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ABSTRACT
Arguably, one of the most cumbersome tasks required to run
a network simulation is the setup of a complete simulation
scenario and its implementation in the target simulator. This
process includes selecting a topology, provision it with all
required parameters and, finally, configure traffic sources or
generate traffic matrices.

Many tools exist to address some of these tasks. However,
most of them do not provide methods for configuring network
and traffic parameters, while others only support a specific
simulator. As a consequence, a user often needs to implement
the desired features personally, which is both time-consuming
and error-prone.

To address these issues, we present the Fast Network Sim-
ulation Setup (FNSS) toolchain. It provides capabilities for
parsing topologies from datasets or generating them synthe-
tically, assign desired configuration parameters and generate
traffic matrices or event schedules. It also provides APIs for a
number of programming languages and network simulators to
easily deploy the simulation scenario in the target simulator.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques;
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; I.6.5 [Simulation and Modeling]: Model Devel-
opment—Modeling methodologies; I.6.7 [Simulation and
Modeling]: Simulation Support Systems—Environments

General Terms
Design, Performance, Experimentation

Keywords
network topology, network simulation, link capacity, model-
ing, traffic matrix
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1. INTRODUCTION
The setup of a realistic network simulation scenario is

usually a lengthy and delicate process comprising various
tasks.

The first task consists in selecting a suitable network to-
pology. Such a topology can either be parsed from datasets
of inferred topologies, such as RocketFuel [34] or the CAIDA
AS relationships dataset [4] or synthetically generated ac-
cording to various models, such as [17], [8], [7], [37] or [10].
Alternatively, it is also possible to use canonical topologies
such as stars, rings or dumbbells.

Second, after selecting the topology, it is necessary to
configure it with all required parameters to be used in the
simulation. These include link delays, capacities, weights,
buffer sizes and configuration properties of all protocol stacks.

Third, it is necessary to assign a traffic matrix to the
topology or decide how the traffic will be modeled, such as
deciding on the number of concurrent flows, their origin and
destination and their characteristics.

Finally, all this configuration has to be implemented on
the target simulator before simulations can be run.

The execution of all these tasks is cumbersome and error-
prone, since there are no publicly available tools automating
the entire process. In fact, although there are tools taking
care of some of the tasks, such as the parsing or the generation
of topologies, they do not support the entire setup chain and
are generally bound to a specific simulator. As a result, a user
is required to integrate heterogeneous software components
or develop his/her own code to set up a complete simulation
scenario.

Apart from possibly requiring a considerable amount of
time, this process can also lead to an increased amount of
mistakes affecting the reliability of simulations. In fact, the
lack of a framework for automating simulation setup may
lead users to configure network and traffic characteristics
using unrealistic models. In addition, even if appropriate
models are selected, defects may be introduced in their actual
implementation. For all these reasons, it would be highly
desirable having a tool supporting the entire setup chain.

To address these issues, we present here the Fast Network
Simulation Setup (FNSS) toolchain. FNSS is simply a soft-
ware library providing tools for easily executing all the tasks
listed above. It allows users to parse topologies from various
datasets or from other generators, as well as generate them
according to the most common models. These topologies
can then be configured with all required parameters and
matched with appropriate traffic matrices or traffic source
configurations. A fully configured simulation scenario can be



exported to a set of XML files which can then be imported by
the desired simulator. FNSS provides adapters for the ns-2

[5] and the ns-3 [23] simulators as well as generic Java, C++
and Python APIs to enable an easy integration of FNSS with
other simulators. In particular, by providing generic APIs
for the most common programming languages, we hope to
contribute to increase the reliability and reduce the setup
complexity of simulations run with custom-built simulators,
which are very common.

The methods provided by FNSS for generating and con-
figuring network topologies are commonly used in literature,
with the exception of those used for link capacity assign-
ment. In fact, for this task, apart from providing commonly
adopted models, we devised and implemented novel algo-
rithms which we argue they provide a more realistic link
capacity assignment than state-of-the-art methods. In this
paper we present these new models and demonstrate their
effectiveness by evaluating their performance on a number
of real network topologies.

This FNSS toolchain is publicly available as open-source
software and it is released under the terms of the BSD licence,
with the exception of the ns-2 and ns-3 adapters, which are
released under the terms of the GNU GPLv2 license in order
to meet the requirements set by ns-2 and ns-3 licenses on
the licensing of derivative work. This tool has already been
extensively adopted in the context of the EU FP7 COMET
project [14], where it has been used to set up and run the
simulations whose results were presented in [32], [30] and
[13]. Source code and documentation are available here.1

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the related work. Section 3
describes the FNSS toolchain by explaining its architecture
and design and illustrating its features. Section 4 introduces
our new link capacity assignment algorithms and evaluates
their performance. Section 5 presents a complete example
of how FNSS can be used. Finally, conclusions are drawn in
section 6.

