
Distribution of Parallel Discrete-Event Simulations in GES :
Core Design and Optimizations

Silas De Munck
University of Antwerp

Middelheimlaan 1
Antwerp, Belgium

silas.demunck@ua.ac.be

Kurt Vanmechelen
University of Antwerp

Middelheimlaan 1
Antwerp, Belgium

kurt.vanmechelen@ua.ac.be

Jan Broeckhove
University of Antwerp

Middelheimlaan 1
Antwerp, Belgium

jan.broeckhove@ua.ac.be

ABSTRACT

Computer simulations have become an indispensable tool for
the empirical study of large-scale systems. The timely simu-
lation of these systems however, is not without its challenges.
Simulators have to be able to harness the full computational
power of modern architectures through parallel execution
and overcome the memory limitations of a single computer.
In this paper we investigate techniques for distributed and
parallel execution of the Grid Economics Simulator. We
present the design of a parallel and distributed simulation
core that uses a conservative time synchronization protocol
and describe the optimizations we performed to improve the
performance of the simulator. We analyze the performance
of the distributed simulation setup through two different ap-
plication scenarios. Our results demonstrate how the pre-
sented techniques contribute to attain significant speedups
on a distributed system consisting of multi-core machines
and commodity networking hardware.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
I.6.8 [Simulation And Modeling]: Types of Simulation—
distributed, parallel, discrete event

General Terms

Design, Experimentation, Performance

Keywords

parallel, distributed, discrete event simulation, performance
analysis, scalability, optimization

1. INTRODUCTION
Distributed and parallel processing techniques are com-

mon today in a wide range of applications. The increas-
ing scale and complexity of distributed applications and sys-
tems necessitates research into more scalable and efficient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2011 March 21–25, Barcelona, Spain.
Copyright 2011 ICST, ISBN 78-963-9799-87-5.

algorithms and techniques for e.g. resource management
and job scheduling. The evaluation of new algorithms on
real testbeds is however impeded by their limited flexibil-
ity, controllability and availability. In addition, the costs
of building and configuring large-scale testbeds are high.
For this reason, researchers turn to simulation to evaluate
new algorithms and techniques, especially during the ini-
tial phases of development. The Grid Economics Simulator
(GES) [19] was developed for the evaluation of various eco-
nomic approaches to resource management with regard to
their ability to efficiently allocate and schedule tasks in a
grid. The simulator consists of a time-stepped and a discrete
event-driven simulation core. The discrete event core uses
a process-oriented approach, and supports the simulation of
interactions between entities connected in a communication
network.

We previously designed and analyzed to what extent a par-
allel discrete event simulation core for GES, based on proven
techniques and mechanisms for the implementation of par-
allel and distributed simulators, can result in satisfactory
performance on modern multi-core commodity hardware [7].
This was motivated by the current evolution towards multi-
core processors and consequently the need for a concurrent
mode of execution of a discrete event simulation to fully
benefit from the continued increase in computing power.

More complex and larger scale systems, require simula-
tions with a large number of simulated entities and a high
level of detail (e.g. cloud computing platforms or peer-
to-peer networks). Consequently, scalability in terms of
memory is an additional requirement for current simulation
frameworks. At the same time, the bundling of computing
power in a networked environment using grid computing,
cloud computing or high performance cluster computing,
together with the appearing limitations of single machine
execution, drives the demand for application execution in a
distributed environment.

In this paper, we describe how we extended the existing
parallel discrete event simulation core in GES [7] to support
distributed execution and we present a number of optimiza-
tions that were necessary to reach a satisfactory level of
performance.

1.1 Simulation Basics
This section gives a brief introduction concerning the ter-

minology throughout this paper [8, 10]. A simulation is a
representation of a physical system evolving over time. This
physical system or physical process is modeled by a logical
process (LP). An LP consists of a number of virtual enti-
ties that are completing tasks or procedures, and that in-

teract with each other by exchanging messages which are
represented by events on the level of the LP. The state of
these entities changes over time, consequently causing an
evolution in the system. The process of these accumulated
changes is driven by advancing the virtual time (VT) in the
simulation. The modeling of the time progression is either
continuous or discrete. Continuous time flow mechanisms
represent the behavior of the system as a set of functions of
time. In a discrete time simulation, state changes can only
occur at certain discrete points in time. A discrete-event
simulation advances simulation time to the execution time
of the succeeding action, also referred to as an event. An
event has an associated firetime, indicating the simulation
time at which the event will occur. The execution of an
event may create new events and the complete simulation
finishes when all events have been processed. To summarize,
a discrete-event simulation executes a sequence of events in
time order and advances its time according to the event fire-
times.

