instance of a 4 - 2
game. The nodes and solid undirected edges connecting them
represent the topological map. The solid directed lines (lines
with arrows) show the pursuer path as determined by the

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5838
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5838

Topology c(G) t(c(G)-l game) t(2c(G)-2 game)
Optimal Partition

Grid 2D 3x3 2 4 4 4
Cylinder Grid 3x3 2 3 3 3
Torus Grid 4x4 3 4 4 4

TABLE I

GAMES AND THEIR PROPERTIES

localization system. The dashed lines illustrate the evader path.
The edge labels represent the time sequence of the robot.
The pursuer and evader's initial positions are indicated by the
corresponding icons.

In simulation, the capture time for the described game is
5 steps. Our results took 7 steps because our robots do not
have a sense of direction and can only reverse direction by
going in the wrong direction to determine that they have done
so. This behavior is not capture in the simulator. Despite this
(and other) non-idealities, our implementation works well in
the real-world.

Results across Multiple Games. Finally, Figure 2(c) depicts
the capture time across multiple games. The capture time is
similar between the games, as one might expect (since each
game is partitioned into a 2 - 1 game). However, there are
small differences in capture times. For a 4 - 2 game, even with
a pursuer failure in localization, the game terminated since
only 2 robots are needed in our topology.

VI. RELATED WORK

To situate our work in the existing literature, we classify
the type of PEGs using seven criteria: the ratio of the number
of pursuers to the number of evaders; whether pursuers and
evaders have full and/or global visibility, or whether they can
only see within a threshold distance or until occluded by
an obstacle (usually modelled by the edge of a polygon in
2D); what additional information robots have with respect to
the opponents' strategy or planning algorithm; whether the
environment is modelled as a graph (discrete) or a polygon
(continuous half-space with lines in 2D as boundaries); how
the evader is captured, whether by being surrounded, seen or
sensed by the pursuer, or approached within a certain distance,
or physically contacted; the relative speed between the pursuer
and evader;and, if the time to capture is important.

Table II shows a classification of the related work in the
literature along these dimensions. Our work is distinct from
several pieces of prior work, as shown in Table II. The
novelty of our proposed work is clear in several dimensions:
while other work has explored theoretical bounds on even
tual capture [13, 14], or pursuit-evasion under constrained
geometries [15, 19] , or has examined sophisticated control
strategies [17, 18], our proposed work attempts to minimize
the time of captured of a multi-pursuer multi-evader under the
pragmatic realization of physical multi-robot games.

In the survey presented by Alspach [20], a number of
references on the necessary number of pursuers for a given
graph class can be found. In [5], an algorithm to determine
if K pursuers are sufficient to capture an evader is presented.



• Centralized Location Updates
• Distributed Location Updates

~700
CD
E 600

i= 500
!
.a 400
Q.

~ 300

=200
::E 100

o

6 ...

.(4 j
I 5 t it
53 ~2-+-1-p2 p4

1 2 3 4
+-7-<t(j- ~l-~-~\. ) '9" 2-1 4-2 6-3

2 pI p3 Game Configuration (#Pursuers-#Evaders)

(a) (b) (c).
Results: a) An instance of a bag game for greedy strategy b) A 4 pursuer, 2 evader game. c) Capture TImeFig. 2.

i
p2

[13] [14] [15] [16] [17] [18] Our work
Pursuer to Evader Ratio >1 1 >1 >1 >1 1 » 1

Pursuer Visibility full full local local local full full
Evader Visibility full full full full local none full

Information full full full full no pursuer full full
Environment Graph Polygon Polygon Polygon Polygon Polygon Graph

Capture touch touch see touch touch touch touch
Speed (faster entity) same same same evader any same same

Time to Capture no no no no no no yes
Robot Implementation None None None None Partial Partial Full

TABLE II

RELATED WORK IN PURSUIT-EvASION

Aigner and Fromme [13] proved that in a planar graph G, 3
pursuers are sufficient for the pursuers to win the game.

VII. CONCLUSIONS

We presented an assignment algorithm that guarantees
the game terminates, has bounded captured time, is robust,
and is scalable in the number of robots, being suited for
practical applications. We have reported on the design and
experimental characterization of a nontraditional mobile robot
based pursuit evasion system. In our system robot sensing
and communication is enhanced by an environment-embedded
network. We have validated the feasibility of our algorithm
by experimentally playing mobile robot-based pursuit evasion
games on a physical testbed.

