
MAlSim – Mobile Agent Malware Simulator

Rafał Leszczyna, Igor Nai Fovino, Marcelo Masera
European Commission
Joint Research Centre

Institute for the Protection and Security of the Citizen
Via Enrico Fermi 2749
21027 Ispra (VA), Italy

rafal.leszczyna@jrc.it, igor.nai@jrc.it, marcelo.masera@jrc.it

ABSTRACT
One of the problems related to the simulation of attacks
against critical infrastructures is the lack of adequate tools
for the simulation of malicious software (malware). Malware
attacks are the most frequent in the Internet and they pose
a serious threat against critical networked infrastructures.
To address this issue we developed Mobile Agent Malware
Simulator (MAlSim). The framework uses the technology of
mobile agents and it aims at simulation of various types of
malicious software (viruses, worms, malicious mobile code).
Moreover it can be flexibly deployed over computer network
of an arbitrary information system.

Categories and Subject Descriptors
I.6.7 [Simulation and Modelling]: Simulation Support
Systems; C.2.0 [Computer-Communication Networks]:
General (security and protection); I.2.11 [Distributed Ar-
tificial Intelligence]: Multiagent systems

General Terms
Security, Performance

Keywords
ACM proceedings, simulation, security, critical infrastructu-
res, mobile agents, computer attacks, malware

1. INTRODUCTION
In our work we address the problem of computer secu-

rity of critical networked infrastructures1 including informa-
tion systems, communication networks, electricity and other

1Critical Infrastructures are defined as organisations or fa-
cilities of key importance to public interest whose failure
or impairment could result in detrimental supply shortages,
substantial disturbance to public order or similar dramatic
impact [1]. Today most of critical infrastructures depend
highly on the underlying communication networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools, March 03 – 07, 2008, Marseille, France.
Copyright 2008 ACM 978-963-9799-20-2 ...$5.00.

energy networks and water networks. We study their vulne-
rabilities, the potential malicious threats that might affect
them, the related detrimental attacks, and the counterme-
asures that can be put in place for securing those systems.
We develop instruments for a better understanding of the
risks, for the qualitative and quantitative evaluation of the
security issues, for the determination of the security condi-
tion of systems.

One of our studies concentrates on developing a systema-
tic approach for the identification and assessment of security
risk threats to information systems. The approach is ba-
sed on the systematic planning, performance and description
of experiments with simulations of attacks affecting control
and supervision systems. We analyse the network of a cri-
tical infrastructure and on the basis of our observations we
reconstruct it in our laboratory. In this configuration we im-
plement attack scenarios. Then analyse results in order to
evaluate impact of the attack, test robustness and identify
countermeasures. The description, preparation, execution
and results of the experiments will form the information so-
urce for trust cases i.e. documented bodies of evidence that
provide demonstrable and valid arguments that a critical
infrastructure is adequately safe and secure [2].

However we have encountered the problem of lack of so-
ftware and methodology for simulation of malware – mali-
cious software that run on a computer and make the system
behaving in a way wanted by an attacker [3].

Malware can be categorised into the following families [3]:

• Viruses – which are self-replicating programs able to
attach themselves to other programs (host files) such
as executables, word processing documents and require
human interaction to propagate.

• Worms – self-replicating programs autonomously (wi-
thout human interaction) spreading across a network.

• Malicious mobile code – lightweight Javascript, VBScript,
Java, or ActiveX programs that are downloaded from
a remote system and executed locally with minimal or
no user intervention.

• Backdoors – bypassing normal security controls to give
an attacker access to a computer system.

• Trojan horses – disguising themselves as useful pro-
grams while masking hidden malicious purpose.

• User-level RootKits – replacing or modifying executa-
ble programs used by system administrators and users.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.2942

• Kernel-level RootKits – manipulating the kernel of ope-
rating system to hide and create backdoors.

• Combination malware – combining techniques of other
malware families.

Malware based attacks are the most frequent in the Inter-
net and they pose a serious threat against critical networked
infrastructures.

For answering this issue, we decided to develop a malware
simulation tool with our own forces. In this way Mobile
Agent Malware Simulator (MAlSim) was created. MAlSim
is a software framework which aims at simulation of various
malicious software in computer network of an arbitrary in-
formation system.

The paper is organised as follows: in Section 2 we pre-
sent a brief overview of the related works. In Section 3 we
describe MAlSim and the simulation environment, in which
the framework is deployed. Finally, in Section 4 we present
our conclusions.

