
Distributed Strategies for Local Minima Escape in
Motion Planning for Mobile Networks

Zhenwang Yao and Kamal Gupta
Robotic Algorithms and Motion Planning (RAMP) Lab,

School of Engineering Science, Simon Fraser University, Canada
{zyao,kamal}@cs.sfu.ca

Abstract-This paper studies the problem of controlling net
worked mobile agents while maintaining connectedness among
them. Our previous work in [13] and other existing distributed
methods use potential field based techniques and hence suffer from
local minimum problems. In this paper we propose a preliminary
categorization of different types of local minima that can arise and
distributed strategies to deal with these local minima, based on our
previous backbone based connectivity control (BBCC) framework
in [13], where a communication backbone was used to maintain
system connectivity. The local minima in our problem can arise
either due to obstacles or due to connectivity constraints, or a
combination of the two. Our categorization and the corresponding
strategies to escape local minima are an initial attempt to deal with
these issues in a systematic manner. As backbone is an effective
and efficient representation of the formation topology, it provides
a good leverage to exploit all members in the mobile network to
gain knowledge of the environment and make decisions, and our
simulations show that these backbone based strategies are very
effective in escaping these local minima.

I. INTRODUCTION

A network of autonomous mobile robots (agents) has the
desirable capability of performing spatially distributed tasks
including sensing, coverage, surveillance, exploration, target
detection, etc. Such mobile sensor networks have received much
attention in last few years. However, controlling such a group
of agents is a fundamental and challenging problem. In par
ticular, we study the problem of controlling networked mobile
agents while maintaining connectedness among them, i.e., all
agents are required to remain connected to each other (either
directly, or via other agents). Connectedness is essential in
coordinated and cooperative control, since team members need
to communicate and share information with each other, and
more importantly, in many cases connectedness is a necessary
condition for the stability of the system [7], [8].

Connectedness constraints have been considered in the con
text of different problems, such as formation control [10]
consensus problem [6], and flocking and swarming [9], [4], [3].
Many recent works have addressed connectedness constraints
in path planning [5], [1] and more general motion control of
networked systems [11], [14], [15], [13]. Among these works,
[10], [4] assumed a predefined and fixed topology of system
(e.g., "constraint graph"), and [6], [3] assumed either the goal
formation to be a subgraph of the initial formation, or vice
versa. Clearly, fixed topology does not capture full dynamics
of multi-agent systems (formations), since formation topology
changes as agents move in and out of communication range of
each other. Such presumptions on formation topology are quite
limiting, are not realistic in many applications, and may prevent

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5856
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5856

certain tasks from being achieved. [1], [5], [14] proposed
centralized approaches, and suffer from high dimensionality
of the problem for large systems and may not suitable for
real time applications. [11], [15], [13] proposed distributed
approaches, which use only local information to achieve overall
system objectives and hence are intrinsically more desirable.
These three approaches use certain sub-graphs to represent
system topologies, and guarantee connectedness by maintaining
existing links in the representative sub-graphs. Note that it is
difficult to embed connectedness constraints into geometric and
analytical models typically used in distributed motion control
or planning algorithms, due to the combinatorial and global
nature of connectedness constraints [11]. The above distributed
approaches use potential field based techniques to maintain
critical links, and suffer from local minima problem when
multiple criteria are considered, such as achieving goal, main
taining connectedness, and avoiding collisions. Furthermore,
as mentioned in [11], in some scenarios, using only local
information is doomed to failure and global decision needs to
be made in order to achieve a certain task. In this paper, we
extend our previous work [13] to a general motion planning
framework that is capable of escaping from local minima, and
making global decisions when necessary. To the best of our
knowledge, ours is the first distributed approach to attack the
local minimum problem in mobile networks.