1.2 Simulator Design
A discrete event simulation core, which runs the LP, con-

tains a control loop that continuously executes events per-
forming operations, in firetime order, on the entities in the
simulation. The main components of the discrete event core
are the clock, keeping the virtual time value, and the event
queue or event list (EVL). The control loop in the event sim-
ulation core pops the next event from the event queue for
processing and then advances its time to the next event’s
firetime. The execution of an event may result in the cre-
ation of new events, which are added to the event queue for
later execution. The use of a priority queue combined with
the condition that newly created events need to have a time
stamp greater than or equal to the current virtual time, en-
sures consistent execution of events in the right time order.

In order to parallelize the execution of the simulation, the
simulator runs multiple event cores in the simulator in paral-
lel, each in a separate thread and having its own local virtual
time (LVT), and each running an LP. These different threads
interact by exchanging events. To ensure correct execution
across event cores running in parallel, these independent
event cores synchronize their time, using a time manage-
ment infrastructure. Generally, time stamp order execution
in a simulation with a single logical process (LP) is ensured
by the fact that an event that is being processed can only
spawn new events with a firetime that postdates its own fire-
time. Extending the simulation to multiple LP’s must also
ensure that all events, including events from other LP’s, are
processed in time order in each LP. If the LP’s in all event
cores comply with this condition, referred to as the local
causality constraint [9], the results from a single core simu-
lation are the same as those from a multi-core simulation. To
realize this, the use of a synchronization mechanism or pro-
tocol is indispensable. The current implementation follows
the conservative time synchronization protocol, allowing an
event core to process an event only if it is guaranteed that no
events with a smaller firetime can arrive in the event queue.
The choice of a conservative time synchronization protocol
implies the exploitation of look-ahead [7, 9] in the simulation
model to introduce parallelism in the execution of the simu-
lation. The synchronization protocol we applied is based on
the conservative approach often referred to as the Chandy-
Misra-Bryant (CMB) protocol [15]. This protocol introduces

the concept of a lower bound time stamp (LBTS) as the mini-
mum timestamp an individual event core can safely advance
to. Additionally, null-messages are broadcasted by an event
core to inform the other cores of its current LVT, to ensure
correct LBTS calculation avoiding dead-lock situations [4].
For a full explanation of potential problems, design choices
or details concerning our parallel simulator implementation,
we refer to [7].

1.3 Entity Modeling & Communication
The discrete-event simulator core of GES allows to declare

certain objects as entities, representing real-world objects
in the simulation [11]. Entities are able to communicate
with other entities over a network link. Entities can be con-
structed in three ways: namely, by annotating the Java class
with @Entity, by implementing the EntityInterface or by
extending a Process. The first method creates only pas-
sive entities that can communicate with other entities but
do not act on their own. A Process is an active thread-like
entity that interacts with other entities on its own initiative.
To the event core, a Process is essentially an Event whose
execution can be suspended and resumed. The suspension
of a Process causes the creation of a ResumeEvent that re-
sumes the Process again at a later time, effectively simulat-
ing thread behavior. Processes are implemented using the
JavaFlow library, that provides continuations [6]. Continua-
tions provide an interesting alternative to threads for mod-
eling concurrent behavior of entities in a simulation. They
are lightweight structures that contain the stack contents
and program counter. As such, they allow for the simula-
tion of concurrent processes in a single system thread, and
thereby give the programmer full control over the scheduling
of simulated processes.

Methods in entities can be tagged with a @ProcessMethod

annotation, causing the encapsulation of the method’s ex-
ecution in a Process, which is scheduled as an event and
executed by the event core at a later time. This method
encapsulation into a Process is performed by using AspectJ
code weaving [12, 13].

GES facilitates communication between simulation enti-
ties using an object oriented RPC-style mechanism, akin to
Java RMI. The simulator supports both synchronous and
asynchronous remote method calls. A synchronous method
call on another entity suspends the Process-context
of the calling entity until the remote method returns,
whereas an asynchronous method call is executed while
the calling Process continues execution. Remote entity
methods are annotated with @SynchronousNetworkMethod

or @AsynchronousNetworkMethod. The network calls are
encapsulated into events, which are then rescheduled
incorporating the appropriate network delay according to
the network model used.

A graphical representation of this calling mechanism, for
local single-core and parallel multi-core execution, is shown
in the top part of Fig. 1. In the picture, an entity A calls an
@AsynchronousNetworkMethod on entity B, passing a refer-
ence to itself as an argument. In case both entities are associ-
ated with the same event core (e.g. Core 1), the call triggers
the creation of an event encapsulating the real function call
on B. This event is then inserted into the EVL of the same
event core (Core 1), with a firetime that incorporates the
network delay between the two entities. At the event’s fire-
time, the event and consequently the encapsulated call on

Figure 1: Simulated Entity Method Calling Mecha-

nism

B is executed. Alternatively, if the entities are associated
with two different local event cores, running on the same
machine, a slightly different procedure occurs. The call is
also encapsulated in an event, but instead of being directly
inserted into the EVL, the event is sent through a channel
to another (local) event core and subsequently inserted into
the EVL of the other event core.