2. RELATED WORK
As already mentioned we haven’t been able to identify any

compound frameworks for performing simulations of diverse
types of malware. However there are documented studies on
simulation of particular malware families such as computer
viruses and worms.

The studies on virus simulation tools span between:

• Educational simulators i.e. programs demonstrating
the effects of virus infection [4]. This group of pro-
grams include Virus Simulation Suite written in 1990
by Joe Hirst, which is a collection of executables, that
‘simulate the visual and aural effects of some of the
PC viruses’ [5]. Another example is Virlab [6] from
1993, which simulates the spread of DOS computer vi-
ruses, and provides a course on virus prevention. (As
it can be noticed, the programs are quite out of date,
and today they would rather serve just as a historical
reference.)

• Anti-virus testing simulators i.e. programs which are
supposed to simulate viral activity, in order to test
anti-virus programs without having to use real, poten-
tially dangerous, viruses. Unfortunately, it seams that
only one solution of this type was developed [4], namely
Rosenthal Virus Simulator [7]. The simulator is a set
of programs which provide ‘safe and sterile, controlled
test suites of sample virus programs’, developed for
‘evaluating anti-virus security measures without harm
or contamination of the system’ [7]. Again the appli-
cability of the suite is limited since it was written ten
years ago.

Concerning the simulation of worms, the prevalent work
was done on developing mathematical models of worm pro-
pagation [8, 9, 10, 11], which base on epidemiological equ-
ations that describe spread of real-world diseases. The empi-
rical approaches concentrated mainly on single-node worm
spread simulators [12, 13, 14, 15], which are dedicated to
run on one machine. Only few distributed worm simulations
were implemented [16, 17, 18] but they approach modelling
of worm propagation in the Internet and thus they don’t re-
spond our need for simulation tool allowing experiments in
an arbitrary network of predefined topology.

Figure 1: Simulation environment.

Also Trojan Simulator [19] has limited applicability in
our studies. It was developed for evaluating effectiveness
of anti-trojan software, and as such fulfills its purpose. Ho-
wever from the point of view of our experiments, it lacks the
behavioural part, since the trojan malicious activities (e.g.
stealthy task execution which consumes processor time or
sending packets over network) are not simulated.

3. SIMULATION ENVIRONMENT
The simulations of malicious software are performed based

on Mobile Agent Malware Simulator framework deployed in
the simulation environment reconstructing the information
system of an evaluated infrastructure (Mirrored Information
System, see Figure 1). Additionally the environment com-
prises auxiliary parts which support configuration, perfor-
mance and observation of the experiments; collection, sto-
rage and processing of results; and storage and provision of
countermeasures.

3.1 MAlSim Framework
MAlSim – (Mobile Agent Malware Simulator) Framework

is a software toolkit which aims at simulation of various
malicious software in computer network of an arbitrary in-
formation system. The framework aims at reflecting the
behaviours of various families of malware (worms, viruses,
malicious mobile code etc.) and various species of malware
belonging to the same family (e.g. macro viruses, meta-
morphic and polymorphic viruses etc.). The simulated so-
ftware can refer to well-known malware (e.g. Code Red,
Nimda, SQL Slammer) but also it can simulate generic be-
haviours (file sharing propagation, e-mail propagation) and
non-existent configurations (which supports the experiments
aiming at predicting the system behaviour in the face of new
malware).

MAlSim Framework was developed using the technology
of mobile agents. Software agents are software components,
that are [20]:

• Autonomous – able to exercise control over their own
actions.

• Proactive (or goal-oriented or purposeful) – goal orien-
ted and able to accomplish goals without prompting

from a user, and reacting to changes in an environ-
ment.

• Social (or socially able or communicative) – able to
communicate both with humans and other agents.

Mobile agents are software agents able to roam network fre-
ely, to spontaneously relocate themselves from one device to
another.

Mobile Agent approach was chosen for the development
of MAlSim because it particularly fits this purpose. Agents
have much in common with malicious programs. Similarly
to worms and viruses, they have the ability of relocating
themselves from one computer to another. They are also au-
tonomous as the worms are. At the same time they operate
on agent platform which forms a type of sandbox facilitating
their control.

Agent platform is an execution environment for agents
which supplies the agents with various functionalities cha-
racteristic for the agent paradigm (such as agent intercom-
munication, agent autonomy, yellow pages, mobility etc.).

Agent platforms are deployed horizontally over multiple
hardware devices through containers. On each device at
least one container may be set up. Each container is an
instance of a virtual machine and it forms a virtual agent
network node. Containers make agent platform independent
from underlying operating systems. Mobile agents are able
to migrate from one container to another. Consequently,
when containers are deployed on different devices, mobile
agents can migrate between different devices.

