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Abstract—A basic primitive in a networked robotic swarm is to
form a connected component that covers some area with relatively
uniform density. Although most approaches to the problem
require local coordinate information, it has been proposed that
robots with only connectivity information do this instead with
a generalized form of diffusion-limited aggregation, in which
robots wander randomly until they find a location where their
topological constraints are satisfied and they are connected to a
designated seed point. We find that the behavior of the algorithm
varies qualitatively along a spectrum defined by the relative size
of the total area, covered area, and initial distribution of robots.
We identify and analyze five representative behaviors along this
spectrum, finding that fast convergence can be expected only
within a small range of parameters. Further, our results suggest
that general coverage algorithms may require that the robotic
swarm be coordinated across long distances.

I. MOTIVATION

A basic primitive in a networked robotic swarm is to form
a connected component that covers some area with relatively
uniform density. Applications that demand this task include
exploring a confined space for search and rescue (e.g. [1]),
deploying wireless coverage (e.g. [2]), and scouting for urban
combat (e.g. [3]). Once distributed, the swarm may be largely
stationary, as in the cases above, or may attempt to move as an
aggregate. In this paper we will consider only the stationary
case, which we believe is informative for the mobile case as
well.

Many approaches to this problem require local coordinate
information, such as distance and angle to neighbors or relative
heading (see, for example, [4] and [5]). Including sensors to
acquire such information may be infeasible, however, particu-
larly when considering the construction of a swarm containing
a large numbers of tiny robots.

One algorithm[6] to form a stationary connected component
without such information is a generalized form of diffusion-
limited aggregation[7]. Robots wander randomly until they
find a location where their number of neighbors is within an
acceptable band, neither too low nor too high,1 and they are
connected through the network to a designated seed point.
This algorithm is attractive because it is simple, requires little
communication, and does not require any sort of localization
on the part of the robots. But can random wandering produce
good enough behavior?

1In pure DLA, there is no “too high” case and robots never restart once
they have stopped.

Fig. 1. Robots are satisfied and stationary (green) with a moderate number
of neighbors and connection to the seed (purple). Robots are unsatisfied (red)
if the number of neighbors is too high (dark) or too low (medium), or there
is no path to the seed (light). The grey background shows the union of the
robots’ unit disc communication areas. This illustration shows robots with
α = 3 and β = 5.

A previous analysis of DLA by Poduri and Sukhatme
indicates that the swarm should converge in O(1/

√
n) time

for n robots, but only when assuming that the location
covered by a robot in each random step is independent of
its previous history and that the distribution of robots through
space remains uniform even once some begin to connect and
stop moving[8], [9]. These assumptions, however, approximate
behavior well only in the special case where the final area
covered by the robots is close to that of their initial distribution
and to the total area of the environment. We show that the
general convergence time is much slower.

We find instead that the behavior of the more general
algorithm (and its DLA special case) varies qualitatively along
a spectrum defined by the relative size of the total area,
covered area, and initial distribution of robots. We identify
and analyze five representative behaviors along this spectrum,
finding that fast convergence can be expected only within a
small range of parameters. Further, our results suggest that
fast coverage may always require coordination across long
distances.

II. MODEL

We use the following model for the robots and their envi-
ronment. Some assumptions are not used by the algorithm or
our analysis, but serve to illuminate the design space in which
the algorithm is situated.

• Robots communicate wirelessly using a unit disc model
of radius r: every pair of robots within r meters of one
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For robot i:
IF α ≤ |nbrs(i)| ≤ β

AND connected to seed
THEN do nothing
ELSE move v ·Wt

(where Wt is a Wiener process)

Fig. 2. Pseudocode for randomized coalescence algorithm.

another are neighbors in the network graph.
• Robots can move freely through a static, connected area

of two-dimensional space A.
• One robot (or non-robotic node) is designated as the

seed, and does not move. All n others are initially
distributed through an area D ⊆ A, using a uniform
random distribution.

• Communication is much faster than robot motion, enough
so that for purposes of analysis, we will assume commu-
nication is instantaneous and perfect.