2. DISTRIBUTED EXECUTION
Distributed execution of the event core requires a num-

ber of changes compared to the previously described multi-
core implementation. The shift from a single-host, multi-
threaded shared-memory execution to a multi-host, multi-
threaded distributed memory approach requires changes to
the event core communication infrastructure, the entity dis-
tribution system and the simulation start-up and coordina-
tion subsystem.

2.1 Communication Channels
For a distributed simulator setup, separate event cores

running on different machines need to exchange events and
time synchronization information. Therefore the event com-
munication module was refactored to allow different types
of communication channels between event cores.

The communication channel represents a one way commu-
nication link that the event core uses to send and receive
events from other cores. Currently, there is an implemen-
tation for these communication channels to connect local
event cores for the multi-core setting, using a local blocking
queue, and one to connect event cores on different hosts us-
ing Jini/RMI [16] technology, currently developed within the

Figure 2: Event Core Design

Apache River project [2]. The re-design of the communica-
tion subsystem also alters the way event cores implement the
time synchronization compared to the approach described in
[7]. Instead of sending out-of-band time updates previously,
we now use a new type of events, called TimeEvents that are
sent in-band through the same channels used for sending the
other simulation events. The time synchronization protocol,
as described in [7], did not change.

An overview of an event core that operates according
to the proposed design is depicted in Fig. 2. Events with
timestamps ti received from other cores appear in the input
queues Qi. Based on the timestamps of the last received
event for each queue, the TimeManager re-calculates LBTS
(Sect. 1.2). The event core requests to advance its LVT and
the request is granted or not based on the LBTS. When the
event core is not allowed to advance the LVT and if there
are no more events to process in the EVL, new events are
pulled from the input queues.

2.2 Coordination
The distributed execution of a simulation requires a co-

ordination service to manage the simulator cores running
on different machines. For this purpose, we developed a
Jini service, called the DistributionController. The main
tasks of this service are bootstrapping the event cores that
run on separate hosts and managing exported and therefore
remotely accessible simulation entities.

The simulation bootstrap process consists of multiple
stages, that are synchronized across all event cores. After
launch, all event cores use Jini lookup services to find the
controller and each other. When this discovery process is
completed, the event cores register themselves with the
controller. A notification from the controller triggers the
cores to enter the next start-up stage, namely the communi-
cation channel set-up between cores. If the communication
links are ready, the real simulation is started and remote
entities can be registered and looked up using the the
EntityManager in the DistributionController.

The controller is also responsible for the monitoring and
collection of runtime statistics. An event core collects more
than 40 runtime parameters (e.g. event duration, core idle
time, communication overhead, ...). These statistics can be
sent to the controller during the run or at the end of the

simulation, where they are processed and written to disk,
to a database or to the console for further analysis. This
information is useful for optimization and debugging of the
simulator code as well as application code. Finally, the dis-
tribution takes care of synchronizing the core shutdown pro-
cedure when the simulation ends successfully or organizes a
graceful shutdown if an error occurred in one of the event
cores.

2.3 Entity Distribution & Communication
Simulation entities are created and bound to a specific

event core when they are created. Currently it is not possible
to migrate entities from one event core to another.

In the simulation it is essential that entities in different
cores can communicate using the same RPC-style (Sect. 1.3)
call mechanism. Therefore, calls to local and remote en-
tity methods annotated with @SynchronousNetworkMethod

and @AsynchronousNetworkMethod must be handled trans-
parently to the simulated application, whether or not the
simulation is run in a distributed fashion. Consequently an
entity proxy is required, that represents an entity residing in
a remote core. As before, the calls to annotated methods on
entities are wrapped into events and sent in serialized form
through a communication channel to the remote event core,
where they are executed at their pre-set firetime. If the sim-
ulated call is a synchronous network call, a return value is
sent back to the originating core, where the calling process is
then resumed, incorporating the correct simulated network
delays. The described calling mechanism combined with the
use of these entity proxies enables transparent redirection of
calls to a remote entity residing on another host.

Note that due to technical limitations concerning AspectJ
code weaving, it is not possible to transport standard call-
events, that use AspectJ around advice, over the network
using standard object serialization. To solve this, we create
remote call-events that include a string-encoded representa-
tion of the called method signature, additionally including
serialized arguments. On the remote side, the signature is
decoded and the corresponding method called using Java
reflection on the real entity. The calling mechanism in a
distributed setting is depicted in the lower part of Fig. 1.