Agent platforms can be imagined as agent communities
where agents are managed and are given the means to in-
teract (communicate and exchange services). Many agent
communities may coexist at the same time. Depending on
the implementation of the platform, agents may be able to
leave one community (platform) and join another2.

MAlSim is dedicated for the JADE (Java Agent DEvelop-
ment Framework) agent platform.

JADE is a fully Java based agent platform which complies
with the FIPA3 specifications. It is provided by means of:

• Software framework which facilitates the implemen-
tation of multi-agent systems through a middleware
which supports agent execution and offers various ad-
ditional features (such as a Yellow Pages service or
support for agents’ mobility).

• Set of graphical tools that supports the debugging and
deployment phases.

JADE is licensed under Lesser General Public License
(LGPL), meaning that users can unlimitedly use both bi-
naries and code of the platform. During over seven years
of its development JADE has become very popular among
the members of agent community and now it is probably the
most often used agent platform. JADE is continuously deve-
loped, improved and maintained, not only by the developers
from the Telecom Italia Lab (Tilab), where it was origina-
ted, but also by contributing JADE community members
[30, 31].

Further details on the choice of JADE for our works can
be found in [32].

2Further information on software agents an interested reader
can find in [21, 22, 23, 24, 25, 26, 27, 28, 29].
3www.fipa.org

Figure 2: MAlSim deployment.

As shown in Figure 2 JADE has to be deployed over all
hosts participating in the experiments with MAlSim. In
our configuration these are the computers of Mirrored In-
formation System and of the Attack and Threat Simulator.
Java-based JADE is flexibly installable on various operating
systems, and we deploy it on various distributions of Linux
(Debian, Ubuntu, CentOS) and Microsoft Windows.

MAlSim Toolkit provides:

• Multiple classes of MAlSim agent (extensions of JADE
Agent class).

• Various behavioural patterns implemented as agent be-
haviours4 (extensions of Behaviour class).

• Diverse migration/replication patterns implemented as
agent behaviours (extensions of Behaviour class).

The MAlSim agent class is the basic agent code which
implements the standard agent functionalities related to its
management on the agent platform, its communication skills
and the characteristics related to the nature of simulated
malicious software. This code will be propagated across the
attacked machines.

To render it operative, the code must be extended with in-
stances of the behaviour classes and the migration/replication
patterns. Depending on the chosen behaviour(s) and the mi-
gration/replication patterns, the instances of the same agent
class will be created on the attacked host, or instances of
another agent class from the toolkit.

The behavioural patterns comprise actions performed by
malicious software such as scanning for vulnerabilities of
operating system, sending and receiving packets, verifying
if certain conditions are met. To support the demonstra-
tive aspect of experiments we have also developed patterns
with audio-visual effects. For example, to facilitate the ob-
servation of malware diffusion in the network, a sound can
be played by the agent after it arrived to a new container.
The patterns also include operations such as disabling ne-
twork adapter, enabling a local firewall to operate in all-
block mode or starting a highly processor time consuming
task etc. Using the patterns we can show the malicious ef-
fects of malware. For example that after malware infection,
it is no longer possible to connect to the host, or that the
host’s performance is affected etc.

4In agents terminology the agent’s behaviour is a set of ac-
tions performed in order to achieve the goal. It represents a
task that an agent can perform [33].

Migration and replication patterns describe the ways in
which MAlSim agent migrates across the attacked hosts.
The patterns implement malware propagation models and
the propagation schemas specific to a particular information
system mirrored in the laboratory, which allow for characte-
ristics such as: which networks of the system will be affected,
in which order, at what relative time etc.

Currently our repository of agent classes and behaviours
contains only basic malware implementations for zero-day
viruses and worms, and we are planning to extend it in the
foreseeable future.

As it was depicted in Section 1 malicious software migrate
from one computer to another using network connections or
portable data storage. They infect files (e.g., executables,
word processing documents, etc.) or consist of lightweight
programs that are downloaded from a remote system and
executed locally with minimal or no user intervention (ty-
pically written in Javascript, VBScript, Java, or ActiveX).
MAlSim on the other hand uses the migration mechanisms
embedded in the agent platform.

In the default configuration (used for the MAlSim imple-
mentation) these mechanisms are realised over Java Remote
Method Invocation protocol on port 1099. This introduces a
difference between the simulated conditions and the condi-
tions of simulation. Thus we are going to develop agent be-
haviours aiming at minimising this difference. One solution
could be for example to not allow MAlSim agent migrate
until a transport channel used by the prototype malware
was opened. As a result, MAlSim agent, even if ‘physically’
moving through the connection on 1099 port, will behave as
relocating through a HTTP or POP3 connection etc.