• Robots have no information about how many other robots
there are or where they are located (either locally or
globally), only the identities of their neighbors. Robots
can uniquely distinguish one another.

• Mechanical constraints of robot movement (e.g. turning
speed) are assumed to not be limiting factors.

III. RANDOMIZED COALESCENCE ALGORITHM

The randomized coalescence algorithm we use, from [6]
is shown in Figure 2. Letting α be the minimum acceptable
number of neighbors and β be the maximum acceptable num-
ber of neighbors, a robot stops moving if it has an acceptable
number of neighbors and is part of a connected component that
includes the seed. Otherwise, the robot moves using a Wiener
process multiplied by v, a velocity constant. A Wiener process
is a continuous-time stochastic process where the difference
in values across any elapsed time period t is Gaussian with
mean 0 and variance t, and non-overlapping time periods are
independent. This provides scale-invariant random wandering,
such as Brownian motion, and may be approximated by
a random walk. Figure 1 shows the various cases for the
algorithm, with some robots satisfied and stationary and others
unsatisfied and mobile.

Diffusion-limited aggregation may be viewed as a special
case of this algorithm, in which α = 1, β = ∞. The
coalescence studies in [8] and [9] are a special case as well,
although they introduce the possibility of clustering away from
the seed. Note that under the more general algorithm we use,
a stopped robot may start moving again if it loses or gains
neighbors, or if motion elsewhere disconnects it from the seed;
robots never begin moving again in the two previously studied
special cases.

For purposes of this paper, we assume that β > 2 and that
β > α. If β ≤ 2 it is not possible for the aggregate to branch,
meaning the algorithm can only converge if the robots form
a line, and if β = α, then incremental convergence is not
possible.

Fig. 4. If we surround each robot (black dots) with a disc half the radius of
the robot’s communication coverage, then if two discs overlap at any point,
it implies that the robots can communicate.

IV. BEHAVIORAL SPECTRUM

Although there are seven variables all told, the behavior
of the system is controlled by the relationship between three
areas: the area A through which robots can move, the area D
through which robots are initially distributed, and the range of
areas [T,L] from the area T covered by the tightest possible
converged arrangement of robots to the area L covered by the
loosest. All the parameters are encapsulated in this relation-
ship: the coverage areas are derived from n, r, and α for L
and β for T , while the velocity constant v scales convergence
without changing it qualitatively.

For simplicity, we further assume that A and D are both
fairly open shapes where a random walk can easily move a
node from one part of the space to another. In more tortuous
areas, such as two open spaces connected by a narrow “neck,”
convergence may be much slower.

At different relations between A, D, and [T,L], different
phenomena dominate, as shown in Figure 3. When the area
is too small, finding any arrangement where the upper density
limit is satisfied for all robots becomes difficult or impossible.
When the robots easily fit within A, the initial distribution
becomes important, and either the search for the seed (e.g.
robots converging after an air-drop) or diffusion away from
the source (e.g. robots fanning out to do search and rescue)
may dominate. Only when these two are at relatively equal
strengths is is possible for convergence to be rapid. The
remainder of the paper presents these five representative cases
and our analysis of their convergence rates.

V. CONVERGENCE AT HIGH DENSITY

If there is any robot with more than β neighbors, the
algorithm has not converged, since that robot will continue
wandering randomly. If we consider discs of 1/2 the radius r
that a robot’s communication covers, then whenever two discs
overlap, it implies that the robots at the source of the discs
are neighbors (Figure 4). Thus, if we have a point which is
k-covered by half-radius discs, then it implies that every robot
covering that point has at least k − 1 neighbors.

If we neglect edge effects (which are small for large areas),
then each robot’s half-disc covers a region of size 1

4πr2. If



Name Condition Convergence Dominant Phenomena
Impossible A < T Impossible Density too high
Critical A ≈ T Arbitrarily long Unlikely perfect arrangement
Discovery A � D � L Ω(D) Difficulty in finding seed.
Fast Aggregation A � D ≈ [T,L] Θ(

√
n) “Crystallization” from seed (unproved)

Dispersion A � T � D Ω(n) Diffusion from initial distribution

Fig. 3. Convergence times for five representative conditions along the behavioral spectrum, and the dominant phenomena that causes that convergence time.
A is the total area, D is the area robots are initially distributed through, and T and L are the areas of the tightest and loosest possible areas covered when
the algorithm has converged.