Entities can be made available remotely to other cores
in two ways. First, they can be explicitly exported and
registered in the DistributionController, so that they can
be found using various search criteria, e.g. a name or an
entity group name. If an entity is exported, an entity proxy
is automatically created and stored in the entity manager in
the distribution controller, allowing it to be found by other
cores. Alternatively, entities can be passed as an argument
or return value in a method call to a remote entity. The call
redirection mechanism automatically replaces the entity that
leaves the local environment by its proxy. This procedure
allows the application to design its own entity lookup and
discovery functionality instead of using the available entity
manager in the DistributionController.

3. SCALABILITY & EFFICIENCY IM-

PROVEMENTS
In this section we discuss and evaluate the performance

improvements effected to increase the efficiency and scalabil-
ity of our simulator for distributed execution. The impact
of these improvements will be demonstrated using two sce-

narios. The first is a simple closed queuing network (CQN)
[3, 10, 20], the second simulates an electronic auction for
compute resources.

The closed queuing network consists of 64 queues in each
event core (Q1 to Q64), with 16 servers per queue. Each
queues is connected to a switch (S1 to S64) that randomly
decides, using a uniform distribution, which queue will be
the next one a packet is sent to. These queue destina-
tions are chosen from all queues in the system, including
those that reside in other event cores. The simulated net-
work interconnects between the entities (queues, servers and
switches) have a constant delay. The CQN simulation runs
for a fixed amount of simulated time. In this scenario, we
will scale the queuing network with the number of cores
used. For example, a simulation with 3 event cores will have
3 switches connected to 3×64 queue’s. The queuing network
structure across cores is depicted in Fig. 3.

Figure 3: Closed Queueing Network

To examine the behavior with a totally different applica-
tion scenario, we implemented a simulation of a distributed
electronic auctioning system. In this environment, con-
sumers bid for computational resources that are offered by
providers through English auctions. Providers, implemented
as an AuctionProvider entity, launch an Auctioneer, man-
aging the auction for the provider’s resources. Consumers
are represented as an AuctionConsumer entity, running
an AuctionBiddingAgent for each auction they join. If
an Auctioneer starts an auction, it is advertised on the
AuctionMarket, notifying the AuctionConsumers which
launch an AuctionBiddingAgent for the new auction if
the consumer has more jobs to run and has budget left
to place bids. The AuctionBiddingAgents of multiple
consumers then compete for the resource by bidding, given
a starting price and limited by the available budget. The
AuctionConsumer starts one AuctionBiddingAgent per
auction and at most one per job left to run. In this test we
simulate 2 markets with 125 consumers and 10 providers
in each event core. Each consumer has 10 jobs to run and
joins auctions until all his jobs are finished. Furthermore,
we can configure an additional number of consumers joining
a market in an external event core, different from their own.
The scenario scales the number of entities with the number
of active cores and in each core 20% of the consumers
connect to an external market in another core.

Important in this scenario is that we set the constant delay
in the simulated network to 25 ms and the job runtime to
60 seconds. This creates a scenario that is less than ideal
to execute in a distributed fashion. This is caused by the
relatively low look-ahead in this scenario and relatively large

periods of inactivity in the simulation, the event cores are
inevitably waiting for each other to advance most of the
time. As this is an auction scenario where the consumers
have a fixed amount of work to be done, the level of activity
constantly decreases during the run of the simulation when
more and more consumers finish their jobs.

These scenarios were tested on a heterogeneous cluster of
12 machines with 5 Dual Quad-Core AMD Opteron 2350
processors (2 Ghz) and 7 Dual Quad-Core Intel Xeon L5335
processors (2 Ghz) with at least 16 GB of memory. All these
machines are connected in a gigabit ethernet network. Clus-
ter nodes all run a 2.6 Linux kernel. The tests were compiled
and executed with Sun Java 1.6.0.16 Server VM. In the next
subsections, we present and evaluate several optimizations
to enhance the performance in distributed execution mode.
For each of them, we selected the best performing config-
uration to show the isolated effect on performance of each
individual optimization. In our experiments, the relative
standard deviation of the measured runtimes is in most cases
below 2%, with some rare peaks at 5%.