2. RELATED WORK
Many tools have been presented in literature to address

some of the issues related to the setup of network simulation
scenarios. However, most of them only focus on the genera-
tion or parsing of topologies. Very little work has been done
to support the entire setup process, being not tied to a single
simulator.

The most common network simulators, such as ns-2 and
ns-3 already provide support for parsing topologies from
various sources, including RocketFuel and CAIDA datasets.
However, these datasets merely consist of unconfigured net-
work topologies. In fact, with the exception of a small subset
of RocketFuel topologies which include estimations of link
weights [27], all remaining network and traffic parameters
are not known and, therefore, they need to be manually
provisioned in the simulator.

The situation is similar for synthetically generated topolo-
gies. There are many freely-available tools capable of generat-
ing large scale topologies in accordance to the most common
models. Such tools include BRITE [28], Inet [38], GT-ITM
[1] and aSHIIP [35]. However, also in this case, generated
topologies cannot be used without further configuration. The
only exception is BRITE which includes a method for assign-

1http://fnss.github.com

ing link capacities and delays. However, as we will explain
in more detail in section 4, its capacity assignments are unre-
alistic and, anyway, the assignment of link weights, protocol
stacks and traffic characteristics are not supported in any of
these tools.

To the best of our knowledge, the only work attempting
to move in a similar direction of FNSS is represented by the
NSF Frameworks for ns-3 project [2], although its scope is
widely different. This project aims at building a framework
for automating the network simulation and data collection
in ns-3. Its objectives are only marginally overlapping with
FNSS. In fact, while the NSF Frameworks for ns-3 project
aims at building a complete framework for repeating experi-
ments with different parameters and collecting results, which
is outside FNSS scope, it only targets the ns-3 simulator
while FNSS aims at being a cross-platform tool, targeting
also custom-built simulators. In addition, scenario genera-
tion code from Frameworks for ns-3 is not available yet to
the community, except for a BRITE parser for ns-3. Fi-
nally, Frameworks for ns-3 does not include traffic matrices
generation, as it does not address flow-level simulations.

3. THE FNSS TOOLCHAIN

3.1 Architecture and design
The FNSS toolchain comprises a core library and several

adapters. The core library implements all functionalities
required to parse or generate topologies, configure them,
generate traffic matrices and event schedules and save them
in XML files. The adapters are separate modules capable of
parsing the XML files generated by the core library and use
them to deploy a simulation scenario in the target simulator.
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Figure 1: FNSS workflow

The core library is entirely written in Python, with some
of its functionalities built on top of the NetworkX library
[22]. We selected Python as the programming language
for two main reasons. First, its high-level programming
constructs would allow FNSS users to generate complex
network simulation scenarios with a few lines of code. Second,
the availability of NetworkX, a well-designed and actively-
maintained library for graph manipulation and visualization,
provides useful tools to manipulate topologies created with
FNSS.



As depicted in figure 1, which shows the workflow on which
FNSS design is based, the core library has been implemented
following a modular architecture. All core functionalities are
implemented in 11 modules, contained in 3 packages, namely
topologies, netconfig and traffic. The code functionali-
ties are allocated to the various packages as follows:

• topologies: contains all functions allowing users to
parse or synthetically generate network topologies and
export them to an XML file.

• netconfig: contains all functions required to assign
configuration parameters to network topologies, pre-
cisely: link capacities, link weights, link delays, buffer
sizes, protocol stacks and applications.

• traffic: contains functions for synthetically generat-
ing traffic matrices and event schedules and to export
them to XML files.

In the core library, the entities required to represent a
simulation scenario are modeled with objects belonging to
three categories:

• Topologies: they represent fully configured network
topologies. There are three different topology classes:
Topology, DirectedTopology and DatacenterTopol-

ogy.

• Traffic matrices: they represent traffic matrices. A
static traffic matrix is represented by a TrafficMatrix

object, while a dynamic traffic matrix is represented
by TrafficMatrixSequence object.