A

T

Fig. 5. In the impossible case, the area A through which the robots can
move is smaller than the area T covered by robots in their tightest allowable
distribution. In this case, the robots will never converge.

the total area covered goes above A(β + 1), then some point
must be covered more than β + 1 times, meaning that some
robot has more than β neighbors. A group of n robots covers
an area of 1

4πr2n, so we have a bound, above which there can
be no convergence, of

1
4
πr2n ≤ A(β + 1)

πr2n

4(β + 1)
≤ A

This is also a lower bound on the area T covered by the tightest
possible converged arrangement of robots. We name this the
impossible case (Figure 5).

Edge effects can be accounted for by adding points near
the perimeter that can be covered. The amount of space to
be added depends on whether the boundary affects robots
ability to communicate with one another (Figure 6). If it blocks
communication, as might a wall, then the area is effectively
larger than if it permits communication, as might a boundary
caused by a pit. In no case, however, is the effective area
increased by more than 1

4πr2P , where P is the perimeter of
the area. For most spaces of interest in this problem, this is
likely to be a small effect, as the area of the interior will be
much larger than the area near the perimeter.

Note that this is still not a tight bound, because it neglects
the geometric constraints of sphere packing and the shape

Fig. 6. A tighter bound on packing can be found by adding in area near the
perimeter of the space. The amount of area to be added depends on whether
the boundary of the space blocks communication between robots (left pair),
as might a wall, or permits communication (right pair), as might a boundary
caused by a pit.

of the area. That effect will change things by only a small
constant multiple, however.

If the area A is increased slightly, such that convergence is
possible, the time to convergence can be made arbitrarily high.
An extremely loose lower bound on convergence time can be
found by considering the ratio between the total area and the
area of points where a robot can stop when the algorithm
has converged. By setting the area arbitrarily close to the
threshold of impossibility, the “wiggle room” for robots can
be reduced arbitrarily close to zero, guaranteeing arbitrarily
long convergence time in this critical case (Figure 7).

VI. CONVERGENCE AT LOW DENSITY

We now turn instead to the case where the area A in which
the robots are wandering is much bigger than the area they can
cover. In practice, one would want to weaken the definition
of convergence so that the system can be considered to have
converged even if a few robots get “lost” far away from the
seed, but for the analysis we are going to perform here it will
not matter.

First, let us establish an upper bound for the area L covered
by the loosest possible distribution. For even α, the distribution
of robots that covers the greatest area is a line (neglecting
the ends) with 2r

α meters between robots (Figure 9)—by the
triangle inequality, we can see that for any arrangement of
robots, the amount of area covered by the addition of a new
robot is maximized by placing the new robot as far as possible
from previous robots. For odd α, the optimal distribution is the
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Fig. 7. In the critical case, the area A through which the robots can move is
just barely larger than the area T covered by robots in their tightest allowable
distribution. In this case, the time to convergence may be unboundedly high.

same as for α+1, except that every α+1st interval is doubled,
producing the same mean advancement of 2r

α per step. Taking
a bounding box around this line, we can thus bound L above
by

L < 2r · n2r

α
= n

4r2

α

The behavior of the system now depends on the relationship
between the initial distribution area D and the range [T,L] of
areas where convergence can occur. For simplicity, we will
always assume that the initial distribution is centered on the
seed and has relatively low eccentricity.

A. Dispersion-Dominated Convergence

When the initial distribution area D is much smaller than
the area T of the tightest converged arrangement of robots,
the random dispersion of the robots outward dominates (Fig-
ure 8(a)).

We may assume without loss of generality that the robots
begin far from the boundary of A. Let us also assume that their
arrangement when converged will be approximately circular,
minimizing the expected distance that robots must travel. Even
so, since T grows with n, the majority of the robots will need
to travel Θ(

√
n) meters outward from their starting points.