In [13], we proposed a framework for motion planning
with connectedness constraints, called BBCC, Backbone Based
Connectivity Control. Backbone is a concept we borrowed from
communication literature [2]. It is a virtual network formed
by a relatively small subset of the network, and provides a
hierarchical organization of the original network. The basic idea
of forming a backbone is to group a set of agents based on
physical proximity, and represent each group by a single agent
as clusterhead; clusterheads are connected to each other, or
via connecting agents called gateways. Clusterheads, gateways
and selected connections among them form the backbone.
Clusterheads are chosen in a way such that all other agents
connect to at least one clusterhead (i.e., clusterheads form a
dominating set; for more details please refer to [13]). In order
to maintain the connectedness of the system, we first maintain
a connected backbone, by maintaining existing connections
(communication links) in the backbone; and then for a non
backbone agent, one of the backbone agents is chosen as a
leader, and the non-backbone agent maintains connection to the
leader by following it. The key advantages of using backbone
are that it captures the system connectivity nicely, and it can

peri
Callout

peri
Typewriter
ROBOCOMM 2009, 31st Mar–2nd Apr 2009, Odense, Denmark.
Copyright © 2011–2012 ICST ISBN 978-963-9799-51-6
DOI 10.4108/ICST.ROBOCOMM2009.5856

peri
Typewriter

peri
Typewriter

peri
Typewriter

_---1__- -------18
2

• Clusterheads - Backbone connections
• GatewaylDoorways - Connection to backbone
o Regular agents - - Non-formation connection

3 Goal of agent 4

1
,,>,1

4 {4:
..... _".,~-,'

Path for agent 4

(a) Type I. (b) Type II. (C) Type III.

Goal of all
agents

Fig. 1. Backbone-based formation. Fig. 2. Categories of local minimum. Dotted nodes are goal positions of corresponding agents

be constructed efficiently in a distributed manner.
In this paper, we bring local minimum avoidance and global

decision making capability into the BBCC framework. Local
minima are detected when one or more agents do not progress
toward their goals. We classify local minima into three different
categories: Type-I (Regional obstacle-induced local minimum),
Type-II (Individual connectivity-induced local minimum), and
Type-III (Structural compound local minimum). As we will
detail later, different types imply different natures of the min
ima. In the first category, the agent may be able to escape
the minimum merely by simple local behavior (e.g.,random
walk), whereas in latter two categories, an agent needs help
from others in order to make global decisions for local min
imum escaping. Corresponding to these different types, three
respective strategies are used to tackle these local minima: Ran
dom Walk, Backbone-based Navigation, and Backbone-based
Leader-following. The first strategy is simply a local strategy for
obstacle avoidance, and the latter two strategies incorporate dis
tributed global decision making and exploit existing backbone
constructed under BBCC toward this purpose. Backbone based
Navigation strategy uses the backbone to take advantage of the
knowledge (sensing) embedded in the entire system, gathers
path planning information (roadmap) that is beyond sensing
and communication range of one single agent, and provides
guidance to agents to escape Type-II local minimum. Backbone
based Leader-following strategy tries to achieve maximum
mobility by reducing the number of connectedness constraints,
and looks for maximum reconfigurability in order to escape
Type-III local minimum.

The organization of the paper is as follows. The formal
problem formulation is given in Section II. After that we briefly
review our previous BBCC framework in Section III, outline
the proposed local minimum escaping scheme in Section IV,
and then detail distributed local minimum escaping strategies in
Section V. In Section VI, we show computer simulation results,
followed by conclusions in Section VII.

II. PROBLEM FORMULATION

Consider a group of n mobile agents, A
{I, 2, . . . ,n}, and their positions are denoted as
X(t) {Xl (t), X2(t), ... ,xn(t)}. Agents know their
own positions, and can communicate with each other within a
communication range de. We model interaction of the group
as a time-varying proximity graph (also called communication

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5856
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5856

graph), G(t) = (V(t), E(t)), whose vertices represent agents,
V (t) =A, and edges represent communication links between
agents. Let (i, j) denote an edge between agents i and j, thus,

(i,j) E E(t)~ d(i,j) = Ilxi(t) - xj(t)11 ::; de

Each agent, i, can have its own goal configuration, xf, so Xg =
{xI,x~,··· ,x~}. The problem is how to maneuver the group
of agents to reach their respective goals, with the constraint that
G(t) remains connected throughout the task.

