
ar
X

iv
:1

20
6.

27
72

v3
 [

cs
.D

C
]

 2
9

Ju
l 2

01
4

Time Warp on the Go (Updated Version)∗

Gabriele D’Angelo
g.dangelo@unibo.it

Stefano Ferretti
sferrett@cs.unibo.it

Moreno Marzolla
marzolla@cs.unibo.it

Department of Computer Science
University of Bologna

Mura A. Zamboni 7, I-40127 Bologna, Italy

ABSTRACT
In this paper we deal with the impact of multi and many-core
processor architectures on simulation. Despite the fact that
modern CPUs have an increasingly large number of cores,
most softwares are still unable to take advantage of them.
In the last years, many tools, programming languages and
general methodologies have been proposed to help building
scalable applications for multi-core architectures, but those
solutions are somewhat limited. Parallel and distributed
simulation is an interesting application area in which effi-
cient and scalable multi-core implementations would be de-
sirable. In this paper we investigate the use of the Go Pro-
gramming Language to implement optimistic parallel sim-
ulations based on the Time Warp mechanism. Specifically,
we describe the design, implementation and evaluation of a
new parallel simulator. The scalability of the simulator is
studied when in presence of a modern multi-core CPU and
the effects of the Hyper-Threading technology on optimistic
simulation are analyzed.

Keywords
Simulation, Parallel and Distributed Simulation, Synchro-
nization, Multi-core, Many-Core

1. INTRODUCTION
A recent trend in computing is the availability of CPUs

with more and more execution cores. In a multi-core pro-
cessor, two or more independent execution units (cores) are
packaged in the same die. This means that multi-core CPUs
are actually shared-memory, Multiple Instructions, Multiple
Data (MIMD) machines capable of running multiple inde-
pendent instructions at the same time. The first generation
of multi-core CPUs was equipped with two cores only, but
currently available processors have four or more cores. For
some specific fields, processors with one hundred cores are
already on the market [31]. With such premises, it is clear
that in the next years multi-core processors will be replaced
by many-core processing architectures.

0The publisher version of this paper is available at
http://dx.doi.org/10.4108/icst.simutools.2012.247736.
Please cite as: Gabriele D’Angelo, Stefano Ferretti,
Moreno Marzolla. Time Warp on the Go. Pro-
ceedings of 3nd ICST/CREATE-NET Workshop
on DIstributed SImulation and Online gaming
(DISIO 2012). In conjunction with SIMUTools
2012. Desenzano, Italy, March 2012. ISBN:
978-1-936968-47-3.

This trend has a strong impact on software, since sequen-
tial algorithms are unable to efficiently exploit the compu-
tational power provided by modern CPUs. This is true not
only for servers and High Performance Computing (HPC)
environments but also for desktop PCs. It is well known
that developing parallel algorithms and implementing them
is much harder than sequential ones. To address this is-
sue, many programming languages and tools have been pro-
posed, including: OpenMP [5], CUDA [25], OpenCL [17],
Intel Threading Building Blocks (TBB) [27], Go Program-
ming Language [2], Erlang [3], MapReduce [7] (just to name
a few). Each of them comes with its peculiarities and specific
field of application. Despite a quite large research effort in
finding new paradigms to tackle these new computation ar-
chitectures, a large consensus has still not being reached. In
many fields, designers and developers are still trying to un-
derstand what is the impact of these technologies and what
is the more promising one for their needs.

If we restrict our focus on the field of discrete-event simu-
lation, things are not better. For many reasons [6], most sim-
ulators are still based on sequential approaches and therefore
unable to take advantage of more than one CPU core. Given
the trend towards many-core processors described above, to
improve the execution speed of simulators it is no longer pos-
sible to count on the increase of CPU clock speed. In other
words, to take full advantage of new multi (many) core ar-
chitectures it is necessary to use Parallel And Distributed
Simulation (PADS) [10] techniques, even for running a sim-
ulation on a normal desktop PC. Parallel simulation tech-
niques that were used by niche users only, now need to go
mainstream. However, in order to gain any support from
simulation model developers, multi-core PADS libraries and
tools should hide low-level details and present a convenient
interface to users. While it is safe to assume that PADS
middlewares are designed and implemented by experts in
the field, it is important not to assume that users of these
tools are PADS experts as well. It is worth noting that these
simulation tools will not be sufficient for exploiting the re-
sources provided by the many-cores architectures that will
be available in the next years. Also the simulation models
will have to be built in a way that allows their parallel exe-
cution.