During MAlSim setup we take the following steps:

1. We withdraw the attack scenario from repository. An
attack scenario is a sequence of steps taken during at-
tack.

2. According to the chosen scenario we select the appro-
priate MAlSim agent from the database and configure
it. If none of existing MAlSim agents fit the attack
scenario, we develop a new MAlSim agent.

3. We extend the agent with migration schema (through
adding agent behaviours from the repository).

4. We extend the agent with malicious behaviour.

The experiment are controlled through the graphical in-
terface of the JADE main container installed on a PC of
Attack and Threat Simulator. As shown in Figure 3 the
graphical console allows also observation of the diffusion of
the simulated malware.

3.2 Simulation Lab Environment
Malware propagation features depend heavily on the cha-

racteristics of the underlying network [17]. In contrast to
the alternative works on malware simulation which use mo-
delling approaches to reconstruct the underlying network,
we build a real, physical configuration based on hardware of
our cybersecurity laboratory.

Since our studies are focused on the security of critical
networked infrastructures we reconstruct the situation oc-
curring in an analysed critical infrastructure. For example,
for the infrastructure of a power plant we mirror the process
network (interconnecting diverse subsystems of the energy

Figure 3: MAlSim Framework takes advantage of
JADE GUI for control and observation of experi-
ments.

production process), the field network (interconnecting con-
trollers and field devices), the corporate network etc. (see
Figure 1).

However it must be noted that MAlSim Framework is not
stiffly fixed to the setting of our cybersecurity laboratory
and can be easily installed in any simulation environment.

Configuration, performance and observation of experiments,
collection, storage and processing of results and other func-
tionalities supporting performance of experiments are provi-
ded by the following sections of our simulation environment:

• Threat and Attack Simulator, which aims at providing
conditions for reconstructing attacks and threats that
can jeopardise the analysed information system. It is
the part of simulation environment where the simula-
ted attacks are configured and launched. Since there
are various and diverse attacks, when designing this
part of the simulation environment, the strong atten-
tion was put to assure high flexibility and easiness of
its configuration. Threat and Attack Simulator allows
managing virtual subnetworks and creating multiple
virtual network nodes (Figure 4). The network nodes,
the hosts, are easily configurable and provided with
diverse resources. Particularly they are provided with
various software i.e. the operating systems and the
specialised programs for developing attacker tools and
for performing the attacks.

• Observer Terminal, which allows monitoring the traf-
fic of Mirrored Information System in order to evaluate
the effects caused by the simulated attacks on the sys-
tem. It tracks all the malicious or anomalous events
happening in Mirrored Information System during te-
sts and experiments and stores them in the central
database, to which user access is provided via various
interfaces. The system is based on the Intrusion De-
tection Engine.

• Vulnerabilities and Countermeasures Repository, sto-
ring information about system vulnerabilities and the

Figure 4: An exemplary setting of Threat and At-
tack Simulator network.

relative countermeasures. It is composed of two sub-
systems: the Vulnerabilities and Countermeasures Da-
tabase and the Binaries Repository. The former stores
the knowledge about the existing and known vulne-
rabilities, threats, attacks and countermeasures, while
the latter is devoted to store and catalogue the at-
tack tools, such as packet generators, trojan horses
and root-kits, and other executable code to be used in
security experiments carried out in the simulation envi-
ronment. Vulnerabilities and Countermeasures Repo-
sitory was implemented in the framework of Industrial
Security Risks Assessment Workbench (InSAW) [34,
35] which is our proprietary system based on a two
tier client/server database driven architecture.

• Testbed Master Administrator, used to remotely ma-
nage both the network and the experiments. It mana-
ges the operations related to initiation and termination
of experiments and allows real time observation of each
system’s behaviour when a simulation is launched.

• Horizontal Services, responsible for providing services
that are needed for the efficient management of the
simulation environment such as backup services or file
sharing services.

Further details about the simulation environment can be
found in [36].

4. CONCLUSIONS
In the paper we have presented MAlSim – Mobile Agent

Malware Simulator, developed to address our needs for si-
mulation tools to be applied during the experiments aiming
at evaluation of security threats to critical networked infra-
structures.

The framework is based on the technology of mobile agents,
which appears to be particularly suitable for this application
due to numerous similarities between agents and malicious
programs (such as mobility, autonomy etc.) and because of
the features of agent platforms which facilitate performance
of experiments.