III. EXISTING BACKBONE BASED CONNECTIVITY
CONTROL (BBCC)

The BBCC proposed in [13] works as follows.

1) With the communication graph, G(t), BBCC first con
structs the backbone, GB(t) = (VB(t),EB(t)), where
EB(t) ~ E(t) and VB(t) ~ V(t), in a distributed
fashion. The backbone consists of backbone agents and
connections among them, and these agents and con
nections are critical for the system connectivity. Fig.l
shows an example of backbone in a formation. There
are 3 backbone agents: A, B, and C, where A, Bare
clusterheads, and C is a connecting gateway. Ai'S are
non-backbone agents associated with A, and A along
with Ai'S forms one cluster. Bi's are non-backbone agents
associated with B, and they form the second cluster.

2) Based on the constructed backbone and respective goals,
motion of each agent, Xi(t), is determined. For the
backbone agents, we formulate the backbone as a con
straint graph, and motion control is derived such that
every connection in backbone is maintained; and for
non-backbone agents, we use, loosely speaking, a sort
of leader-follower control with the associated backbone
agent as the leader. In Fig.1, to guarantee connectedness,
connections (A, C), (B, C) are preserved, and within its
own cluster, A is the leader and A~s maintain connections
to A. Same for Band Bi's.

3) After agents move with constraints of backbone for a
period of time, T, communication graph G(t) may have
changed, and thus the backbone GB (t) is updated, and
agents move with the new backbone as constraint graph.
We stress that BBCC is a distributed framework, there
is no central global representation of G(t), GB (t), and
update of G(t), GB(t) and Xi (t) are done locally.

When computing agent motion, Xi(t), we model the goal
achievement and connectedness maintenance as attractive po
tentials, and obstacle avoidance as a repulsive potential. The
agents then follow the negated gradient of the composite
potential. As expected, such composite potential may have local
minima, and some agents or the entire team may get stuck. We
now extend the above framework to deal with local minima, by
introducing a local minimum escaping scheme.

IV. OVERVIEW OF PROPOSED LOCAL MINIMUM ESCAPING

SCHEME

A. Local minimum detection

To detect local minima, we keep track of an agent's trajectory.
We save the last K positions of the agent, and compute their
variance. If the variance is smaller than a threshold, then this
agent is deemed to be in a local minimum.

B. Local minimum classification

We categorize local minima into three different levels:

1) Type I: Regional obstacle-induced local minimum.
This is mainly because of obstacles, and connectedness
constraints are not the limiting factor (i.e., they are easily
maintained in that region). Intuitively, this is what may
occur for a single robot. A local strategy such as random
walk may solve the problem. Fig. 2(a) shows one such
example, where a small obstacle blocks agent #4 from
its goal, and a random walk should be enough for the
agent to get around the obstacle and reach its goal.

2) Type II: Individual connectivity-induced local mini
mum. This type of local minimum is normally caused
by connectedness constraints, and mayor may not be
compounded with obstacles. In such a scenario, only
a single agent (or small number of agents) is in local
minimum. Simple local strategies may not be possible for
the agent(s) to escape, and instead, global path planning
is needed. For example, in Fig. 2(b), in order for agent#9
to reach its goal position, the agent has to move along
the formation to maintain connectedness of the formation,
and finding such a path needs to involve all agents.

3) Type III: Structural compound local minimum. This
type of local minima is also caused by connectedness
constraints, and is most likely compound with obstacles.
A number of the team agents are stuck into local minima,
and even worse these local minima are coupled to one
another. A major reconfiguration of the entire mobile
network is needed in order to move out of these minima.
Fig. 2(c) is an example. Clearly in this case, from
each agent's local point of view, all edges in the initial
formation are critical in maintaining connectedness. In
order to achieve the goal formation, some edge has to be
broken ((2,3) in the example); and making decision as
to which edge to break needs to involve all agents.