In this paper we describe the design and implementation
of a new parallel simulation tool (called Go-Warp), based
on the Go Programming Language [2]. The Go language
has good support for concurrency and communication; many

http://arxiv.org/abs/1206.2772v3
http://dx.doi.org/10.4108/icst.simutools.2012.247736

features introduced in Go seem to have a good potential but
its usage in PADS is still unexplored.

The rest of this paper is organized as follows. Section 2
provides a background on parallel and distributes simulation
issues. In Section 3 we review the relevant literature. Sec-
tion 4 briefly outlines the most interesting aspects of the Go
Programming Language. Section 5 introduces the Go-Warp
simulator that we have designed and implemented and Sec-
tion 6 shows an initial performance evaluation of this tool.
Finally, Section 7 provides some concluding remarks.

2. BACKGROUND
Many different approaches have been proposed for build-

ing simulators, Discrete Event Simulation [19] is one of the
more popular. In this approach the system under study is
modeled through a set of state variables. Each update in the
simulated system (called event) happens at a discrete time
instant and is reflected to the state variables. This means
that the evolution of the simulation is obtained through the
creation, delivery and execution of a sequence of events, or-
dered according to their timestamps (time of occurrence).
In a sequential (monolithic) simulator a single CPU (execu-
tion unit) is responsible for executing all the events in the
correct order. Sequential execution of events obviously lim-
its the scalability of the simulator, which in turn limits the
complexity of models which can be executed.

In Parallel Discrete Event Simulation (PDES) [10] a set
of execution units (e.g. CPUs, cores or hosts) runs the sim-
ulation. In this case, the simulated model is partitioned
among the execution units. While this improves scalability,
it also introduces communication and synchronization issues
as each execution unit produces events that may be be deliv-
ered to other units. To ensure that causality is not violated
(that is, to ensure that events are processed in the correct
order), each execution unit must be synchronized with the
others. It is worth noting that a simulation in which causal
dependencies among events are violated can not be consid-
ered correct and produces results that have no validity.

2.1 Parallel and Distributed Simulation
The PDES approach described in the previous section can

be implemented using a Parallel And Distributed Simulation
(PADS). A PADS is obtained through the interconnection of
a set of model components, usually called Logical Processes
(LPs). Each LP is responsible for a part of the system and
needs to be coordinated with other LPs for synchronization
and data distribution [9]. What happens is that each LP is
usually executed by a processor (or a processor core). The
basic difference between a sequential simulation and a PADS
is the lack of a global state, that is a global vision on the
simulated model state and its evolution. The distributed
nature of the system and the presence of a network that in-
terconnects the different parts of the execution architecture
has some important consequences:

• the simulated model has to be partitioned among the
LPs [32]. Increasing the number of execution units
means a higher number of parts. In some cases, this
partitioning is simplified by the nature of the sim-
ulated system, e.g., when the system under test can
“naturally”be described as a set of interacting objects.
In other cases, partitioning is much harder, e.g., when

the system is intrinsically monolithic. In any case,
given the parallel/distributed nature of the simulator
there are some extra factors to take into consideration
when partitioning the model, such as minimizing the
amount of network communication between LPs and
balancing the workload among the execution units;

• the simulation traces obtained by the PADS have to be
identical to the ones that would have been obtained us-
ing a sequential simulator. Clearly, this is possible only
if synchronization mechanisms are implemented. In
other words, the execution of each LP has to be prop-
erly synchronized;

• each LP will produce data (i.e. state updates) that
are relevant for other LPs. For performance reasons,
this data distribution cannot be implemented using
broadcast. The correct approach is to match the data
production with the expression of interest and there-
fore delivering only the necessary data [16].

All these aspects deserve attention but synchronization
remains very relevant. This because it has a very deep im-
pact on simulator performance and because the choice of
the synchronization mechanism shapes the design and im-
plementation of the simulation model.

