
TOPSU – RDM
A Simulation Platform for

Online Railway Delay Management

Andre Berger
∗

University of Maastricht
6200 MD, Maastricht, The

Netherlands
a.berger@ke.unimaasl.nl

Ralf Hoffmann
Technical University Berlin

10623 Berlin, Germany
rhoffman@math.tu-

berlin.de

Ulf Lorenz
†

Technical University
Darmstadt

64289 Darmstadt, Germany
lorenz@mathematik.tu-

darmstadt.de

Sebastian Stiller
‡

Technical University Berlin
10623 Berlin, Germany

stiller@math.tu-berlin.de

ABSTRACT

Delays in a railway network is a common problem that rail-
way companies face in their daily operations. When a train
gets delayed, it may either be beneficial to let a connecting
train wait so that passengers in the delayed train do not
miss their connection, or it may be beneficial to let the con-
necting train depart on time to avoid further delays. These
decisions naturally depend on the global structure of the
network and on the schedule. The railway delay manage-
ment (RDM) problem (in a broad sense) is to decide which
trains have to wait for connecting trains and which trains
have to depart on time.

The offline version (i.e. when all delays are known in
advance) is already NP-hard for very special networks. In
this paper we show that the online railway delay manage-
ment (ORDM) problem is PSPACE-hard, and we present
TOPSU – RDM, a simulation platform for evaluating and
comparing different heuristics for the ORDM problem with
stochastic delays. Our novel approach is to separate the
actual simulation and the program that implements the de-
cision making policy, thus enabling implementations of dif-
ferent heuristics to “compete” on the same instances and

∗The first three authors have been partially supported by
the European Regional Development Fund (ERDF).
†Part of this work was done while this author was on leave
at Technical University Berlin.
‡This authors work was partially supported by the AR-
RIVAL project, within the 6th Framework Programme of
the European Comission under contract no. FP6-021235-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2008 March 3-7, 2008, Marseille, France
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

delay distributions. For RDM and other logistic planning
processes, it is our goal to bridge the gap between theoreti-
cal models, which are accessible to theoretical analysis, but
often too far away from practice, and the methods which are
used in practice today, whose performance is almost impos-
sible to measure.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Complexity;
G.2.3 [Mathematics of Computation]: Discrete Mathe-
matics—Applications;
I.6 [Computing Methodologies]: Simulation and Model-
ing

General Terms

Transportation, Simulation, Stochastic Scheduling, Online
Optimization, Experimental Algorithms, Heuristics

Keywords

Online Railway Delay Management, Web-based Simulation,
PSPACE

1. INTRODUCTION
Delays in a railway network are one of the biggest prob-

lems for the daily operations of a railway company. Delayed
trains and missed connections lead to dissatisfied customers
and possibly refunds that have to be paid to delayed pas-
sengers.

When a train does get delayed, it may be beneficial to let
another train wait so that passengers in the delayed train
do not miss their connection. However, passengers in the
waiting train will then get delayed and may in turn miss their
connections. Due to the complexity of both, the network and
the schedule, one decision may have a large impact on the
propagated delays later during the day.

fezzardi
Text Box

create-net
Typewritten Text

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.2938

Even today, the decision whether a train should wait or
not, is still made by a human dispatcher, mainly based on
a lot of training and experience. However, to decrease the
delays incurred by making bad decisions, it may be favor-
able to have these decisions made by an algorithm or at least
support a dispatcher by making proposals. Algorithmically,
this becomes the problem of finding a good wait policy, a
mechanism that decides at any point in time which trains
should depart and which trains should wait. Different ob-
jective functions may be defined for this problem. In this
paper we will consider the problem of minimizing the total
delay of all passengers.

It has been shown that even the offline version, i.e. the
case when all delays are known in advance, is NP-hard even
for very special networks [3, 4]. However, a branch-and-
bound algorithm has been developed to solve the problem
optimally by using an integer programming formulation for
the problem [6].

This IP formulation is based on a model of railway delay
management that uses an event-activity-network, where the
nodes represent arrival or departure events, and the edges
represent driving, transfer, or waiting activities. We will
use this description in Section 3 to show that the online
railway delay management (ORDM) problem is PSPACE-
hard. The only network for which an optimal (polynomial
time) algorithm is known is the line [3].