Although given examples illustrate different types of local
minima, the distinctions may not be as clean cut. There is ample
scope for investigating these further in a more formal manner.
We determine which type a local minimum belongs to in a

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5856
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5856

Fig. 3. Overall scheme.

heuristic way, and adopt different strategies to deal with local
minima. We now discuss the heuristics and these strategies.

c. Local minimum escaping strategies

The overall local minimum escaping scheme is shown in
figure 3. It starts with the original BBCC; Agents update
backbone and move subject to connectedness constraint based
on the backbone. When an agent detects a local minimum, it
first assumes the minimum is a Type-I minimum, and uses
some simple local strategies, we used random walk (could
easily be substituted with others) to escape. If a local minimum
persists, the minimum is deemed to be either Type-II or Type
III minimum, and the difference between the two is whether or
not agent (in the local minimum) is a backbone agent. For either
type, the agent needs helps from all other agents, so the local
minimum agent broadcasts its information to notify all other
agents. Upon receiving such notifications, all agents temporarily
stop moving, and the backbone becomes stationary. Then, the
escape strategies are as follows. For Type-II minimum, since
no backbone agent is in local minimum, current stationary
backbone is used as a navigation roadmap to navigate the (non
backbone) agent to get as close as possible to its goal. We
call this strategy "Backbone-based Navigation". For a Type-III
minimum, the system constructs a spanning tree based on the
stationary backbone. The root agent of the tree is the agent that
is farthest away from those agents deemed to be at local minima
(and hence most likely to be free from local minimum), and
acts as a leader. All other agents follow this leader according
to the tree hierarchy and move toward their parents instead
of their ultimate goals. The purpose of doing this is to bring
agents closer, increase the system connectivity, and thereby
increase reconfigurability. We call this strategy "Backbone
based Leader-following". After the escaping procedure, the
system resumes to BBCC mode.

It is possible that more than one agent are simultaneously
at their respective local minima, and these are handled as
follows. A Type-III minimum has the highest priority to be
solved, followed by a Type-II, followed by a Type-I minimum.
Each strategy handles multiple local minima of the same type.
For multiple Type-I minima, agents can random walk at the
same time. If there are multiple Type-II minima (but no Type
III minimum), the Backbone-based Navigation strategy creates
routes to each minimum agent, i.e., they are simultaneously
handled. The Backbone-based Leader-following strategy natu
rally handles multiple Type-III minima by selecting the leader
to be farthest away from any local minima.

v. DISTRIBUTED ESCAPING STRATEGIES: DETAILS

For Type-I minima, agents adopt random walks "on the
go". While other agents are still moving toward their respec
tive goals, an agent deemed to be in Type-I local minimum
moves toward randomly chosen subgoals (for the next R time
steps). Certainly, all agents are still subject to connectedness
constraints when they move.

Type-II and Type-III minima need global assistance to es
cape, and thus an agent in either type of local minimum notifies
all other agents by sending out a MSG_DETECT message,
with its information, such as its current and goal position. All
agents maintain a list of agents in local minimum, lmList.
An agent receives the MSG_DETECT message, stores the
corresponding local minimum information into the list, and
forwards the message (if needed). At the end, all agents will
have the exact same list. To initiate Backbone-based Navigation
or Leader-following escaping procedure, upon receiving the
MSG_DETECT message, all agents stop moving and thus
backbone become stationary; To reflect the topology of the
stopped network, agents stop updating the backbone during
escaping (i.e.,the backbone is "frozen", as we call it later).

A. Escaping Type-II minima

A backbone-based robot navigation scheme was proposed
in [12] for single robot navigation in a static sensor network.
Therein a shortest path from current robot location to a given
goal sensor node is computed based on the backbone. Please
refer to the paper for detailed information about the navigation
scheme. Here, we use a simplified version of the scheme, since
the backbone is already constructed by BBCC. Denote Am as
the non-backbone agent that is in local minimum, and define
a cost function of agent i, to be the distance between agent i
and the goal of Am, x¥n.