2.2 Synchronization
The correct implementation of a PADS requires that all

events are timestamped, encapsulated in a message and de-
livered. Following Lamport’s definition [18], two events are
said to be in causal relation if one of them can have some
consequences on the other. Causal relations induces a par-
tial order among the events: breaking this order produces
a causality violation, which means that the simulator is in-
correctly evaluating the model. Avoiding causality viola-
tions is easy in sequential (i.e., monolithic) simulators: all
events must be considered in non-decreasing timestamp or-
der. Unfortunately, the problem is much harder in a paral-
lel/distributed setting, since every execution unit can sim-
ulate its portion of the model at a different speed and the
interconnection network can introduce unpredictable delays,
jitter, and packet losses. Therefore, in this case processing
the events in causal order requires that all the LPs in the
PADS are coordinated using a synchronization algorithm.

In the past, a lot of work has been done in this field.
Many different synchronization algorithms have been pro-
posed, which can be grouped in three main approaches:

• time-stepped : the simulated time is advanced accord-
ing to fixed-size time steps. This means that before
proceeding to the next timestep each LP has to wait
that all other LPs in the simulation have finished the
current timestep [30]. The design and implementation
of this approach is quite simple, but can be inappro-
priate for some simulation models. For example if the
system is hard to model in time-steps or if the size of
the time-steps needs to be too small;

• conservative: the goal of this approach is to prevent
causality violations. This means that, before process-
ing an event with timestamp t, the LP has to decide if
this event is “safe” or not. The event is “safe” if, in the
future, there will be no other events with timestamp

less than t. It is easy to demonstrate that, if this con-
straint is followed by all LPs, there will be no causality
violations. Many algorithms can be used to guarantee
that this constraint is not violated; the Chandy-Misra-
Bryant (CMB) approach [24] is the most used. More
in detail, the CMB approach is based on three main
assumptions:

(i) each LP has as many incoming queues as LPs from
which it can receive events; (ii) all the generated events
produced by the local LP must be sent out in non
decreasing order; (iii) the communication between the
LPs is reliable and messages are delivered in order.

Before processing an event, each LP must check all in-
coming queues to find what is the next safe event. If
there are no empty queues, then the incoming event
with lowest timestamp is safe and can be processed. If
there are empty queues, the LP must wait for at least
one event to appear on them. Obviously, this mecha-
nism is deadlock prone; to avoid deadlocks a new type
of message (called NULL message) is introduced. If an
LP X sends a NULL message to LP Y with a given
timestamp t, then X is telling Y that it will not even
send any proper message with timestamp less than t.
This allows the receiving LP Y to properly compute
the next safe time and advance the simulation. The
main drawbacks of this approach is that NULL mes-
sages increase the communication traffic, and also that
deciding if and when a NULL message can be gener-
ated requires knowledge of the simulation model;

• optimistic: in this case the LPs are free to process the
events in receiving order without any check for safety.
In other words, the LP does nothing to avoid causal-
ity violations. Of course, many factors such as CPU
speed, network load and model complexity can delay
the arrival of messages. Late events, usually called
straggler messages, lead to causality violations. The
arrival of an event with a lower timestamp than the
current local simulated time represents a problem for
the receiving LP. To fix the problem, the receiving LP
executes a roll-back of all model state variables to a
previous version that is considered correct. It is worth
noting that the roll-back has to be propagated to all
other affected LPs [14]. This can lead to a cascade of
rollbacks that brings the simulator back to a previous
state. To be able to perform a roll-back when nec-
essary, each LP must keep some information such as
all changes to the state variables and all sent events.
Such information can require a lot of memory, which
can be periodically reclaimed (fossil collection [9]) by
computing a Global Virtual Time (GVT) [28] which
represents a safe lower bound on the global simulation
time. In other words, no events with timestamp prior
to the GVT will ever appear in the future, and so each
LP can reclaim all state variables preceding the GVT.