Thus, for practical applications, heuristics have to be de-
veloped. It lies in the nature of such heuristics, that their
performance is really hard to measure. In particular, for a
PSPACE-hard problem, it is infeasible to get good bounds
on the optimal solution. Moreover, it is difficult to com-
pare different heuristics due to differences in the model, the
objective and the implementation. For the case of railway
delay management, it is also important that the source de-
lays are in some sense comparable when different heuristics
are evaluated.

In order to overcome these problems, we have developed
a simulation platform, on which different heuristics can be
applied to different instances and evaluated. In Section 4
we will also discuss how our approach can be used for other
logistics and production planning problems as well.

TOPSU – RDM has been developed within the TOPSU
framework (Tournaments for Optimal Planning and Control
under Uncertainty1). TOPSU is an interactive framework
for optimal planning and control of production or other con-
trol processes under uncertainty. It divides an optimization
task in three parts: model building, an algorithm for solv-
ing the problem, which is induced from the model, and the
experimental evaluation of the algorithm inside the model
(cf. Fig. 1).

One most crucial point of TOPSU is that the framework
does not only demand this partition, but also allows the dis-
tribution of these three tasks to different people. Thus it
can be considered as a platform for the competition of al-
gorithms. The second crucial point is the fact that TOPSU
supports the influence of uncertainty within its implicit op-
timization model. We decided to incorporate this feature
for two reasons. Firstly, practitioners often claim that pro-
duction processes have massively to deal with several kinds
of uncertainty. Secondly, production systems are typically
so large that optimization must focus on a certain part of

1TOPSU is the abbreviation of the German translation.

Figure 1: The TOPSU idea: splitting the tasks.

this system. Or in other words, we have to optimize parts
of a supply chain. We think, it will be advantageous for the
optimization of a supply chain, if its components are aware
of uncertain boundaries.

Technically, TOPSU is realized with the help of the In-
ternet. On one site, we have a so called server, where the
ultimate simulation proceeds. At this server, all necessary
data are available for download. The control of the simula-
tion, however, is remotely executed at the so called clients.

The field of optimization under uncertainty, especially
with probability based uncertainties, is a fast growing and
more and more important area. Just think of planning tasks
for railways or aircrafts, and remember your own experi-
ences with disruptions. Disruptions reflect the fact that,
at planning time, not all information is available. Optimiza-
tion problems, considering these uncertainties, often become
PSPACE-hard. In some cases it will be possible to extract
easy subproblems which can be solved in polynomial time,
and that simultaneously serve as good solutions for the real-
world application. However, if this is not possible, simula-
tion experiments promise a lot of gain in insights. Exper-
imental work for the evaluation of optimization processes
often has the disadvantage that results of different authors
cannot be compared to each other. One reason is that each
author examines slightly modified problems, and another
reason is that measuring is not standardized. In TOPSU,
the methodical tasks “Finding a problem for examination”,
“Algorithms and Heuristics”, and “Measuring” are split to
different persons. Moreover “Finding a problem for exam-
ination” and “Measuring” are centralized. That increases
comparability and, simultaneously, the credibility of the ex-
periments.

We will now give a brief overview of the contents of the
paper. In Section 2 we present the model and the details
of the RDM simulation platform. We show that ORDM is
PSPACE-hard in Section 3, and give some conclusions in
Section 4.

2. THE SIMULATION PLATFORM
In this section we will describe in more detail the model

that is used in our simulation and the specifics of the sim-

ulation. The simulation platform consists of three parts –
a server program that implements the model, a program
that implements the wait policy (called an engine), and a
graphical user interface (GUI) which enables the communi-
cation between the server and the engine and which provides
a visualization of the simulation.

2.1 The Server
We start with a description of the model that is imple-

mented on the server. In our model stations are the nodes
and tracks are the edges of a directed graph on which the
trains can move. Physical tracks that can be used in both di-
rections are modeled as two distinct directed edges, and the
server makes sure that only one of these two edges is used
at any time. Each station and each track has a capacity, the
maximum number of trains that can be in that station or on
that track, respectively, at any time. Moreover, each edge
has a timeslack, i.e. the minimum time that has to pass be-
tween two trains entering or leaving that track. The edges
have the FIFO property, i.e. the trains leave an edge in
the same order that they entered that edge. There is also a
minimum halt time in the stations, the minimum time that
trains have to stay in a station before they continue their
scheduled route.