C(Ai , Am) = Ilxi - x~11 (1)

The basic idea is to propagate a navigation field (with
C(Ai, Am) as the navigation function) over the (stationary)
backbone, then the local minimum agent follows the field in
the descending direction. Details are given below.

1) Subgoal election: For an Am, the backbone agent with
the smallest cost will be chosen as its subgoal. This is
a global election, and involves all agents. A backbone
agent proposes itself to be a subgoal candidate if it has
smaller cost (i.e., closer to x¥n) than any of its backbone
neighbors. Note that the proposal is only based on an
agent's (2-hop) neighbor information, and it is possible
that there are more than one agent assuming itself to be
the sub-goal. To reach a global decision, the planning step
follows.

2) Planning: Candidates broadcast a MSG_PLAN_NBB mes
sage with its own information (including position). An
agent receives the message and stores the route to the
candidate. An agent may receive more than one message,
and if the received message gives a better (smaller-cost,
and shorter) path to the goal of Am, the agent updates
the route, and forwards this message if the receiving
agent is a backbone agent. This procedure is similar

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5856
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5856

to the goal dissemination procedure as in [12], except
that we may have multiple sources (i.e., multiple subgoal
candidates) here. At the end of the procedure, all agents
come to a unified conclusion of who is the winning
subgoal for Am, and every agent has the best route to
the subgoal. Please note that a backbone agent only pro
cesses MSG_PLAN_NBB messages from backbone agents
it connects to, and simply discards the messages from
any other agents; A non-backbone agent receives and
processes MSG_PLAN_NBB messages but never forwards
the message.

3) Navigation: After previous planning step, all agents store
the best route to the subgoal of the local minimum agent,
so they can provide guidance (to the local minimum
agent) regarding the best movement toward its subgoal.
To escape from the local minimum, the agent constantly
broadcasts a query to the backbone; backbone agents
respond with next via-point based on stored routes; the
escaping agent chooses the best next via-point as "sub
sub-goal", and move toward that. Such query-respond
move procedure repeats until the subgoal is reached.

4) Back to BBCC: After the agent has reached its subgoal,
it broadcasts a MSG_ESCAPED message to notify all
agents that it is out of local minimum. Agents receive
the message and remove the agent from lmList. Once all
agents have reached their subgoals, the system resumes to
BBCC. If one or more of the agents are unable to reach
their respective sub-goals, the strategy simply reports a
failure. We are currently exploring more sophisticated
strategies in such cases.

B. Escaping Type-III minima

For a Type-III minimum, the system uses Backbone-based
Leader-following strategy. The basic idea is to construct a
leader-following tree hierarchy with a leader that is most likely
free from local minima, and then move closer toward the leader
to increase connectivity and hence reconfigurability. Define a
gain function of agent i, as its distance to the local minimum
agent Am.

(2)

The Leader-following escaping procedure then includes the
following steps.

1) Leader election: The backbone agent that has maximum
gain (i.e., farthest from any local minimum agent) is
elected as the leader. Similar to subgoal election in
previous Navigation strategy, leader election involves all
agents. A backbone agent proposes itself to be a leader
candidate if it has bigger gain than any of its backbone
neighbors.

2) Spanning tree construction: Leader candidates broadcast a
MSG_PLAN_BB message with its gain. An agent receives
the message, and checks if the received message gives a
better (with larger gain, and shorter route) leader. If so it
updates its route to the new leader, and if the receiving
agent is a backbone agent, it forwards the message. At the
end, all agents have routes to the winning leader (Az) with

Legends

General
Transition

Event
~

~ Transition only for nodes
detect minimum.

~Statefor
~EscaPing

r-~~~~-_-_~-_~~~-_~ Message

~ Timer

1--------1 General
State

Timeout

I U

II

(g)(f)(e)

Local min.
~Local min.