3. RELATED WORKS
Over the years a large amount of research work has been

done for improving the performance of optimistic synchro-
nization algorithms and for adapting them to different exe-
cution environments. The Time Warp algorithm was used
for building simulations on top of clusters with hundreds of

thousands GPUs [26] with very good performances. In [29]
the authors describe an optimistic simulator which uses MPI [12]
as the communication library; the simulator is evaluated on
a multi-core processor under the Windows OS. It should be
observed that MPI, being originally developed for communi-
cation over a LAN, introduces a significant overhead which
can be avoided by allowing LPs to communicate using the
shared memory.

Some work has been done for improving the execution
speed of Time Warp on many-core architectures [21, 20] but
little work has been done for extending the parallelization up
to the simulation models [13] and to implement an approach
that is more tailored for these new architectures.

4. THE GO PROGRAMMING LANGUAGE
Go is a general purpose programming language announced

by Google in the late 2009 and now developed as an Open
Source project [2]. The main goals of this effort is to build
a language that is easy, clean and efficient. The compilation
process is designed to be easier and faster than in traditional
languages. Go provides mechanisms for concurrent execu-
tion and inter-process communication, which facilitate the
development of parallel applications. All these mechanisms
are part of the language core and not provided as external
libraries. Finally, Go uses a modern garbage collector which
relieve the programmer from the burden of dynamic mem-
ory management.

The main language construct introduced by Go for con-
current programming is the goroutine. A goroutine is a
function executing in parallel with other goroutines in the
same address space. Goroutines can communicate through
shared memory; furthermore, they are implemented using
a lightweight approach, so they introduce a low overhead.
Specifically, goroutines are multiplexed onto multiple oper-
ating system threads, meaning that if a goroutine is blocked
waiting for some input, other goroutines can continue to
run. Recently, a new feature added to the language per-
mits to pack multiple goroutines in the same thread and
therefore reduce the overhead in programs using hundreds
of goroutines. It is worth noting that implementing a gor-
outine is very easy: the programmer has to prefix a function
or method call with the “go” keyword. In this way, all the
complexities of thread management are transparent for the
programmer.

The communication between goroutines is implemented
using another interesting language construct, the so called
chan (that stands for channel). A chan is a data type that
can be used for both communication and synchronization
between goroutines. Each chan has a capacity that is the
size of the buffer in the channel. If the capacity of a chan-
nel is zero then the channel is synchronous and can be used
only for synchronization. In all other cases, the channel is
asynchronous and can be used for the transmission of typed
messages.

The Go project is under active development: the main
design is complete but many implementation aspects are yet
to be finished. In particular, as stated in the official website:
“one of Go’s design goals is to approach the performance
of C for comparable programs, yet on some benchmarks it
does quite poorly” [2]. The internal scheduler that manages
the goroutines is among the parts that is far from being

finished. In the current version, the runtime is unable to
automatically determine what is the maximum number of
CPUs (cores) that can be executing simultaneously. This
means that the programmer has to set this parameter using
the GOMAXPROCS function. It is expected that this need
will go away when the scheduler improves in future versions.

5. DESIGN AND IMPLEMENTATION OF GO-
WARP

Go-Warp is a simulator based on the Time Warp synchro-
nization algorithm; Time Warp was originally proposed by
Jefferson [14], and briefly introduced in Section 2. Go-Warp
uses Samadi’s algorithm [28] for the calculation of the Global
Virtual Time (GVT). This algorithm is quite simple to im-
plement but adequate to perform a preliminary performance
evaluation of the simulator. In the next versions, more com-
plex GVT algorithms such as Mattern’s [23] will be added.

A Go-Warp simulation is composed of one or more LPs,
each one being executed independently from others and im-
plemented using a goroutine. Following the design suggested
by the Go language, the LP-to-LP communication is real-
ized through asynchronous chans. This means that the LPs
are able to send data without blocking and proceed with
the execution. Each LP accesses some shared variables that
used for the efficient implementation of some functionalities
(such as the GVT calculation). As said before, following the
optimistic approach there is no “a priori” attempt to syn-
chronize the LPs, the access to global variables is controlled
only by a mutex implemented using the language primitives.