• Event schedules: they represent a schedule of events
labeled with an execution time. In the core library, the
class modeling schedules of events is called EventSched-

ule

All these objects can be serialized and saved in XML files,
which can then be parsed by the adapter for the desired
target simulator. Currently FNSS provides adapters for ns-
2, ns-3 as well as for other generic simulators through the
C++, Java and Python APIs. However, the strategies used
to support the various simulators are different. Supported
simulators are integrated as follows:

• ns-2: The ns-2 adapter is a Python script which takes
as input a topology (in the form of either an XML
file or an FNSS Python object) and converts it into a
Tcl script containing all the code needed to set up the
topology in ns-2.

• ns-3: The ns-3 adapter comprises a set of C++ classes
which parse topology and event schedule XML files,
deploy the configuration specified in the topology file
and schedule the execution of the tasks specified in the
event schedule in the ns-3 environment.

• Generic Java, C++ or Python simulator: The
generic APIs provide capabilities to parse the XML
files of topologies, traffic matrices or event schedules
and convert them into objects for the target language.

In the remainder of this section, we will describe in more
detail all functionalities provided by FNSS.

3.2 Network Topologies
FNSS allows users to create topologies in a variety of

different ways:

• Import a topology from a dataset: topologies can
be parsed from the RocketFuel ISP maps [34], the
CAIDA AS relationships dataset [4], the Topology zoo
dataset [26] and the Abilene network topology [3].

• Import a topology from other topology genera-
tors: FNSS supports the import of topologies genera-
ted using BRITE [28], Inet [38] and aSHIIP [35].

• Generate a synthetic random topology: the mod-
els supported are Barabási-Albert [8], extended Bara-
bási-Albert [7], Erdős-Rényi [17], Waxman [37] and
Generalized Linear Preference (GLP) [10].

• Generate a datacenter topology: the models sup-
ported are two- and three-tier [9], fat tree [6] and BCube
[21].

• Generate a simple topology: FNSS supports the
generation of the following canonical topologies: k-ary
tree, dumbbell, line, star, ring and full mesh.

A parsed or generated topology is an instance of either
the Topology, DirectedTopology or DatacenterTopology

classes, all which extend NetworkX Graph class. This design
decision makes it possible to directly use the graph algorithms
provided by the NetworkX library on such topologies.

In the following section we explain in more detail the
synthetic and datacenter topology models provided by FNSS
and discuss how to select appropriate model parameters.

3.2.1 Synthetic models
FNSS can create synthetic topologies according to the

most common models. These are:

• Erdős-Rényi [17]: it generates simple random topolo-
gies G(n, p), where n is the number of nodes and p is
the probability that a pair of nodes is connected by an
edge.

• Waxman [37]: it generates topologies in which the
probability that two nodes are connected by an edge
depends on their distance. Such probability is equal
to:

p(u, v) = αe−d(u,v)/βL (1)

where α, β ∈ (0, 1] are required model parameters and
L > 0 is the maximum distance between two nodes.
By increasing the value of α raises the edge density,
while decreasing the value of β makes the probability
function decay faster, resulting in a greater density of
short edges in comparison to long ones.

In FNSS, topologies generated with this model have
edges annotated with their Euclidean distance, which
makes it possible to later assign link weights and delays
accordingly.

• Barabási-Albert [8]: it generates scale-free networks
whose node degrees are power-law distributed. Such
topologies are created by adding nodes according to
a preferential attachment model, whereby new nodes
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Figure 2: Models of datacenter topologies provided by FNSS

joining the network are more likely to attach to nodes
with a greater degree. In such a topology, the probabil-
ity that a node has degree k is k−3, irrespective of its
size and of the value of model parameters. Topologies
generated with this model, as well as with other models
that provide scale-free graphs, are generally well-suited
to model AS-level Internet topology, since, as demon-
strated by [19], Internet topology exhibits power-law
characteristics.

• Extended Barabási-Albert [7]: it is an extension of
the Barabási-Albert model that takes into account the
presence of local random events such as the addition
of nodes or links or the rewiring of existing links in
the construction of the topology. The result is still a
scale-free topology, however the exponent of the node
degree distribution varies.

• Generalized Linear Preference (GLP) [10]: it
is another model capable of generating scale-free net-
works in a similar manner to the two models previously
presented. It is a small extension of the extended
Barabási-Albert model that comprises an additional
parameter β ∈ (−∞, 1) which allows users to fine-tune
the intensity of the preferential attachment. Decreas-
ing the value of β reduces the preference given to high
degree nodes for attachment.