I

~I
t .

Local min.

(C) Traj. (d)

MSG_ESCAPED received

uO

°I 1 I
1.1

~ 1.
2

I I
113

(a) Init. (b) Goal

Fig. 5. Escaping from Type-I minimum. (a) Initial formation. (b) Goal formation. (c) Successful trajectories of agent #0 and #3 with Random Walk strategy.
(d)-(g) Snapshots of the system along the successful trajectories. (d) Local minima detected by agent #0 and #3. (e) Agent #3 escaped the minimum, while
agent #0 detected another minimum.

the highest gain. These routes make a tree hierarchy with
Az as the root. Note that since during the construction,
only backbone agents forward the message, the resulting
spanning tree has all non-backbone agents as leaves.

3) Leader-following: Once the spanning tree is constructed,
agents move in a leader-following fashion. An agent
follows its parent in the spanning tree, and move toward
its parent, instead of toward its ultimate goal.

4) Back to BBCC: After the (vertex) connectivity of the
local minimum agent has increased by a certain degree (a
user-defined parameter in the algorithm), or simply after
moving for a certain period of time, the system stops and
resumes to the regular BBCC to move to original goal.

C. Implementation details

We have introduced general ideas of the framework, and
skipped some important technical implementation details for
clarity. We present these details in this section. Fig. 4 shows our
state machine design for the proposed local minima escaping
scheme. The same state machine runs on all agents, but it
may take different transitions on different hosts depending on
whether the host is a backbone or non-backbone agent, and
whether it is an agent in local minimum.

1) Synchronization: In the framework, the system may
switch from BBCC moving mode to Navigation escaping mode,
or to Leader-following escaping mode, and then switch back
to BBCC. In different modes, agents move with different
constraints. Switching between modes needs synchronization,
since we need to make sure agents move with proper constraints
engaged, otherwise the system may became disconnected.
To synchronize switching, we introduce some intermediate

states/modes, and some extra messages. The implementation of
an agent's state machine is shown in Fig. 4. While backbone
construction involves only local agents and generates O(~)
messages for each of backbone agents [12], where ~ is the
maximum vertex degree, synchronization messages (including
all messages shown in the Fig.4) need to reach all agents, and
generate O(n) messages for each round of synchronization,
where n is the number of mobile agents.

a) Freezing and unfreezing the backbone: Once an agent
detects a Type-II or Type-III minimum, it stops moving and
broadcasts MSG_DETECT message, and agents receiving the
message also stop moving. However, agents should not stop
updating backbone while any agent is still moving. As a
consequence, the backbone may have changed since the time
the local minimum is first detected. Therefore, we introduce
two states, LM_Detected and LM_Frozen, and an extra message,
MSG_UPDATE to synchronize the backbone. When an agent
first detects a local minimum, or receives the MSG_DETECT
message, it stops, transits into LM_Detected state, and waits
for T_Spread seconds (the maximum time it may take for a
message to spread to every agent). Assuming after this wait
all agents have stopped and backbone has been stationary, the
local minimum agent sends a MSG_UPDATE message after
timeout to freeze the backbone, and update the lmList in
each agent. Similarly, when the system resumes from escape
mode to BBCC, agents should start updating the backbone
before they can start moving. The LM_Unfrozen state serves this
purpose and makes sure the backbone is updated by waiting for
T_Spread seconds before transitioning back to LM_None state
(BBCC).

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5856
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5856

between agents is set to 15m. In this paper, we assume a
simplified communication model: two agents can communicate
with each other if and only if their distance is within the
communication range. We assume obstacles do not obstruct
communication (e.g., in wireless communication networks).