Since the robots wander using a two-dimensional Wiener
process, the expected time for them to cover a distance

√
n is

n. Thus the convergence time for this case is Ω(n).

B. Coalescence-Dominated Convergence

When the initial distribution area D is much larger than
the area L of the loosest converged arrangement of robots,
on the other hand, the dominant cost comes from the robots
trying to find the seed. We can find an extremely conservative
lower-bound of the convergence time for this discovery case
(Figure 8(b)) by considering how long it takes for a robot to
go far enough that it could even get near the seed.

We assume again that the boundary of A is not involved.
Since we assume that D is relatively circular, with the seed
at its center, the distance from the robots to the seed is

... ...

Fig. 9. For even α, the distribution of robots that covers the greatest area is a
line with 2r

α
meters between robots (neglecting the ends), as in the fragment

shown above for α = 4. For odd α, the distribution is the same except as for
α + 1, except that periodically there is a double-length interval.

bounded. Since D is much larger than L, however, the distance
from most robots’ initial positions to their eventual converged
positions is effectively the same as their distance to the seed.
A majority of the robots must therefore travel Θ(

√
D) meters

in order to reach their final position. Since the robots wander
using a two-dimensional Wiener process, the expected time
for them to cover a distance

√
D is D. Thus the convergence

time for this case is Ω(D).

C. Critical Convergence

When dispersion and discovery are in balance and D is
close to the range [T,L], convergence may be much faster.
We have not proved the rate, but will sketch our preliminary
analysis.

In this fast aggregation case (Figure 8(c)), robots are packed
at approximately the same density when stationary as when
wandering freely, so the surface of the connected component
grows at approximately the same rate that wandering robots are
depleted from its vicinity, maintaining the uniform distribution
(although some fraction of the robots may “escape” into the
larger area A). As a result, at any time there are likely to
be a large enough number of robots within an approximately
constant distance of the surface of the connected component
to keep it growing at a linear rate. Since we are considering
2D aggregation, a linear rate of surface growth would result
in a convergence time of Θ(

√
n).

The approximations Poduri and Sukhatme use in [8] and
[9] may also apply, implying a tighter O(1/

√
n) bound. This

may require A to be close to D as well, or there may be
some even tighter constraint that is required to account for
their simulation results.

VII. CONTRIBUTIONS

We have demonstrated that the convergence behavior of
random coalescence varies qualitatively along a spectrum
defined by the relative size of the total area, covered area,
and initial distribution of robots. We have further identified
and analyzed five representative behaviors along this spectrum,
finding that fast convergence can be expected only within a
small range of parameters.

Since the slow ranges correspond to reasonable deployment
scenarios, such as dispersion from a source or coalescence
following an air-drop, this suggests that random motion is
a poor choice for driving robot coverage algorithms in the
absence of relative coordinate information. But might some
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Fig. 8. In the dispersion case (a), the area of the initial distribution D is much smaller than the area T covered by robots in their tightest allowable
distribution, which is much smaller than the area A through which the robots can move. In this case, the time to convergence is Ω(n). In the discovery
case (b), D is much larger than the area L covered by robots in their loosest allowable distribution, which is much smaller than A. In this case, the time to
convergence is Ω(D). In the fast aggregation case (d), D is close to the range of areas covered by robots in allowable distributions. In this case, the time to
convergence is much faster, perhaps Θ(

√
n).

more intelligent strategy based on local information—like
the integrate-and-tumble e. coli chemotaxis strategy—improve
performance?

In fact, it appears that any algorithm based on purely local
information is likely to fail similarly: coalescing robots need
some sort of long-range information in order to find the seed
efficiently, and dispersing robots in the middle of the swarm
need to know which way is outward. The environment which
the robots are navigating provides no information about where
the other robots are located (and thus how to navigate), so even
sophisticated strategies using only local information cannot be
expected to improve significantly on the random algorithm.
One way or another the robots must exploit some sort of
coordination across long distances if coverage is to be fast
enough to be effective.
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