3.2.2 Datacenter models
The dramatic increase in the popularity of cloud comput-

ing services has triggered a considerable amount of research
focusing on datacenter issues. As a result, novel topologies
have been proposed in order to achieve specific objectives,
such as performance improvement, cost reduction or simplifi-
cation of wiring. In order to address the increasing need for
tools to evaluate datacenters, FNSS has been equipped with
functionalities for generating the most common datacenter
topologies. The topologies, depicted in figure 2, are:

• Two- and three-tier [9]: these are arguably the most
common datacenter topologies. They are characterized

by the fact that switches are organized in two tiers
(core and edge) or three tiers (core, aggregation and
edge). Three-tier topologies are generally capable of
supporting hundreds of thousands of servers, while two-
tier topologies can only support up to five to eight
thousand servers.

• Fat tree [6]: it is a recently proposed topology, de-
signed to build large-scale datacenter using only com-
modity k-port switches appropriately interconnected
in a way similar to a Clos network [15].

• BCube [21]: it is a topology specifically designed for
shipping-container based, modular datacenters. In this
model, switches are never directly connected to each
others and servers also accomplish packet forwarding
functions.

3.3 Topology Configuration

3.3.1 Link Capacities
As briefly mentioned in section 1, with respect to link

capacity assignment, FNSS implements both commonly used
and newly proposed methods.

The common methods implemented by FNSS are:

• Constant capacity: all links are assigned a fixed
user-defined capacity.

• Manual assignment: the user can assign specific
capacities to selected links.

• Random capacity assignment: the user can assign
capacities randomly. To use this model, the user needs
specify a set of allowed capacities and the probability
of each capacity being assigned to a link. Apart from
allowing users to manually specify the Probability Den-
sity Function (PDF), FNSS provides utility methods for
assigning capacities according to uniform, power-law
and Zipf-Mandelbrot distributions.



The newly proposed models allow users to assign link
capacities proportionally to a number of topological centrality
metrics. These models are formally introduced and evaluated
in section 4.

3.3.2 Link Delays
Link delays can be assigned in three different ways:

• Geo-distance: if the topology has been parsed from
a dataset providing the geographical coordinates of the
nodes, it is possible to assign link delays proportionally
to the estimated length of the link, calculated as the
Euclidean distance between the two endpoints. The
user can specify the desired value of specific propagation
delay to model different types of transmission media.

• Constant delay to all links: all links are assigned
the same delay.

• Manual delay assignment: the user can manually
select a link or a set of links and assign them a specific
delay.

3.3.3 Link Weights
Link weights can be assigned in four different ways:

• Proportionally to the inverse of link capacity:
the weight assigned to each link is proportional to the
inverse of its capacity.

• Proportionally to link delay: the weight assigned
to each link is proportional to its delay.

• Constant weight to all links: all links are assigned
the same weight (default is 1).

• Manual weight assignment: the user can manually
select a link or a set of links and assign them a specific
weight.

In addition, if the topology has been parsed from a dataset
already providing link weight information, such as the Abilene
topology [3], weights are automatically assigned.

3.3.4 Buffer Sizes
Buffer sizes can be assigned in four different ways:

• Equal to network bandwidth-delay product: This
method follows the rule of thumb, originally proposed
by [36], that the buffer sizes of Internet routers should
be set to the average RTT experienced by TCP flows
traversing them multiplied by the link bandwidth. In
FNSS, this is calculated as follows:

1. Identify all shortest paths traversing the specific
buffer.

2. Calculate the RTT for each of these paths by
summing the propagation delay of each link in the
path.

3. Average the RTT and multiply it by the capacity
of the link associated to the buffer.

• Proportionally to link capacity: In case link pro-
pagation delays are not known or are set to 0, it is
possible to assign a buffer size equal to k × C where C
is the capacity of the link and k is a constant.

• Constant buffer size: All buffers in the topology are
assigned a fixed size.

• Manual assignment: A user can manually assign
specific sizes to a single buffer or a set of buffers.

3.3.5 Protocol Stacks and Applications
As already mentioned above, FNSS provides the capa-

bility to preconfigure protocol stacks and applications and
deploy them on selected nodes of a topology. Each types of
stacks and applications are identified by a specific name (e.g.
http_server) and a set of key-value attributes stored in a
dictionary object. For example, an HTTP server application
may have the following properties:

server_props = {

’port’: 80,

’max_threads’: 200,

’avg_obj_size’: ’150KB’

’conn_keep_alive’: True

}

The application thus defined is appended to the selected
node(s) of the topology object. When the topology is saved
to an XML file, all stack and application information is
saved as well so that it can be easily imported by the target
simulator.