3.1 Null-Message Reduction
As established in our previous performance evaluations [7]

and mentioned elsewhere [15, 17], the standard null-message
protocol for conservative time synchronization sends a large
amount of redundant null-messages. This is the case because
an event core broadcasts null-messages to each other core
when it advances the LVT to avoid deadlock situations. In
a local multi-core execution this is not a big issue because
only references to events are exchanged and the transport
of events between cores is a relatively cheap operation. In
a distributed setting however, this becomes an issue as the
overhead created by these messages is considerably higher.
To transport events to a remote event core, they have to
be serialized, send over over the network and go through a
deserialization process at the remote end. We present three
techniques to send null-messages more intelligently resulting
in a significant reduction in the number of broadcasted null-
messages.

The first null-message reduction technique reduces the
number of null-messages by only sending them after a cer-
tain timer was expired. Null-messages are only needed when
the normal process of event communication can’t provide
enough time update notifications between cores. For this
reason, we introduce a timer for each outgoing communi-
cation channel that is being reset every time an event is
transported through the channel. Null-messages are sent
through the channel only when this timer has expired, ef-
fectively reducing the number of null-messages significantly
while still providing frequent time update notifications to
remote event cores. This technique is often referred to as
delayed null-message sending. For now, we choose the time-
out value to be 20 ms, resulting in acceptable performance,
but further analysis is required to determine the optimal
value for a specific scenario.

As a second method to reduce the null-messaging over-
head, we added on-demand null-message sending [15]. With
this technique, an event core will broadcast a request to send
null-messages to the other event cores when the core is about
to enter an idle state, waiting for events from other cores.
More details about these core states can be found in [7]. If
an event core receives such a null-message send request, it
will immediately respond by sending a null-message to the

requesting core. This causes a recalculation of the LBTS in
the requesting core, allowing it to advance its LVT.

Another reduction technique consists of broadcasting null-
messages, instead of requests, to all connected cores when
the event core is about to enter the idle state. This ef-
fectively avoids deadlock situations where the simulation
cannot advance without null-messages and the event cores
are blocked in their idle state, waiting for incoming remote
events.

Fig. 4 to 7, Tbl. 1 and 2 display the runtime measurements
in both test scenarios in a parallel as well as a distributed
setting for different combinations of these three reduction
methods. Due to time limitations, the auction scenario was
only tested up to 10 cores and stopped at 10.000 seconds.
Also note that in this test we disabled null-message filtering
(Sect. 3.2) to show the effective impact of these reduction
methods more clearly.

From the parallel CQN scenario runtime graph, as shown
in Fig. 4 and Fig. 5, it is clear that the use of a timeout
based null-message reduction algorithm brings a runtime
performance improvement up to 10% when running with
8 cores compared to the standard CMB-based null-message
algorithm. The blocking and request based null-message re-
duction techniques are reducing the amount of synchroniza-
tion messages to much, increasing the amount of idle time,
which results in a significantly longer runtime. The timeout
based reduction method, reduces the number of messages
while still sending enough of them so that the idle time does
not increase.

The distributed execution of this scenario, as depicted in
Fig. 6 and Fig. 7, indicates that the large amount of null-
messages in the standard protocol has more a negative effect
on runtime compared to the parallel version because of the
higher communication costs. Here, the experiments with a
timeout based reduction method also result in the shortest
runtime. The use of a combination of reduction methods
does not produce better performance results for this appli-
cation.

0

100

200

300

400

500

600

700

 1 2 3 4 5 6 7 8

R
un

tim
e

(s
)

Total Event Cores

Standard
Timeout
Request
Blocking

Figure 4: Parallel execution with various null-

message reduction techniques for the CQN scenario

The runtimes for the auctioning scenario reveal a different
outcome as shown in Tbl 1 and Tbl. 2. A combination of
the timeout and blocking techniques yields the best overall
runtime performance in the parallel execution mode, where

Cores Standard Timeout Request Blocking Tim.+Blo. Blo.+Req. Tim.+Req. Tim.+Blo.+Req.
1 159 s 158 s 157 s 157 s 159 s 158 s 159 s 159 s

2 514 s > 10.000 s 301 s 280 s 268 s 279 s 289 s 291 s

4 1.106 s > 10.000 s 2.940 s 848 s 471 s 3.027 s 2.973 s 3.104 s

8 2.244 s > 10.000 s 5.014 s 763 s 771 s 4.919 s 4.810 s 4.568 s

Table 1: Runtime for parallel execution with various null-message reduction methods for the auctioning

scenario

Cores Standard Timeout Request Blocking Tim.+Blo. Blo.+Req. Tim.+Req. Tim.+Blo.+Req.
2 2.897 s > 10.000 s 419 s 348 s 376 s 430 s 416 s 413 s

4 4.466 s > 10.000 s 2.265 s 540 s 546 s 2.210 s 2.278 s 2.359 s

8 8.061 s > 10.000 s 5.826 s 1.209 s 1.260 s 5.814 s 5.923 s 6.236 s

10 9.788 s > 10.000 s 7.299 s 1.549 s 1.585 s 7.166 s 7.525 s 7.469 s

Table 2: Runtime for distributed execution with various null-message reduction methods for the auctioning

scenario

0

100

200

300

400

500

600

700

 1 2 3 4 5 6 7 8

R
un

tim
e

(s
)

Total Event Cores

Tim.+Blo.
Blo.+Req.
Tim.+Req.