The design of Go-Warp is based on the tasks required
by the Time Warp algorithm. First of all, the LP has to re-
ceive, deliver, store and process events that are encapsulated
in messages. Moreover, it has to handle the rollbacks caused
by straggler messages. Finally, it has to run its local part of
the GVT calculation algorithm. Events management is the
core activity: in Go-Warp, each LP uses a priority queue
implemented using a min-heap (called GoHeap) to store the
future events that have to be processed. For performance
reasons, each GoHeap node is an array that contains all
the local events with the same timestamp. Every LP has a
GoLocalState structure that contains all the LP local data:
the current simulated time, the LP unique identifier, a Go-
Heap instance for storing the events to be processed, a list for
maintaining the processed events that will be needed in case
of rollbacks, a list for messages sent to other LPs (used to
propagate rollbacks, if necessary), a list of rollback requests
from other LPs (i.e., the so called anti-messages), and a list
for storing the messages that have been sent by the local LP
but that are still not acknowledged by the recipient (this is
needed by the Samadi’s GVT computation algorithm).

By now, in Go-Warp each LP is implemented using a sin-
gle goroutine, meaning that all activities performed by an
LP are executed by a single thread. We are working on
enhancing the internal parallelism of the LPs, which will
potentially improve performance in many-cores CPUs. As
said before, future CPUs will have a very large number of
cores. You could try to exploit them with a very aggressive
partitioning of the simulation model (i.e. using a high num-
ber of LPs), but to obtain a good partitioning is not an easy

task (see Section 2.1) and it becomes even harder with the
addition of more LPs. Otherwise, you could use a limited
number of partitions and work on the LP internals, for ex-
ample with the parallel execution of some of the LP mech-
anisms (e.g. synchronization, data distribution) and with
simulation models that can be implemented with a better
degree of parallelism. It is worth noting that, in the current
version of the simulator, the number of CPU cores used at
runtime is set manually using the GOMAXPROCS function
(described in the previous section). The goal is to run each
LP in a different core to minimize context switches, that are
usually quite costly in terms of overhead. This approach is
clearly not optimal, it will require some future work and a
better support from the Go runtime scheduler.

We plan to make the Go-Warp simulator freely available,
in both binary and source form, on the research group web-
site [1]. The software distribution will include all the tools,
configurations and models used to conduct the performance
evaluation shown in this paper.

6. PERFORMANCE EVALUATION
To evaluate the performance of Go-Warp we used a syn-

thetic benchmark called PHOLD [11], that is a model specif-
ically designed for the performance evaluation of Time Warp
implementations. PHOLD is the parallel version of the HOLD
benchmark for event queues [15] and it is quite simple to im-
plement. Each PHOLD model is made by a set of entities
that are partitioned among the LPs; each LP contains the
same number of entities. Each entity in the simulation pro-
duces and consumes events. When an entity consumes an
event, a new event is generated and delivered to another
entity (note that the total number of events in the system
remains constant). The timestamp of the new event is com-
puted by adding an exponentially distributed random num-
ber with mean 5.0 to the timestamp of the receiving event.
In our implementation the recipient is randomly chosen us-
ing a uniform distribution. When a LP processes an event,
a new event is generated and delivered to another entity in
the simulation. In our implementation the recipient entity is
randomly chosen using a uniform distribution. In this way,
the total number of events in the system is fixed and the
model is almost in steady state [8].

There are four main parameters which are used to con-
trol the benchmark. The first one is the number of LPs
and the second is the number of entities that are simulated.
The third parameter (called event density) is defined as the
percentage of entities starting the simulation generating an
event.

The forth and last model parameter is the workload, that
is the amount of synthetic work that is executed by each
LP every time an event is processed. In our case, we im-
plemented the workload as a pre-defined number of floating
point operations. Using the parameters above it is possible
to fine tune the PHOLD model. Increasing the number of
simulated entities has the effect of adding more computation
(workload) and communication (events) to the benchmark.
Changing the event density permits to obtain a model that is
more communication bounded and, conversely, adding more
workload results in a computation bounded model.