3.4 Event Scheduling
Another feature of FNSS is the ability to produce event

schedules and export them to an XML file. An event sched-
ule is represented in the core library by an object of the
EventSchedule class. Such a schedule is a sorted list of
events labeled with an execution time. Each event, simi-
larly to applications and protocol stacks, is modeled as a
dictionary of key-value attributes.

For example, an HTTP request event could be represented
by the following set of attributes:

event = {

’client_ip’: ’192.168.1.24’

’proxy’: ’192.168.1.100:8080’

’method’: ’GET’

’url’: ’http://www.ucl.ac.uk/’

’User-Agent’: ’fnss-client’

’Connection’: ’keep-alive’

}

3.5 Traffic Matrices
FNSS is capable of synthetically generating traffic matrices

with given statistical characteristic which can be used for
network simulations.

A Traffic Matrix (TM) is a representation of aggregate
traffic volumes being carried by a network at a specific time
interval, whose elements Tij represent the average traffic
volume from ingress node i to egress node j.

There exist two types of traffic matrices: static or dynamic.
A static traffic matrix reports the traffic volumes collected at
a single point in time. Differently, a dynamic matrix contains
a sequence of traffic volumes collected at different times.

In a communication network, traffic volumes follow diurnal
patterns [33]. Therefore, to appropriately model network
traffic over long time spans, it is recommendable to adopt
dynamic traffic matrices which are cyclostationary over a



period of 24 hours. However, it has been observed [29] that
over shorter timescales, generally under one hour, traffic
variations can be accurately modeled using just stationary
dynamic traffic matrices. Static traffic matrices, instead, can
only be reliably used to model network traffic at a single
point in time.

From a mathematical perspective, cyclostationary, statio-
nary and static traffic matrices can be represented as follows.
A cyclostationary traffic matrix can be represented as:

Tij(t) = Xij(t) +Wij(t) (2)

Where Xij(t) is the mean traffic volume from i to j, peri-
odic of period T = 24h and Wij(t) is a zero-mean random
variable modeling random fluctuations of traffic volumes.

A stationary traffic matrix can be represented as:

Tij(t) = Xij +Wij(t) (3)

Where Xij , unlike the cyclostationary model, is time-
invariant.

Finally, a static traffic matrix can be represented as:

Tij(t = t0) = Xij (4)

where, since the matrix comprises a single set of traffic
volumes, there are no volume fluctuations over time.

FNSS is capable of synthetically generating both static,
stationary and cyclostationary traffic matrices. This is real-
ized following the process proposed by Nucci et al. in [29],
which comprises the four following steps.

First, we generate the mean rates for all flows between each
ingress and egress node Xij . Mean volumes are realizations
of a lognormal random variable lnN (µ, σ2). It should be
noticed that at this step we simply generate as many mean
values of traffic volume as the number of Origin-Destination
(OD) pairs in the network but we do not map them to specific
OD pairs yet.

Second, in case a dynamic (either stationary or cyclo-
stationary) traffic matrix is desired, we generate random
fluctuations for each OD pair. These fluctuations are reali-
zations of a zero-mean normal random variable. As shown
in [29] and [11], the standard deviation of such fluctuations
σ and the mean traffic volumes are related by the following
power law:

xi,j(t) = ψσγij (5)

Nucci et al. [29] reported that in Sprint Europe and
Abilene [3], this assumption about power-law relationship
holds. In particular, the values that best fit the distribution
are (γ = 0.8, logψ = −0.33) for Sprint and (γ = 0.93,
logψ = −0.31) for Abilene.

Third, in case a cyclostationary traffic matrix is required,
traffic volumes are multiplied by a one-mean sin function
oscillating between 1−δ and 1+δ in order to simulate diurnal
traffic oscillations.

Fourth, we assign traffic volumes to the target topology.
This assignment is executed using the Ranking Metrics Heuris-
tic proposed by [29]. This method comprises the following
steps:

1. Sort all volumes Xij in decreasing order

2. Sort all OD pairs in decreasing order of metric m1:

m1(n1, n2) = min(Fout(n1), Fin(n2)) (6)

where Fout and Fin respectively the fan-out and fan-in
capacity of a node.

3. If a tie occurs, subsort OD pairs in decreasing order of
metric m2:

m2(n1, n2) = min(outdeg(n1), indeg(n2)) (7)

4. If another tie occurs, subsort OD pairs in decreasing
order of metric m3:

m3(n1, n2) =
1

max(NFUR(n1), NFUR(n2))
(8)

where NFUR stands for Number of Flow Under Failure
and corresponds to the maximum number of short-
est paths traversing a node if one random link of the
network is down.