Tim.+Blo.+Req.

Figure 5: Parallel execution with combined null-

message reduction techniques for the CQN scenario

0

100

200

300

400

500

600

700

 1 2 3 4 5 6 7 8 9 10 11 12

R
un

tim
e

(s
)

Total Event Cores

Standard
Timeout
Request
Blocking

Figure 6: Distributed execution with various null-

message reduction techniques for the CQN scenario

simulation finishes in at least 45% less time compared to the
standard null-message protocol for this scenario.

For the distributed execution, the blocking reduction tech-
nique produces the best runtime performance with an im-

0

100

200

300

400

500

600

700

 1 2 3 4 5 6 7 8 9 10 11 12

R
un

tim
e

(s
)

Total Event Cores

Tim.+Blo.
Blo.+Req.
Tim.+Req.

Tim.+Blo.+Req.

Figure 7: Distributed execution with combined null-

message reduction techniques for the CQN scenario

provement over the standard protocol of at least 85%. The
use of only the timeout algorithm does not perform well in
this scenario. The requirement to enable the blocking send
method in order to achieve good performance is caused by
the nature of this auction scenario which has a high level
of activity at the beginning of the simulation run, but this
activity gradually decreases towards the end where the activ-
ity appears in short bursts with longer periods of inactivity
in between them. In periods of high activity the simulation
is able to advance without null-messages, while in the peri-
ods with reduced activity, the necessary broadcast of null-
messages is triggered when the cores are entering the idle
state by the blocking reduction algorithm. If only the time-
out based reduction is used, the LVT moves very slowly in
these periods of low activity. In this situation, a lower time-
out value would have been appropriate. The null-messages
triggered by the blocking algorithm however, counteract the
badly configured timeout. In the future, we will conduct
experiments with dynamic timeouts to address these issues.

Although the combined methods result in shorter run-
times compared to the standard protocol, the attained re-
sults are very similar to the simple reduction methods. Nev-
ertheless, these combination of reduction methods might be
useful in other applications with more variability in the ac-

tivity.

3.2 Null-Message Filtering
A technique called null-message filtering is applied to ad-

ditionally reduce the number of null-messages required for
synchronization. The algorithm tries to filter redundant null-
messages that are still waiting in the send-queue of a core’s
communication channel. A null-message is redundant and
can be removed if it is directly followed in the channel by
another null-message with a higher firetime.

Cores without filter with filter % improvement
2 376 s 354 s 6 %
4 546 s 495 s 9 %
8 1.260 s 829 s 34%

10 1.585 s 983 s 38%

Table 3: Runtime for distributed execution with and

without redundant null-message filter in the auction-

ing scenario

If the other null-message reduction techniques discussed
in this paper are used, only a limited number of redundant
messages occur however. In both application scenarios, less
than 1% of the remaining null-messages is actually filtered.
In the CQN scenario this does not yield a measurable perfor-
mance improvement. Due to the properties of the auction
scenario (e.g. a large amount of idle time), the extra filter-
ing does show a runtime improvement of up to 38% for a 10
core simulation as shown in Tbl. 3. The amount of runtime
improvement increases with the number of cores used for the
simulation execution.

3.3 Asynchronous Communication
The communication between event cores uses Jini/RMI

behind the scenes. A communication channel has two end-
points of which the receiving end has a Remote interface, in-
cluding a transport function with one event as an argument
(void transport(EventInterface event)). The receiving
or destination end-point is exported as a Remote object that
is discoverable using the Jini lookup and discovery services
[18]. The source end-point in the other event core performs
a lookup for the required channels and receives a remote
reference. This establishes the connection and allows the
transport function to be called at a later time to transfer
events between the two cores. This procedure is repeated
for all communication channels. In the initial implementa-
tion, calls to this transport function at the remote end were
synchronous, because the Jini and RMI mechanism does not
support an asynchronous calling mechanism. In order to im-
prove the simulation performance, we implemented an asyn-
chronous calling mechanism that uses a blocking queue and
an additional thread that empties the events from the queue
and sends them to the remote core. Note that redundant
null-message filtering is not possible in synchronous commu-
nication mode because then there is no outgoing message
queue (Sect. 3.2).