In addition to stations and tracks, the server has infor-
mation about the trains, the schedule, and the passengers.
Each entry in the schedule consists of a train, an edge, a
departure time, an arrival time, and a pointer to the de-
lay distribution for this entry. Passenger flows are called
origin destination pairs, each having a weight (correspond-
ing to the number of passengers), a start time, and a list of
edges that these passengers are going to traverse during their
travel. Note that rerouting of trains and passengers is not
allowed in our model. Additionally, there is a (global) con-
stant, the minimum change time, which is the time needed
for a passenger to transfer between one train and another.
It is assumed, that each passenger always uses the first train
going towards his/her next intermediate destination. This
may be the train he/she is currently in, or another train that
is heading in the same direction and not leaving before the
minimum change time has passed.

The simulation running on the server is discrete-time and
event based. During initialization, for each train, an event
for its first entry in the schedule is created and inserted into
a (time-sorted) priority event queue. As the trains move
along the edges, events will be taken out from the event
queue and new events will be generated. An event consists
of a time, a train, an edge, and an indicator whether this
event means the train wants to enter or leave that edge at
the specified time. The server will then run the following
loop until the end of the schedule has been reached:

1. Collect queries at current time from the event queue.

2. Send a query message to the engine.

3. Receive a result message from the engine.

4. Commit the answers from the result message, if feasi-
ble.

5. Sample delays for trains that in fact have left a station.

6. Send message about committed decisions and sampled
delays to the engine.

We will now describe some details of the points above.

Collect queries: In this step all events from the top of
the event queue, whose event time is equal to the current
simulation time, are checked for feasibility and inserted into
a query collection that will be sent to the engine. This means
that no query is generated for an event which cannot be
implemented at that time, e.g. a train wants to enter an
edge that is full (i.e. the number of trains on that edge
equals the edge’s capacity). In this case, a new event for
that train is created at the earliest possible time at which
the “infeasibility reason”may disappear, e.g. the time of the
next event of the first train on that edge.
Sending queries and receiving results: All queries that
have been collected in the previous step will be sent to the
engine in a single message. The simulation on the server
stops until a corresponding result message is received from
the engine.
Committing decisions: Similar to the method used while
collecting queries, only those queries will be committed which
are feasible and were answered positively by the engine.
Whenever a query is committed, e.g. a train is entering a
track, a new event for that train to leave the edge is created
at the expected arrival time – the scheduled travel time plus
the sampled delay. If all queries were denied by the engine,
the simulation jumps to the next point in time in the event
queue, and the events corresponding to the current queries
are postponed to that time.
Sampling delays: Delays are sampled whenever a train
actually leaves a station. A delay is sampled from the dis-
tribution linked to the corresponding entry in the schedule
and added to the travel time for that train on that edge.
Sending information to the engine: After committing
the decisions and sampling the delays, a message is sent to
the engine to inform about the decisions and the delays.

The actual arrival and departure times are stored during
the simulation. After the end of the simulation, the objec-
tive value of the simulation is computed. This is actually
the only time when the passenger data is used. For each ori-
gin destination pair the actual travel time is computed and
the scheduled travel time is subtracted. The sum of these
(weighted) delays is the objective value. It may happen, that
a passenger does not reach his/her final destination due to
large delays or a bad wait policy. In this case, the actual
travel time is replaced by a large constant (e.g. the costs to
pay for an accommodation for that passenger).

For each instance and each user that runs an engine on
that instance, an entry is written to the highscore list of
that instance. For several runs by the same user on the
same instance, average scores can be seen in the graphical
user interface (see below).

2.2 The Graphical User Interface
The graphical user interface (GUI, cf. Fig. 2) enables the

communication between the server and the engine. It is also
used to connect engine and server, display highscores, and
for visualizing the network and the simulation.

The steps in using the GUI to run a simulation are as
follows:

• Login (username and password can be obtained from
the authors).

• Choosing RDM as the “game”.

Figure 2: The graphical user interface of TOPSU –
RDM.

• Choosing an instance.

• Getting the pre-specified parameters.