5. Map sorted traffic volumes to sorted OD pairs

Finally, we calculate the utilization of each link assuming
that shortest path routing is used and linearly scale traffic
volumes to match the expected maximum link utilization.

In FNSS implementation, a static traffic matrix can be
generated by invoking the function static_traffic_matrix

(topology, mean, stddev, max_u) where topology is the
topology for which the matrix is generated, mean and stddev

are respectively the values of µ and σ used to generate
the mean flows and max_u is the target maximum link uti-
lization used for scaling traffic volumes. The function to
be invoked for generating dynamic (stationary) matrices
is stationary_traffic_matrix(topology, mean, stddev,

gamma, log_psi, n, max_u) where n is the number of time
intervals and gamma and log_psi are respectively the values
of γ and logψ used to derive the standard deviation of random
fluctuations. Finally, a cyclostationary traffic matrix can
be generated by invoking the function sin_cyclostationary

_traffic_matrix(topology, mean, stddev, gamma, log_

psi, delta, n, periods, max_u) where delta is the value
δ of the sin function, n is the number of traffic samples per
period and periods in the number of periods spanned by
the matrix.

4. LINK CAPACITY ESTIMATION
While a large amount of work is available in literature

regarding the modeling ([8], [7], [37], [10]) or the inference
([34], [16], [20]) of Internet topologies, almost no work exists
on inference and modeling of link capacity distribution.

With respect to link capacity inference, although a number
of methods for inferring link capacities have been proposed
([12], [25]), their practical applicability is limited because it is
hard to accurately measure packet timing or congest network
links to the point required for measuring link capacity before
the ISP reacts [39].

Differently, with respect to link capacity modeling, to the
best of our knowledge, the only work investigating properties
of link capacity distribution in an ISP network is [24]. In
this paper, the authors show that, in the backbone network
of the Internet Initiative Japan (IIJ) ISP, the number of
links with the same capacity follows a power law. The
authors speculate that this relation could be due to the



fact that by allocating link capacities according to a power
law would yield better network throughput performance in
comparison to other distributions. These results, however,
cannot be considered conclusive, first because they have been
only validated on a single topology and second because the
justifications proposed are not convincing.

The lack of commonly accepted models for link capacity
distribution has resulted in various heterogeneous method-
ologies being adopted in practice.

The BRITE topology generator, for example, can assign
either a constant user-defined capacity to all links or assign
capacities randomly. In the latter case, the user can specify
a minimum and a maximum capacity BWmin and BWmax

and a distribution (uniform, exponential or Pareto) and
the BRITE tool assigns to each link a random capacity
C = [BWmin, BWmax] according to the selected distribution.
This method, however, cannot generate realistic capacity
assignments. In fact, in this model link capacities can take
any real value between minimum and maximum capacities
while links in real networks can only have a discrete number
of different capacities.

Another common approach ([39], [31]) is to select a set
of discrete capacities and repeat simulations using different
constant capacities or assign heterogeneous capacities accord-
ing to various distributions and evaluate the sensitivity of
results.

The use of this large variety of not validated models can
have a negative impact on the reliability of simulations whose
results are sensitive to capacity assignment. To address this
problem, in the following sections, we analyse the problem
of modeling link capacity distributions and propose novel
methods for modeling the link capacity assignments of ISP
backbone networks. Our evaluation, presented in section 4.2,
shows that our methods provide more realistic assignments
than commonly used random assignments.

4.1 Proposed solution
The problem we are addressing in this section is the follow-

ing. Let G(E, V ) be a graph with vertices V = {v1, v2, ...vn}
and edges E = {e1, e2, ..., em} representing the topology
of an ISP backbone network whose edges have capacities
belonging to the set C = {c1, c2, ..., cp}, with |C| � |E|,
assigned according to fc : E → C. The objective is to find
the most realistic estimate f̂c of fc, assuming that no addi-
tional information about the network apart from G and C is
available.

Our intuition is that, in ISP backbone networks, capacities
are not allocated to links randomly but according to various
economic, technological and traffic constraints, including
the importance of the links, which are also related to the
importance of the nodes they connect. For this reason, we
speculate that there should be some correlation between the
amount of capacity assigned to a specific link and various
metrics capturing the importance of the link itself or the
link’s endpoints. Our argument is therefore that important
links are more likely to have greater capacities.