Fig. 8 and Tbl. 4 show the difference between the two
methods. Asynchronous sending results in a runtime
improvement from 47% to 67% for the auction scenario and
from 13% up to 33% in the CQN scenario.

3.4 Entity Proxies

0

100

200

300

400

500

600

700

 1 2 3 4 5 6 7 8 9 10 11 12

R
un

tim
e

(s
)

Total Event Cores

Asynchronous Send
Synchronous Send

Figure 8: Runtime for distributed execution with

synchronous vs. asynchronous send method in the

CQN scenario

Cores Synchronous Asynchronous % improvement
2 667 s 354 s 47%
4 1.340 s 495 s 63%
8 2.430 s 829 s 65%

10 2.954 s 983 s 67%

Table 4: Runtime for distributed execution with syn-

chronous vs. asynchronous send method in the auc-

tioning scenario

The entity call mechanism wraps method calls to
network methods (@SynchronousNetworkMethod or
@AsynchronousNetworkMethod) into call-events that
are inserted in the EVL and executed in the event core at a
later time (Sect. 1.3). This works well and is efficient when
all event cores are running in one Java virtual machine,
but problems arise when a method is called on an entity
in a remote event core. As explained before, an entity is
represented by a proxy in a remote core. In the distributed
execution mode, the same call interception mechanism is
used, but results in a remote call-event with the remote
function signature encoded in the event, including serialized
arguments or entity proxies. This event is then sent over to
the remote event core, which will then execute this encoded
call using a Java reflection-based mechanism, at the time
the event is executed.

Initially, the proxy call mechanism was built using stan-
dard Java dynamic proxies (java.lang.reflect.Proxy)
[14]. A problem arises with this approach when a proxy
appears in the core where the real referred entity resides.
This can for example occur when the entity manager lookup
mechanism is used to retrieve an entity reference. In that
case, a call on the proxy should be redirected and locally
executed on the real entity for optimal efficiency. Using
the standard Java dynamic proxies, this can be realized by
installing a custom InvocationHandler that redirects all
calls on the object to a handler method that invokes the
method on the real entity. As a reflection-based calling
mechanism incurs an additional runtime cost, we use byte-
code generation to improve performance. The proxies are
created using the Java Programming Assistant (Javassist)

bytecode manipulation framework [1]. In general, an im-
proved function call performance of more than a factor of 10
can be attained compared to a reflection-based invocation
using the Javassist bytecode generated proxies [5]. When
required, a new proxy class is generated that implements
the same interface as the real entity. The implementation
redirects all method calls to the real entity if the proxy
resides in the same core as the real entity. Additionally,
these new proxies are more efficient to transport over
the network, as they are about 30% smaller than regular
reflection based proxies.

In the queuing network simulation, the queues, switches
and servers are connected at the beginning of the simula-
tion. There is no communication of remote entity references
during the simulation run, which is exactly where this opti-
mization has its effect. In the auction scenario, proxies do
get transported and used for call-backs during the simula-
tion. In this scenario, the use of the optimized proxy type
yields a small runtime improvement due to reduced commu-
nication overhead. The effects of the improved proxy call
invocation performance is less noticeable due to limited ra-
tio of calls through local proxies. The results for the auction
scenario are presented in Tbl. 5 and show an improvement
of up to 5%.

Cores Java proxy Javassist proxy % improvement
2 365 s 354 s 3%
4 502 s 495 s 1%
8 869 s 829 s 5%

10 1.004 s 983 s 2%

Table 5: Runtime for distributed execution using

Javassist generated proxies and standard Java dy-

namic proxies in the auctioning scenario

3.5 Method Cache
A call between entities in two different cores on separate

hosts triggers the creation of an event with an encoded
method signature that will be executed in the event core
of the destination entity. The decoding of these signatures
requires the search for a compatible method using reflection,
incorporating method overloading and argument type covari-
ance. To avoid these costly lookups we added a method
cache, mapping the encoded signature to the right method
when the method is called for the first time.

Cores without cache with cache % improvement
2 377 s 354 s 6 %
4 551 s 495 s 10%
8 920 s 829 s 10%

10 1.074 s 983 s 8 %

Table 6: Runtime for distributed execution with and

without remote method lookup cache for the auc-

tioning scenario

For the CQN scenario, there is no difference in runtime
whether the method lookup cache is enabled or not. The
reason for this is that the queuing network classes only have
a few methods, making the reflection based method lookup’s
as fast as the cached lookups. On the other hand, the results
for the auction scenario show a reduction in runtime of up

to 10%, as illustrated by Tbl. 6. The effects of the cache de-
crease with a higher number of cores in the scenario because
the relatively higher idle time of the event cores.