A. Escaping Type-I minimum

Fig. 5 shows a case of Type-I minimum, where two small
obstacles blocked agent #0 and #3 from their goals. While
the agents were trying to reach their goals, the obstacles kept
pushing them away, and therefore local minima were detected
around the obstacles. After detecting that they are in local
minima, agents tried random walk to avoid the obstacles, and
after random walk the agents moved toward their respective
goals again. Due to the random nature, it might take several
rounds of random walk to escape the minimum. For example, in
the shown simulation, it took agent #0 longer to escape. Other
deterministic local strategies may yield better performance.

B. Escaping Type-II minimum

Fig. 6 shows a case of Type-II minimum, where all agents
were right at their goal position, except one, agent #5, as shown.
It tried to move toward its goal position, but the combination
of obstacles and connectedness constraints prevented it from
doing so, and the agent detected local minimum as shown in (d).
After trying random walk for several times, the local minimum
persisted, since the obstacle was relatively large. As agent #5
was a non-backbone agent, the local minimum was deemed to
be Type-II, and the Backbone-based Navigation strategy was
activated for escaping. To navigate agent #5 out of its local
minimum, the existing backbone (bold colored lines and agents)
was used as planning roadmap, and agent #4 was elected as
subgoal for #5. In from (d) to (f), agent #5 moved along the
found path, and reached the subgoal. Clearly, from there it could
easily reach its final goal.

C. Escaping Type-III minimum

Fig. 7 shows a case of Type-III minimum, where all agents
were wrapped around an obstacle in the initial configuration,
and the obstacle was so large that an agent could only com
municate with its immediate neighbors (a). In this case, all
agents were in the backbone (c), because from every agent's
local point of view, all its edges were critical in maintaining
connectedness. The goal formation was a complete graph away
from the obstacle (as in (a)). In order to achieve the goal,
the team had to break some links between agents. When the
team tried to move toward the goal formation, connectedness
constraints kept the agents from moving any further as in (d).
Clearly random walk did not help much in this case, and the
system detected a Type-III minimum, as a backbone agent
(agent #1 as shown) was in local minimum, and hence the
Backbone-based Leader-following strategy was engaged. With
the strategy, a spanning tree was constructed, as shown in (e).
The root of the spanning tree (the leader) was the backbone
agent that was farthest away from the local minimum. Then
for a certain period of time, all agents moved and followed this
leader, resulting in formation in (g), and from there the system
easily reached the goal formation.

o

(b) Goal

. t
Local min detected

(d) Local minimum detected

o

(a) Initial

(c) Trajectory

4

VI. COMPUTER SIMULATIONS

We now present simulations to show the effectiveness of
the proposed scheme in escaping local minima. We used an
in-house developed software simulator. We simulate a team
of agents moving, in an arena of 120m x 120m, from an
initial formation to a goal formation. The communication range

(e) Moves along backbone (f) Moves along backbone

Fig. 6. Escaping from Type-II minimum. (a) Initial formation. (b) Goal
formation. (c) A successful trajectory of the local minimum agent, with our
Backbone-based Navigation strategy. (d) A local minimum detected. (e)-(t)
Snapshots of the system along the successful trajectory.

b) Planning and spanning tree construction: In
LM_Planning state, agents do path planning or spanning
tree construction depending on what type of local minimum
the system is dealing with. Once the path has been planned,
or the spanning tree has been constructed, all agents
transition into LM_Planned state where escaping agents can
prepare for escape. Specifically, in Leader-following escape
mode, the spanning tree (instead of the backbone) is used
as connectedness constraints, and should be engaged in
LM_Planned state.