Based on this assumption, the solution proposed here is
to identify a set of metrics m capable of capturing links
importance and to assign link capacities c which are linearly
proportional to the value of such metric. As a result, the
capacity assigned to each link (u, v) is:

c(u, v) = ci ∈ C : bi−1 ≤ c̃(u, v) < bi (9)

where:

c̃(u, v) = b|0| + (b|C| − b0)
m(u, v)−mMIN

mMAX −mMIN
(10)

and:

bx =


c1 − c2−c1

2
, if x = 0

ci+ci+1

2
, if 1 ≤ x ≤ |C| − 1

c|C| +
c|C|−c|C|−1

2
, if x = |C|

(11)

In our analysis, we focus on three specific metrics m to
capture the importance of edges in a graph. Such metrics are
the edge betweenness centrality, the degree centrality gravity
and the communicability centrality gravity.

The edge betweenness centrality cB(e) corresponds to the
number of shortest paths passing through a specific edge,
formally defined as:

cB(e) =
∑
s,t∈V

σ(s, t|e)
σ(s, t)

(12)

where V is the set of nodes, σ(s, t) is the number of short-
est (s, t) paths, and σ(s, t|e) is the number of those paths
passing through edge e. In our problem, we assume that no
information about link weights or routing tables is available.
Therefore shortest paths are calculated using unitary link
weight.

The degree centrality gravity of a link GCD corresponds
to the product of the degree centralities (i.e. the number of
neighbors) of the link’s endpoints u and v.

If there are unidirectional links in the network, this is
calculated as:

GCD (u, v) = outdeg(u)× indeg(v) (13)

Where u and v are, respectively, the egress and ingress
nodes of the link. Otherwise, it is calculated as:

GCD (u, v) = deg(u)× deg(v) (14)

The communicability centrality gravity of a link corre-
sponds to the product of the communicability centralities of
the link’s endpoint. The communicability centrality of a node
[18], sometimes referred to as subgraph centrality corresponds
to the number of distinct closed walks passing through that
node. This metric captures how well connected is a node
within a subgraph and is formally defined as:

GSC(u, v) =

N∑
j=1

(vuj )2eλj ×
N∑
j=1

(vvj )2eλj (15)

where vj is an eigenvector of the adjacency matrix A of G
corresponding to the eigenvalue λj .

We implemented functions in FNSS to calculate these
three metrics (edge betweeness centrality, degree centrality
gravity and communicability centrality gravity) and assign
link capacities so that the capacity of each link is proportional
to the value of the selected metric associated to the link, as
expressed in equation 9.

4.2 Performance evaluation
We measure the performance of the proposed algorithms

on five different backbone networks whose topology and link



Table 1: Network topologies
Topology |V | |E| |C| |E|/|V | |E|/|C|
GEANT 23 38 4 1.65 9.5
GARR 42 51 7 1.21 7.29
Uninett 66 91 3 1.38 30.33
WIDE 29 30 2 1.03 15
RedIris 19 31 5 1.63 6.2

capacity assignments are known. These networks, also listed
in table 1, are:

• GEANT: European academic network

• WIDE: Japanese academic network

• GARR: Italian academic network

• RedIris: Spanish academic network

• Uninett: Norwegian academic network

A first evidence of the existence of a correlation between
capacities and centrality metrics is provided by the analysis
of the Pearson’s r between these two values. This evaluation,
whose results are reported in figure 3, shows that r is always
positive and in most cases its value is greater than 0.3, which
indicates a medium to strong correlation between the two
variables.
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Figure 3: Pearson’s r between link capacity and cen-
trality metrics

To further validate the performance of our methods, we
assign link capacities according to the algorithms presented
above and measure how close our estimation is from real
capacity assignments. Such closeness is measured with two
metrics.

The first metric used, which we called Matching Capacity
Ratio (MCR), measures the number of links whose estimated
capacity corresponds exactly to the real capacity, normalized
by the total number of links. This metric is formally defined
as:

MCR =
|{e ∈ E|f̂(e) = f(e)}|

|E| (16)

where E is the set of links, f(e) and f̂(e) are, respectively,
the real and assigned link capacity.