• Connecting an engine.

• Starting a simulation.

If necessary and recognized by the engine, parameters can
be passed to the engine via the GUI. The user can also
specify a subinterval of the pre-defined timeframe on which
the simulation should run, or change parameters such as the
cost that is added to the objective for passengers who do not
reach their final destination. However, highscores will be
only written when the full timeframe with the pre-specified
parameters is simulated.

In the visualization panel (cf. Fig. 3) of the GUI, the user
can stop and continue the simulation, and proceed stepwise.
This may be helpful for the analysis, at least for smaller
instances.

Figure 3: A visualization of the simulation for a
(simplified) Berlin S-Bahn schedule.

2.3 The Engine
An engine for railway delay management, i.e. a program

implementing a certain wait policy, basically just has to say
yes or no to the queries sent by the server. It may do so,
of course, without keeping any information about the net-
work, the schedule, or the passengers. “Intelligent” engines,
however, will need such information.

This may be information such as previous arrivals and de-
partures, the current location of a train, or the next event of
a train in the event queue on the server. For algorithm/wait
policy developers, a set of Java classes is available that take
care of keeping up to date all the necessary data during a
simulation. An engine can use these classes and just has to
implement the method that determines the answers to the
queries posed by the server. Instructions to implement an
engine are available at the TOPSU – RDM webpage [1].
Sample engines that implement the “Always Yes”, “Wait for
all connections” and “Wait randomly” are available for test-
ing purposes.

3. ONLINE RAILWAY DELAY

MANAGEMENT IS PSPACE-HARD

Definition 1 The complexity class PSPACE is the set of
all decision problems that can be decided on a deterministic
Turing machine using space limited by a polynomial in the
input size. A problem P is said to be PSPACE-hard, if
there is a Karp-reduction from every problem in PSPACE
to P . A problem in PSPACE that is PSPACE-hard is called
PSPACE-complete.

It is widely assumed that the complexity class PSPACE
is not contained in NP. In other words, there are problems
in PSPACE for which there is no polynomial time checkable
certificate. If this holds, e.g., for the railway delay manage-
ment problem, then one may not evaluate a delay manage-
ment strategy in polynomial time. One could not decide for
every value k in polynomial time whether a certain strat-
egy scores in expectation better or worse than k. In general,
this would also inhibit the comparison of different strategies.
Still, we want to be in the position to prefer one approach
to a problem over another on a sound basis. Therefore, we
consider a PSPACE-hardness proof as a justification for a
simulation based evaluation of strategies.

We will prove in this section that the following simple
version of the online railway delay management problem is
already PSPACE-hard, i.e., at least as hard (by polynomial
time reduction) as any problem in PSPACE.

A known PSPACE-complete problem is the following:

Definition 2 Deciding whether a logical expression of the
following type is true

∃x1∀x2 . . .∃xn−1∀xn :
^

i

_

j

zij ,

where zij are literals in the variables {x1, . . . , xn} and their
negations, is called the Quantified Boolean Formula (QBF)
problem.

We will reduce QBF to a simple version of the online delay
management problem.

3.1 The Basic Online Delay Management Prob-
lem.

We present the delay management problem for this reduc-
tion on an event (nodes) activity (arcs) network, whereas our
simulation contains an infrastructure graph. It will become
clear that the model used for the reduction is even slightly
simpler than that of the simulation. This means that ev-
ery instance of the reduction model can be described as an
instance for our simulation tool. Yet, some further compli-
cating aspects like single tracks, which are included in the
simulation, are not need for the reduction, and thus not
modeled in this section.

An instance of the basic online delay management (BODM)
problem

(G, π, τ,D)

is defined by an event activity network G = (V,A), a nomi-
nal timetable π, a vector of random variables for minimum
durations of the arcs τ , and a mathematical object D defin-
ing a cost model for the delay management. The task is to
give a strategy that constructs a disposition timetable π′ in
every scenario.

The event activity network is a digraph G = (V,A), where
V is the disjoint union of nodes representing arrival events,
VA, and those for departure events, VD. The arc set A is
the disjoint union of the set of driving arcs AD, and the
set of transfer arcs AT . A transfer arc always leads from
an arrival to a departure node. Whereas driving arcs either
lead from a departure to an arrival node, or vice versa. In
the latter case driving arcs are also called more adequately
stopping arcs. A stopping arc models a train in a station, a
driving arc a train driving between stations, and a transfer
arc represents some passengers changing trains.