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5856
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5856

F. Coutinho, J. Barreiros, and J. Fonseca. Choosing paths that prevent
network partitioning in mobile ad-hoc networks. In IEEE International
Workshop on Factory Communication Systems, pages 65-71, 2004.
B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum
connected dominating sets. In IEEE International Conference on Com
munications, volume 1, pages 376-380, 1997.
D. V. Dimarogonas and K. J. Kyriakopoulos. Connectedness preserving
distributed swarm aggregation for multiple kinematic robots. IEEE Trans.
on Robotics, 24(5):1213-1223, 2008.
J. M. Esposito and T. W. Dunbar. Maintaining wireless connectivity
constraints for swarms in the presence of obstacles. In ICRA-2006, 2006.
Alex Fridman, Jay Modi, Steven Weber, and Moshe Kam.
Communication-based motion planning. In 41st Annual Conference on
Information Sciences and Systems, pages 382-387, 2007.
Meng Ji and M. Egerstedt. Distributed coordination control of multiagent
systems while preserving connectedness. IEEE Trans. on Robotics,
23(4):693-703, 2007.
G. Lafferriere, J. Caughman, and A. Williams. Graph theoretic methods
in the stability of vehicle formations. In Proceeding ofACC, pages 3729
3734,2004.
L. Moreau. Stability of multiagent systems with time-dependent commu
nication links. IEEE Trans. on Auto. Control, 50(2):169-182, 2005.
R. Olfati-Saber. Flocking for multi-agent dynamic systems: algorithms
and theory. IEEE Trans. on Auto. Control, 51(3):401-420, 2006.
G. A. S. Pereira, A. K. Das, V. Kumar, and M. F. M. Campos. De
centralized motion planning for multiple robots subject to sensing and
communication constraints. In Multi-robot Systems: From Swarms to
Inelligent Automata, volume 2, pages 267-278, 2003.

[11] D. P. Spanos and R. M. Murray. Motion planning with wireless network
constraints. In Proceeding ofACC, pages 87-92, 2005.

[12] Zhenwang Yao and Kamal Gupta. Backbone-based roadmaps for robot
navigation in sensor networks. In Proceeding ofICRA, pages 1023-1029,
May 2008.

[13] Zhenwang Yao and Kamal Gupta. Backbone-based connectivity control
for mobile networks. 2009. To appear in ICRA-2009.

[14] M. M. Zavlanos and G. J. Pappas. Potential fields for maintaining
connectivity of mobile networks. IEEE Trans. on Robotics, 23(4):812
816, 2007.

[15] Michael M. Zavlanos and George J. Pappas. Distributed connectivity
control of mobile networks. In Proceeding of CDC, pages 3591-3596,
2007.

VII. CONCLUSION

We have proposed distributed local minimum escape strate
gies for motion planning with connectedness constraint for
mobile networks. The strategies leverage the backbone con
structed from our earlier proposal, Backbone Based Connec
tivity Control. Backbone-based Navigation strategy is adopted
for non-backbone agents in local minimum (i.e., a Type-II
minimum); then the backbone is used as a roadmap to navigate
agents deemed to be in local minimum, to move toward its
goal. Backbone-based Leader-following strategy is used when a
backbone agent is in local minimum (i.e., a Type-III minimum);
then a spanning tree hierarchy, based on the backbone, is
established among agents, and agents follow the hierarchy and
move closer to each other for reconfiguration. We showed, via
computer simulations, that the proposed strategies are effective
in escaping local minima. Our next step is to implement the
proposed scheme on a real system. As a first attempt to attack
the local minimum problems, our local minima classification
and strategies to deal with them are somewhat heuristic based.
We are looking into more systematic ways to treat them.

ACKNOWLEDGMENT

The research is supported by Natural Sciences and Engineer
ing Research Council of Canada (NSERC) PGS-D.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]e [8]

[9]

[10]

Local min detected

e J

(f)

(d)

(h)

(b) Trajectory•

t
Root of Spanning Tree

(e)

(c)

(g)

(a) Initial/Goal

•

67
0

2 Goal

Fig. 7. Escaping from Type-III minimum. (a) Initial and goal formations. (b)
Successful trajectories of all agents, with Backbone-based Leader-following
strategies. (c)-(h) Snapshots of the system along the successful trajectories.
(c) Backbone of initial formation, and all agents were in the backbone. (d) A
local minimum detected. (e) Spanning tree was constructed. (f-g) Moving in
leader-following mode. (h) Back to BBCC.

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5856
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5856