4. CONCLUSION
In order to address the challenges inherent to the simu-

lation of large-scale systems, simulators can be developed
to execute discrete-event simulations in a parallel and dis-
tributed fashion. We have described the changes required to
the conservative parallel discrete-event core of the Grid Eco-
nomics Simulator to support distributed execution. Several
performance optimizations were presented and evaluated us-
ing two different applications: namely, a closed queuing net-
work and an electronic auction for resources. In both scenar-
ios, asynchronous communication and null-message reduc-
tion improves performance, although the optimal reduction
method differs between the scenarios. The implementation
of asynchronous communication also has a significant posi-
tive effect on performance. In the auction scenario, an even
shorter runtime can be attained by enabling redundant null-
message filtering, and a remote method invocation lookup
cache. The use of bytecode generated proxies also results
in performance gains. In the queuing network scenario, the
gains for these additional optimizations are negligible.

The experiments illustrate that through the addition of
several optimizations, distributed execution of a simulation
becomes feasible in a wider range of applications than be-
fore. However, further research will have to be conducted
on how to dynamically determine the optimal selection of
optimizations to attain the best performance for a specific
application.

5. REFERENCES
[1] Javassist project, 2006. Java Programming Assistant,

JBOSS Community.

[2] Apache river project, 2008. The Apache Software
Foundation.

[3] Bagrodia, R. L., and Takai, M. Performance
evaluation of conservative algorithms in parallel
simulation languages. IEEE Trans. Parallel Distrib.
Syst. 11, 4 (2000), 395–411.

[4] Chandy, K. M., and Misra, J. Asynchronous
distributed simulation via a sequence of parallel
computations. Commun. ACM 24, 4 (1981), 198–206.

[5] Chiba, S., and Nishizawa, M. An easy-to-use toolkit
for efficient java bytecode translators. In Proceedings
of the 2nd international conference on Generative
programming and component engineering (New York,
NY, USA, 2003), GPCE ’03, Springer-Verlag New
York, Inc., pp. 364–376.

[6] Curdt, T., Kawaguchi, K., and Cooper, M.

Apache Commons Javaflow.
http://commons.apache.org/sandbox/javaflow,
2008. [Accessed 03-10-2008].

[7] De Munck, S., Vanmechelen, K., and

Broeckhove, J. Design and performance evaluation
of a conservative parallel discrete event core for ges. In
SIMUTools ’10: Proceedings of the 3rd International
ICST Conference on Simulation Tools and Techniques
(ICST, Brussels, Belgium, Belgium, 2010), ICST
(Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), pp. 1–10.

[8] Ferscha, A. Parallel and distributed simulation of
discrete event systems, 1995. Contributed to the:
Handbook of Parallel and Distributed Computing,
McGraw-Hill, 1995.

[9] Fujimoto, R. M. Parallel discrete event simulation.
Communications of the ACM 33, 10 (October 1990),
30 – 53.

[10] Fujimoto, R. M. Parallel And Distributed Simulation
Systems. Wiley, 2000.

[11] Garrido, J. M. Object-Oriented Discrete-Event
Simulation with Java: A Practical Introduction.
Kluwer, 2001.

[12] Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Lopes, C. V., Loingtier, J.-M., and

Irwin, J. Aspect-oriented programming. In
Proceedings of ECOOP 1997 (Berlin, Heidelberg,

1997), M. AkÅ§it and S. Matsuoka, Eds., vol. 1241 of
Lecture Notes in Computer Science, Springer-Verlag.

[13] Laddad, R. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning Publications
Co., Greenwich, CT, USA, 2003.

[14] Microsystems, S. Dynamic proxy classes.

[15] Misra, J. Distributed discrete-event simulation. ACM
Comput. Surv. 18, 1 (1986), 39–65.

[16] Newmarch, J. Foundations of Jini 2 Programming.
Apress Apress, Berkeley, California, 2006.

[17] School, W. C., Cai, W., and Turner, S. J. An
algorithm for reducing null-messages of cmb approach
in parallel discrete event simulation. Tech. rep., 1995.

[18] SUN. Jini technology core platform specification,
version 2.0., June 2003. Jini Specification by
Sun Microsystems, Inc..

[19] Vanmechelen, K., Depoorter, W., and

Broeckhove, J. A simulation framework for studying
economic resource management in grids. In
Proceedings of the International Conference on
Computational Science (ICCS 2008) (2008), vol. 5101,
Springer-Verlag, Berlin Heidelberg, pp. 226–235.

[20] Weingärtner, E., vom Lehn, H., and Wehrle, K.

A performance comparison of recent network
simulators. In ICC 2009: IEEE International
Conference on Communications (2009).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