Most real-world instances fulfill, that every node has one
or zero incoming and independently one or zero outgoing
driving arcs. Though there are rare real-world instances
which do not fulfill this condition, for our reduction we can
respect it.

The real-valued vector π ∈ R
V is called the timetable,

and serves as a reference to measure the delay. The A-
dimensional vector of random variables τ : Ω → R

A
+ over

some probability space (Ω,F , µ) represents the minimum
duration τ(ω) of an arc in a scenario ω ∈ Ω.

Different ways to define the cost model D are possible.
Basically, we are given a set of origin-destination pairs with
a certain weight, i.e., we know how many passengers want
to travel from a certain starting station to a certain final
destination. In the simulation their paths through the in-
frastructure network are fixed. They may follow that path
on different trains, but the sequence of stations they pass is
fixed. In each scenario the total delay of the passengers in
π′ compared to π, plus a certain cost for those passengers
who will not reach their destination at all, defines the cost.

An alternative way to define the costs, specifies a certain
cost for each transfer that is broken and for each arrival
which is delayed in π′. The two models are not tantamount,
but can be translated into each other in many cases. For the
reduction we will use the model used in the simulation. But
we will sometimes refer to the costs as the costs of breaking
a transfer or delaying a train, because these terms are more
convenient in the context, and in our case can easily be
translated into the original cost model.

For a scenario ω ∈ Ω we seek a disposition timetable π′.

This timetable must respect the realized minimum durations
t(ω), and the old timetable π, i.e., π ≤ π′.

As the random variable τ unfolds over time, the dispo-
sition timetable π′ must be the result of a non-anticipative
strategy. The decision problem, which we show to be PSPACE-
hard, is the following question:

Definition 3 The following question is called the BODM
decision problem. Given a BODM instance, and a point in
time t0. Is there a non-anticipative strategy for the subse-
quent decisions that achieves a cost value lower than a budget
B in every realization of τ , that has probability greater than
zero conditional to the given realization of τ until t0.

3.2 Reduction of QBF to the BODM Decision
Problem

For a given Boolean formula in conjunctive normal form,
V

i

W

j zij , with literals in the set of variables {x1, . . . , xn}
and their negations, we construct an instance of the BODM
decision problem. For this BODM instance exists a strategy
that achieves a cost lower than the budget B, if and only
if the quantified Boolean formula, ∃x1∀x2 . . . ∃xn−1∀xn :
V

i

W

j
zij , is true. Thus, the BODM decision problem is

PSPACE-hard.
In our construction we use fixed and non-fixed trains. A

train is fixed in the sense that delaying this train would
automatically exceed the budget by yielding a cost M0 > B.
Nevertheless, we use fixed trains, that are a priori fixed to
be late. Such a late fixed train has an initial delay prior
to the decisions of the strategy, but may neither be delayed
any further, nor has a buffer time to compensate the delay.
We introduce the late, fixed trains to explain transfers that
are a priori broken, i.e., lead from an arrival (of a late, fixed
train) to an earlier departure. The costs for the initial delays
of those trains are constant for all further unfolding of the
scenario and all disposition timetables. Therefore, we can
neglect them.

The non-fixed trains fall into two different groups. Each
train of the first group, the variable-trains, corresponds to a
variable xi of the Boolean formula. If such a train is delayed,
we will interpret the corresponding variable xi as being false,
and true if the train is on time. The trains of the second
group serve as modeling variables. They can also be delayed
or run on time while the strategy is carried out, but the
reduction will be constructed such that their delay is entirely
dependent on the delay of the variable-trains.

For modeling reasons we want that for every non-fixed
train the decision about running delayed or on time must
be taken at the start of the train‘s ride and kept until the
final destination. We enforce this by an incoming transfer
from a late, fixed train at the beginning of the ride and an
outgoing transfer to an on time, fixed train at the end. The
non-fixed train cannot meet both transfers. Thus it always
incurs the cost for breaking one of these transfers, M1. Let
m be the number of non-fixed trains, then the total budget
M1m + C < B < M1(m + 1) + C is set such that none of
these trains may break both transfers. (The constant C is
the constant cost of all gadgets, as explained below.)