The second metric, which we called Capacity Rank Er-
ror (CRE), captures the Root-Mean-Square Error (RMSE)
between real and assigned capacities, and is defined as:

CRE =
1

|C| ×
√

1

|E|
∑
e∈E

[
R(f̂e)−R(fe)

]2
(17)

where C is the set of capacities and R(x) is a function for
values x ∈ C such that R(x) = i ⇔ x = ci, that returns
the rank of a capacity value in the set of capacities C. For
example, if the set of capacities C comprises 10, 40 and 100
Mbps and a link has capacity c = 10Mbps, then R(c) = 1,
if c = 40Mbps, R(c) = 2 and if c = 100Mbps, R(c) = 3. So,
if on a link whose real capacity is 100Mbps the algorithm
assigns a capacity ĉ = 40Mbps, then R(ĉ)−R(c) = 1, while if
it assigns assigns a capacity ĉ = 10Mbps, then R(ĉ)−R(c) = 2

The performance of our algorithms, with respect to the
two metrics defined above, is shown in figures 4 and 5, where
they are compared with random assignments carried out
using a uniform distribution. The RAND value represented
in both figures refers to the median value of the metrics over
104 random assignments.
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Figure 4: Matching Capacity Ratio (MCR)
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Figure 5: Capacity Rank Error (CRE)

These results show that in all cases considered, our algo-
rithms yield better performance than random assignment, in
terms of both MCR and CRE.

The smallest improvements are noticed in the WIDE topo-
logy. The reason justifying this result is that this topology
comprises 30 edges, 16 of which having one capacity and
14 another one. Therefore, in this particular case, uniform
random assignment, which assigns on average each capacity
to 15 edges, can achieve reasonably good performance. In
all other networks, link capacities are not distributed as uni-
formly as in WIDE, therefore the performance upper bound
of uniform random assignments is lower. Anyway, it should
be noticed that even in this case, although the number of
link with a given capacity fits very well a uniform distribu-



tion, our algorithms still perform better under both metrics
considered.

Although further work is required to validate the effec-
tiveness of these models, we think that these early results
are encouraging and that these models could be successfully
adopted to improve the reliability of network simulations. In
any case, further studies of these models will be part of our
future work.

In conclusion, we are confident that our algorithms could
be used by network researcher to assign more realistic link
capacities to networks with known topologies but unknown
capacities, like inferred topologies such as those of the Rock-
etFuel dataset.

5. EXAMPLE OF UTILIZATION
We report in this section a simple example that demon-

strates how different features of the FNSS toolchain can be
used to create a configured network topology and generate a
traffic matrix. This specific example shows how to use the
core Python library to parse a topology from the Rocket-
Fuel dataset, configure capacities, delays, weights and buffer
sizes, generate a cyclostationary traffic matrix and save both
topology and traffic matrix on XML files.

First, we import all functions of the FNSS core library:

from fnss import *

Then we parse a topology from the RocketFuel dataset:

topo = parse_rocketfuel_isp_map("file.cch")

At this point, we configure the parsed topology. We as-
sign capacities of 1, 10 and 40 Gbps proportionally to edge
betweenness centrality, weights proportionally to the inverse
of the capacities, constant delays of 2ms and, finally, buffer
sizes equal to the bandwidth-product delay.

C = [1, 10, 40]

set_capacities_edge_betweenness(topo, C, ’Gbps’)

set_weights_inverse_capacity(topo)

set_delays_constant(topo, 2, ’ms’)

set_buffer_sizes_bw_delay_prod(topo)

After fully configuring the network topology, we generate a
cyclostationary traffic matrix with 7 periods of 24 samples.

tm = sin_cyclostationary_traffic_matrix(

topo, mean=0.5, stddev=0.05,

gamma=0.8, log_psi=-0.33, delta=0.2,

n=24, periods=7, max_u=0.9

)

Finally, we export topology and traffic matrix objects to
XML files in order to be imported in the preferred target
simulator.

write_topology(topo, ’topology.xml’)

write_traffic_matrix(tm, ’traffic-matrix.xml’)

6. CONCLUSIONS
This paper provided two main contribution.
First, it presented the the Fast Network Simulation Setup

(FNSS) toolchain, a comprehensive library allowing network
researchers and engineers to simplify the execution of the
tasks required to generate a scenario for a network simulation.

This library allows to generate topologies or import them
from datasets, configure them with all required parameters
and generate event schedules and traffic matrices. We plan
to further enhance this toolchain as part of future work,
by implementing more core feature and supporting more
simulators, such as Omnet++.

Second, this paper proposed novel methods for modeling
the distribution of link capacities in a backbone ISP network.
These methods assign link capacities proportionally the val-
ues of a number of link centrality metrics. Although the de-
sign of these methods is simple, their accuracy, evaluated on
a set of real network topologies, significantly outperformed
the most commonly used models. Further refinements of
these methods and a more comprehensive evaluation will be
carried out as part of future work.
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