The results shown in this section have been collected using

an Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores
and Hyper-Threading (HT) technology. The PC1 has 8 GB
of RAM and runs Ubuntu 11.10 (x86 64 GNU/Linux, 3.0.0-
15-generic #26-Ubuntu SMP). To produce statistically valid
results, we performed multiple runs for each experiment and
the average values are shown. HT is a technology introduced
by Intel in some of its CPUs for supporting simultaneous
multi-threading [22]. HT works by duplicating some parts
of the processor except the the main execution units. From
the point of view of the Operating System, each physical
processor core corresponds to two “virtual” processors. This
means that the Intel Core i7 CPU used in this study has 4
physical cores that are seen as 8 virtual processors by the
OS and the applications. The effect of HT on parallel sim-
ulation is not widely studied [4], in particular, the impact
of virtual cores on the performance of optimistic simulation
need to be investigated more in deep.

The performance of Go-Warp are analyzed by running the
PHOLD model for 1000 time units, using a fixed number of
entities (1500), an event density of 50% and a workload of
10000 fixed point operations (FPops) per simulation event.
In Table 1 we show the average physical wall-clock time
needed to complete a simulation run, as a function of the
number of LPs in which the model is partitioned, and as a
function of the number of (virtual) processor cores used. Ob-
viously, using more LPs than cores is not a good choice for at
least two reasons. Firstly, because the overhead induced by
the context switches could be quite high. Secondly, because
it has been widely demonstrated that Time Warp obtains
good performance only if all the LPs can run at about the
same speed. Having more LPs than cores would introduce
imbalances in the system and therefore a higher number of
straggler messages (and of rollbacks). As said above, the i7
CPU used in the test has 4 physical cores that are seen as
8 virtual processors. From the left part of the table (1–4
cores) it is clear that the best choice is to have as many LPs
as available physical cores. If we consider the right part of
the table (5–8 “virtual” cores), the situation is slightly dif-
ferent due to HT. In this latter case, using a number of LPs
equal to the number of “virtual” cores is not optimal, and
the best result is obtained when running 5 LPs on 6 cores.
Table 2 shows the speedup obtained in this experiment and
confirms the effect of HT. The speedup is the ratio of the
execution time of the sequential algorithm (LP = 1) and
the execution time of the parallel version with n LPs. The
best speedup is obtained with 5 LPs and 7 cores, this means
that HT is capable of a little increase in the performance.

It is known that, in general, the performance of a sim-
ulator are strongly influenced by the model characteristics.
In Table 3 we show the speedup obtained with increasing
number of entities (the data are also shown in Figure 1).
The model with 1000 entities (green line) is communica-
tion bound and therefore increasing the number of LPs (and
cores) does not yield significant improvements. When using
more than 4 LPs, the communication overhead is so high
that the speedup actually decreases. When 6000 and 11000
entities are simulated (violet and pink lines, respectively)
the computation load is higher and increasing the number
of LPs gives a slightly better speedup. In all these cases, the
scalability is quite good up to 4 LPs but for larger values

1Obtained by one of the authors using personal savings.

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1704 1691 1701 1685 1700 1683 1703 1685

2 1050 1049 1051 1056 1047 1049 1050

3 864 854 858 856 865 853

4 787 799 787 807 785

5 795 775 778 790

6 817 823 822

7 817 842

8 908

Table 1: Average Wall Clock Time of the simulation
run (in milliseconds)

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1.61 1.62 1.60 1.61 1.61 1.62 1.60

3 1.97 1.97 1.98 1.97 1.97 1.98

4 2.14 2.13 2.14 2.11 2.15

5 2.14 2.17 2.19 2.13

6 2.06 2.07 2.05

7 2.08 2.00

8 1.86

Table 2: Speedup with increasing number of cores

the results deviate from the optimal speedup due to HT.
In the last experiment we have simulated a medium num-

ber of entities (6000) varying the workload. In Figure 2 we
show the speedup with a workload of 1000 (green line), 10000
(blue line) and 100000 (pink line) FPops per event. Increas-
ing the workload produces a benchmark that is more com-
putation bound. As expected, increasing the FPops gives
very good speedup results that are near to the theoretical
limit.

It turns out that running a parallel simulation gives a
speedup only when the computation load in the simulated
model is enough to pay for the extra overhead caused by
communication. This means that communication bound
models are not good candidates for PADS. In balanced sys-
tems, Go-Warp can offer a good speedup; the virtual cores
provided by HT can be used for a little increase in the per-
formance, but tuning the simulation setup is not straightfor-
ward (e.g. how many LPs and cores to use). Finally, when
the model is computation bound, going PADS is a good
choice and in this case the HT can make the difference.