With these ingredients, on time fixed trains, late fixed
trains, variable-trains, modeling-trains, and the rule that
any of the latter two types‘ trains must be scheduled either
always late or always on time, we will below device a gadget
for a NON-operator and one for a multiple AND-operator.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

x1x1

x2x2

xnxn

¬x1

¬x2

¬xn

a

¬

¬

¬

¬

¬

∧

∧∧

Figure 4: Using the Gadgets.

The NON-gadget will yield that a certain modeling train is
delayed if and only if a certain other train is on time. The
AND-gadget has an out-train that is on time, if and only if
all trains of a certain set are on time. Before we describe the
mechanism of these gadgets, we will first show how they are
used to reduce the QBF, ∃x1∀x2 . . . ∃xn−1∀xn :

V

i

W

j
zij .

Actually, we use an alternative way to write the Boolean
formula namely,

V

i

W

j
zij =

V

i
¬(

V

j
¬zij).

The time horizon of the constructed BODM instance is
split into five phases (cf. Figure 4).

1. In the first phase the variable-trains are delayed or
not. The incoming transfer from the fixed train de-
termines the order by which these decisions must be
taken. Thus we reflect the consecutive mechanism in
the QBF.

For those variable-trains that correspond to an all quan-
tified xi, we choose the random variable τ such that
it may do either of the following: Delay that train be-
fore the incoming transfer from a late, fixed train at
the beginning, or delay the train immediately before
the outgoing transfer to a punctual, fixed train at the
end of that train. The time difference between these
transfers is chosen such that further delaying that train
by the delay management is prohibited by the budget
constraint. In this way we model the all-quantified
variables by variable-trains.

2. Then each variable-train runs through a NON-gadget,
producing its negated train, which is late if and only
if the variable-train was on time.

3. The variable-trains and their negations pass through
the AND-gadgets for each of the re-written clauses. A
re-written clause i,

V

j ¬zij , is modeled by an AND-
gadget with in-trains corresponding to the variable-
trains or negated variable-trains zij .

4. Each out-train of those AND-gadgets is negated.

5. Finally all of those negations enter the central AND-
gadget. The out-train a of this gadget has a tight

transfer to a fixed train. If that out-train is late, it
yields a cost of M2.

We will make sure that every AND- and NON-gadget
yields a fixed cost in every scenario. Thus, we can choose B

and M2 such that the total cost is below B, if the train a is
on time, and the cost exceeds B, if a is late. This completes
the reductions.

3.3 The NON-Gadget
The initial state of a NON-gadget is depicted in Figure 5.

The lower train, the in-train is always late for a transfer. We
draw a rhombus to symbolize some fixed delay that should
explain this fact. The upper train can wait for the lower
train and thus keep the connection (Figure 7). But, if the
lower train is additionally delayed before the rhombus, the
upper train would have to wait so long, that is has to break
a transfer to a fixed train. (Fixed trains are always drawn as
fat lines.) The costs for breaking this transfer are M0, i.e.,
would immediately exceed the budget. Thus, the strategy
will break the transfer from the in-train to the out-train,
and the latter will leave the gadget on time (Figure 6). A
delayed in-train yields an on time out-train, and vice versa.

¬Gadget

Figure 5: The Initial Situation.

Still the gadget would not work, because we cannot guar-
antee that the transfer is not broken, if the in-train is on
time, or the out-train is delayed although it breaks the trans-

¬Gadget

Figure 6: Delayed yields On Time.

¬Gadget

Figure 7: On Time yields Delayed.

fer from a late in-train. To exclude these cases, we have to
make sure that a NON-gadget yields a fixed cost in both
dispositions we desire (in-train on time & out-train late and
vice versa), and exceeds this cost in any other disposition.
To this end, let cw be the cost of delaying the out-train,
cb the cost of breaking the transfer from the in-train, and
cb − cw = cg a positive number. We introduce an a priori
broken transfer from a late, fixed train to the in-train, which
to break costs cg. This transfer is broken, if and only if the
in-train is on time. In other words, the desired dispositions
are the only two dispositions by which the gadget has cost
less or equal to cb—and those yield cost equal to cb.