ACKNOWLEDGEMENTS

We thank Lamia Chouaieb and Niklas Goddemeier for the
contribution to the wall-following component.

REFERENCES

[1] B. Kuipers and Y.-T. Byun, "A Robot Exploration and Mapping Strategy
Based on a Semantic Hierarchy of Spatial Representations," Tech. Rep.
AI90-120, 1, 1990.

[2] M. 1. Mataric, "Integration of Representation Into Goal-Driven
Behavior-Based Robots," IEEE Transactions on Robotics and Automa
tion, no. 3, June 1992.

[3] M. A. M. Vieira, R. Govindan, and G. S. Sukhatme, "Scalable and
Practical Pursuit-Evasion," Department of Computer Science, University
of Southern California, Tech. Rep. 09-902, 1 2009. [Online]. Available:
http://www.cs.usc.edu/Research/ReportsList.htm

[4] R. J. Nowakowski and P. Winkler, "Vertex-to-Vertex Pursuit in a Graph,"
Discrete Mathematics, vol. 43, no. 2-3, pp. 235-239, 1983.

[5] A. Berarducci and B. Intrigila, "On the Cop Number of a Graph," Adv.
Appl. Math., vol. 14, no. 4, pp. 389-403, 1993.

[6] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[7] M. A. M. Vieira, R. Govindan, and G. S. Sukhatme, "Optimal Policy
in Discrete Pursuit-Evasion Games," Department of Computer Science,
University of Southern California, Tech. Rep. 08-900, 1, 2008.

[8] R. Jonker and A. Volgenant, "A Shortest Augmenting Path Algorithm
for Dense and Sparse Linear Assignment Problems," Computing, vol. 38,
no. 4, pp. 325-340, 1987.

[9] R. E. Burkard and E. ~ela, "Linear Assignment Problems and Exten
sions," Handbook of Combinatorial Optimization, vol. 4, 1999.

[10] U. Pferschy, "Solution Methods and Computational Investigations for
the Linear Bottleneck Assignment Problem," Computing, vol. 59, no. 3,
pp. 237-258, 1997.

[11] B. P. Gerkey, R. T. Vaughan, K. StfZ>Y, A. Howard, G. S. Sukhatme,
and M. J. Mataric, "Most Valuable Player: a Robot Device Server for
Distributed Control," vol. 3, Maui, HI, USA, 2001, pp. 1226-1231.

[12] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira,
D. Estrin, R. Govindan, and E. Kohler, "The TENET Architecture for
Tiered Sensor Networks," in Proceedings of the ACM Conference on
Embedded Networked Sensor Systems, November 2006.

[13] F. M. Aigner. M, "A Game of Cops and Robber," Tech. Rep., 1984.
[14] J. Sgall, "Solution of David Gale's Lion and Man Problem," Theor.

Comput. Sci., vol. 259, no. 1-2, pp. 663-670, 2001.
[15] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot

wani, "Visibility-Based Pursuit-Evasion in a Polygonal Environment,"
in WADS '97: Proceedings of the 5th International Workshop on
Algorithms and Data Structures. London, UK: Springer-Verlag, 1997,
pp. 17-30.

[16] V. Isler, S. Kannan, and S. Khanna, "Randomized Pursuit-Evasion in a
Polygonal Environment," IEEE Transactions on Robotics, vol. 5, no. 21,
pp. 864-875, 2005.

[17] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry, "Prob
abilistic Pursuit-Evasion Games: Theory, Implementation, and Experi
mental Evaluation," Robotics and Automation, IEEE Transactions on,
vol. 18, no. 5, pp. 662-669, 2002.

[18] S. Oh, L. Schenato, P. Chen, and S. Sastry, "Tracking and Coordination
of Multiple Agents using Sensor Networks: System Design, Algorithms
and Experiments," Proceedings of the IEEE, vol. 95, no. 1, Jan 2007.

[19] R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattacharya, and
S. Hutchinson, "Surveillance Strategies for a Pursuer with Finite Sensor
Range," Int. J. Rob. Res., vol. 26, no. 3, pp. 233-253, 2007.

[20] B. Alspach, "Searching and Sweeping Graphs: a Brief Survey," Le
Matematiche (Catania), vol. 59, pp. 5-37,2004.

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5838
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5838