7. CONCLUSIONS
In this paper we have discussed the use of multi and many-

core CPUs in the context of parallel and distributed simu-
lation. We argued that simulation tools should be made
capable of exploiting the available computational resources
provided by modern multi-core processors in order to im-
prove scalability. Dealing with scalability by reducing the
size of the simulation model, or limiting the level of detail is
obviously not acceptable. In this paper we presented a par-
allel simulator (Go-Warp) based on the Time Warp synchro-
nization protocol using the Go Programming Language. We
tested Go-Warp on the PHOLD benchmark and observed
good scalability on a set of preliminary test runs.

We plan to extend this work along many directions, first,
we will work on fine tuning the Go-Warp simulator and on
a more detailed performance evaluation. Many different se-

Number of entities

#LPs 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

1 1 1 1 1 1 1 1 1 1 1 1
2 1.58 1.65 1.68 1.68 1.69 1.71 1.72 1.74 1.73 1.74 1.74
3 1.81 2.05 2.17 2.19 2.19 2.24 2.25 2.29 2.27 2.28 2.34
4 1.87 2.33 2.40 2.53 2.55 2.64 2.65 2.72 2.66 2.72 2.76
5 1.12 2.83 2.96
6 0.94 3.01 3.28
7 0.80 3.19 3.38
8 0.79 3.23 3.69

Table 3: Speedup, increasing number of simulated entities

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of LPs

Scalability: increasing number of entities

optimal speedup
1000 entities
6000 entities

11000 entities

Figure 1: Speedup, increasing number of simulated
entities, different configurations

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of LPs

Scalability: different workloads

optimal speedup
1000 FPops

10000 FPops
100000 FPops

Figure 2: Speedup, increasing workload per entity,
different configurations

tups and realistic simulation models have to be implemented
in Go and tested. Then, we will compare the runtime perfor-
mance of Go-Warp with other Time Warp implementations
based on the C/C++ language. Finally, we aim to inves-
tigate some more radical alternatives such as the usage of
functional languages.

8. ACKNOWLEDGMENTS
The authors would like to thank Pietro Ansaloni for his

work on an early version of the Go-Warp simulator.

9. REFERENCES
[1] Parallel And Distributed Simulation (PADS) research

group. http://pads.cs.unibo.it, 2011.

[2] The Go Programming Language.
http://golang.org/, 2012.

[3] J. Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[4] L. Bononi, M. Bracuto, G. D’Angelo, and
L. Donatiello. Exploring the effects of hyper-threading
on parallel simulation. In Proceedings of the 10th IEEE
international symposium on Distributed Simulation
and Real-Time Applications, pages 257–260,
Washington, DC, USA, 2006. IEEE Computer Society.

[5] L. Dagum and R. Menon. Openmp: An
industry-standard api for shared-memory
programming. IEEE Comput. Sci. Eng., 5:46–55,
January 1998.

[6] G. D’Angelo. Parallel and distributed simulation from
many cores to the public cloud. In HPCS ’11:
Proceedings of International Conference on High
Performance Computing and Simulation. IEEE, 2011.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51:107–113, Jan. 2008.

[8] R. Ewald. Automatic Algorithm Selection for Complex
Simulation Problems. Springer, 2011.

[9] R. Fujimoto. Parallel and Distributed Simulation
Systems. Wiley & Sons, 2000.

[10] R. M. Fujimoto. Parallel discrete event simulation. In
Proceedings of the 21st conference on Winter
simulation, WSC ’89, pages 19–28, New York, NY,
USA, 1989. ACM.

[11] R. M. Fujimoto. Performance of time warp under
synthetic workloads. In Proceedings of the SCS
Multiconference on Distributed Simulation, pages
23–28, 1990.

http://pads.cs.unibo.it
http://golang.org/

[12] W. Gropp, E. Lusk, and A. Skjellum. Using
MPI–Portable Parallel Programming with the Message
Passing Interface. MIT Press, 2nd edition edition.