Note that we use NON-gadgets, which also output the
in-train, and NON-gadgets that only output the out-train.

3.4 The AND-Gadget
The AND-gadget is fairly simple: All in-trains have to be

on time for the out-train to be on time. Therefore, all in-
trains have a tight connection of breaking cost M0 to the
out-train. Again, we have to make sure, that the out-train
is not scheduled late although all in-trains are on time. To
this end, all in-trains run along the same track for a short
distance. There are some passengers that want to travel this
distance, but come from a late, fixed train. Only if at least
one of the in-trains is late, these passengers will reach their
destination. The cost ch of not serving these passengers
equals the cost of delaying the out-train. Thus, the gadget
at least costs ch, and will exceed this cost, in case the out-
train is late though all in-trains are punctual.

4. FUTURE WORK / CONCLUSIONS

4.1 Refinement of the Model

The following refinements can be made to the model to im-
prove the applicability of the simulation tool and to get the
model closer to practice. First, different objectives should
be implemented and should be made available to the users
in the GUI.

Moreover, the minimum change times of passengers do
depend on the station where a passenger changes and may
also depend on the passenger himself. Similarly, the halt
times in a station may differ during peak periods and may
also depend on the train and on the station.

4.2 More Intelligent Engines
We have mentioned that some trivial engines (“Always

Yes”, “Wait for all connections” and “Wait randomly”) have
been implemented. They can be used to compare other,
more intelligent engines.

We are currently working on designing and implementing
two engines that will hopefully perform better than the en-
gines mentioned above. The first algorithm explores ideas
from Monte Carlo tree search, as have been used in before in
Computer Go programs [5] and in production management
problems [2]. This approach tries to simulate the outcome
of the possible decisions that are available, and may thus
also be used just as a decision support tool that evaluates
and/or estimates the outcome of certain decisions.

The second wait policy is based on the optimal algorithm
that solves the offline RDM problem [6]. Both wait poli-
cies are currently being implemented and will be tested and
evaluated using the TOPSU – RDM simulation tool.

4.3 A Scheduling and Planning Simulation
Generator

Currently, we are working on a generalization of the RDM
simulator. We aim at building a kind of simulation gen-
erator. We restrict our efforts to optimization problems,
where some passive objects pass some other active objects.
This includes a lot of transportation problems as well as
production problems. Sets of passive objects may be trans-
formed while they are processed within the active objects.
Active objects might be machines and passive ones might
be items which are processed inside the machines. Active
objects also might be stations and tracks, and the passive
would then be trains, which pass through the tracks and
stations. We think, a proper entity-relationship description,
plus some extra information, including message-layout be-
tween clients and server suffices to automatically construct
a generic simulation block, where the messaging, as well as
the basic event-handling of the simulator are included.

5. ACKNOWLEDGEMENTS
We would like to thank Robert Pankrath for developing

the visualization for TOPSU – RDM.

6. REFERENCES
[1] A. Berger, R. Hoffmann, U. Lorenz, and S. Stiller.

TOPSU–RDM – A Web-Based Simulation for Railway
Delay Management.
http://wwwcs.uni-paderborn.de/cs/ag-
monien/PERSONAL/FLULO/PP/TOPSU
RDM1.html.

[2] G. Chaslot, S. de Jong, J.-T. Saito, and J. Uiterwijk.
Monte-Carlo Tree Search in Production Management
Problems. In Proceedings of BNAIC 2006, (2006).

[3] M. Gatto, B. Glaus, R. Jacob, L. Peeters, and
P. Widmayer. Railway delay management: Exploring
its algorithmic complexity. In Algorithm Theory -
Proceedings SWAT 2004, volume 3111 of LNCS, pages
199–211. Springer, 2004.

[4] M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The
computational complexity of delay management. In
D. Kratsch, editor, Graph-Theoretic Concepts in
Computer Science: 31st International Workshop (WG
2005), volume 3787 of Lecture Notes in Computer
Science, 2005.

[5] C. R. Efficient selectivity and backup operators in
monte-carlo tree search. In 5th International
Conference on Computer and Games, 2006.

[6] A. Schöbel. Integer programming approaches for
solving the delay management problem. Lecture Notes
in Computer Science, 2006. to appear.