[13] J. Himmelspach, R. Ewald, S. Leye, and A. M.
Uhrmacher. Enhancing the scalability of simulations
by embracing multiple levels of parallelization. In
Proceedings of the 2010 Ninth International Workshop
on Parallel and Distributed Methods in Verification,
and Second International Workshop on High
Performance Computational Systems Biology,
PDMC-HIBI ’10, pages 57–66, Washington, DC, USA,
2010. IEEE Computer Society.

[14] D. Jefferson. Virtual time. ACM Transactions
Program. Lang. Syst., 7(3):404–425, 1985.

[15] D. W. Jones. An empirical comparison of
priority-queue and event-set implementations.
Commun. ACM, 29:300–311, April 1986.

[16] Y. Jun, C. Raczy, and G. Tan. Evaluation of a
sort-based matching algorithm for ddm. In Proceedings
of the sixteenth workshop on Parallel and distributed
simulation, PADS ’02, pages 68–75, Washington, DC,
USA, 2002. IEEE Computer Society.

[17] Khronos OpenCL Working Group. The OpenCL
Specification, version 1.1.
http://www.khronos.org/opencl/, 2011.

[18] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM, 21:558–565,
July 1978.

[19] A. M. Law and D. M. Kelton. Simulation Modeling
and Analysis. McGraw-Hill Higher Education, 3rd
edition, 1999.

[20] L. li Chen, Y. shuai Lu, Y. ping Yao, S. liang Peng,
and L. da Wu. A well-balanced time warp system on
multi-core environments. In Principles of Advanced
and Distributed Simulation (PADS), 2011 IEEE
Workshop on, pages 1 –9, june 2011.

[21] K. Manian and P. Wilsey. Distributed simulation on a
many-core processor. In Proceedings of SIMUL 2011:
Third Conference on Advances in System Simulation.
IARIA, 2011.

[22] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A.
Koufaty, A. J. Miller, and M. Upton. Hyper-Threading
Technology Architecture and Microarchitecture. Intel
Technology Journal, 6(1), Feb. 2002.

[23] F. Mattern. Efficient algorithms for distributed
snapshots and global virtual time approximation. J.
Parallel Distrib. Comput., 18:423–434, August 1993.

[24] J. Misra. Distributed discrete event simulation. ACM
Computing Surveys, 18(1):39–65, 1986.

[25] J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with cuda. Queue,
6:40–53, March 2008.

[26] K. S. Perumalla. Switching to high gear:
Opportunities for grand-scale real-time parallel
simulations. Distributed Simulation and Real Time
Applications, IEEE/ACM International Symposium
on, 0:3–10, 2009.

[27] C. Pheatt. Intel threading building blocks. J. Comput.
Sci. Coll., 23:298–298, April 2008.

[28] B. Samadi, R. Muntz, and D. Parker. A distributed
algorithm to detect a global state of a distributed

simulation system. In Prof. of the IFIP Conference on
Distributed Processing, 1987.

[29] N. Su, H. Hou, F. Yang, Q. Li, and W. Wang.
Optimistic parallel discrete event simulation based on
multi-core platform and its performance analysis. In
Complex, Intelligent and Software Intensive Systems,
2009. CISIS ’09. International Conference on, pages
675–680, march 2009.

[30] S. Tay, G. Tan, and K. Shenoy. Piggy-backed
time-stepped simulation with ’super-stepping’. In
Simulation Conference, 2003. Proceedings of the 2003
Winter, volume 2, pages 1077 – 1085 vol.2, dec. 2003.

[31] TILERA: TILE-Gx Processor Family.
http://www.tilera.com/products/processors/TILE-Gx_Family,
2011.

[32] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a
library for parallel simulation of large-scale wireless
networks. SIGSIM Simul. Dig., 28(1):154–161, 1998.

http://www.khronos.org/opencl/
http://www.tilera.com/products/processors/TILE-Gx_Family

	1 Introduction
	2 Background
	2.1 Parallel and Distributed Simulation
	2.2 Synchronization

	3 Related works
	4 The Go Programming Language
	5 Design and Implementation of Go-Warp
	6 Performance Evaluation
	7 Conclusions
	8 Acknowledgments
	9 References