The framework is deployed (through JADE agent plat-
form) in the simulation environment of our cybersecurity
laboratory. The environment comprises Mirrored Informa-
tion System aiming at reconstructing the information sys-
tem of an evaluated critical networked infrastructure; and

supporting sections which, among the others, facilitate con-
figuration, performance and observation of experiments and
collection, storage and processing of results.

MAlSim Toolkit provides multiple classes of MAlSim agent
and diverse behavioural and migration/replication patterns,
to be used for implementation of various malware. At its
current state, the repository of agent classes and behaviours
contains just basic malware implementations for zero-day vi-
ruses and worms, which we were applying during the recent
studies on computer security of a power plant. However, in
the foreseeable future we are going to extend the repository,
providing agent classes and behaviours of other malicious
programs.

We are also going to develop agent behaviours aiming at
minimising the difference between the simulated conditions
and the conditions of simulation, which stems from the fact
that MAlSim uses default JADE communication mechani-
sms realised over Java Remote Method Invocation protocol.

5. REFERENCES
[1] Federal Office for Information Security (BSI). BSI

annual report 2003. Internet, 2003. Available at
http://www.bsi.bund.de/english/publications/

annualreport/index.htm (last access: October 30,
2007).

[2] Janusz Górski, Aleksander Jarzȩbowicz, RafaÃl
Leszczyna, Jakub Miler, and Marcin Olszewski. Trust
case: justifying trust in an it solution. In Proceedings
of Safecomp Conference, Reliability Engineering and
System Safety, volume 89, pages 33–47. Elsevier, July
2005.

[3] Ed Skoudis and Lenny Zeltser. Malware: Fighting
Malicious Code. Prentice Hall Professional Technical
Reference, Upper Saddle River, New Jersey, USA,
November 2003.

[4] Sarah Gordon. Are good virus simulators still a bad
idea? Network Security, 1996(9):7–13, September
1996.

[5] Joe Hirst. Virus simulation suite. Internet, 1990.

[6] Thomas Faistenhammer, Martin Klöck, Karlhorst
Klotz, Thomas Krüger, Peter Reinisch, and Jenny
Wagner. Virlab 2.1. Internet, October 1993. Available
at http://kklotz.de/html/virlab.html (last access:
October 29, 2007).

[7] Rosenthal Engineering. Rosenthal virus simulator.
Internet, 1997.

[8] Monirul I. Sharif, George F. Riley, and Wenke Lee.
Comparative study between analytical models and
packet-level worm simulations. In PADS ’05:
Proceedings of the 19th Workshop on Principles of
Advanced and Distributed Simulation, pages 88–98,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] Symantec Research Labs. Symantec worm simulator.
Internet, 2005.

[10] Dan Ellis. Worm anatomy and model. In WORM ’03:
Proceedings of the 2003 ACM workshop on Rapid
malcode, pages 42–50, New York, NY, USA, 2003.
ACM.

[11] Cliff Changchun Zou, Weibo Gong, and Don Towsley.
Worm propagation modeling and analysis under
dynamic quarantine defense. In WORM ’03:
Proceedings of the 2003 ACM workshop on Rapid

malcode, pages 51–60, New York, NY, USA, 2003.
ACM.

[12] Michael Liljenstam, Yougu Yuan, BJ Premore, and
David Nicol. A mixed abstraction level simulation
model of large-scale internet worm infestations. In
MASCOTS ’02: Proceedings of the 10th IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications
Systems (MASCOTS’02), page 109, Washington, DC,
USA, 2002. IEEE Computer Society.

[13] Michael Liljenstam, David M. Nicol, Vincent H. Berk,
and Robert S. Gray. Simulating realistic network
worm traffic for worm warning system design and
testing. In WORM ’03: Proceedings of the 2003 ACM
workshop on Rapid malcode, pages 24–33, 2003.

[14] Arno Wagner, Thomas Dübendorfer, Bernhard
Plattner, and Roman Hiestand. Experiences with
worm propagation simulations. In WORM ’03:
Proceedings of the 2003 ACM workshop on Rapid
malcode, pages 34–41, New York, NY, USA, 2003.
ACM.

[15] David Moore, Colleen Shannon, Geoffrey M. Voelker,
and Stefan Savage. Internet quarantine: Requirements
for containing self-propagating code. In INFOCOM
2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies.
IEEE, volume 3, pages 1901–1910, April 2003.

[16] Kalyan S. Perumalla and Srikanth Sundaragopalan.
High-fidelity modeling of computer network worms.
acsac, 00:126–135, 2004.

[17] Songjie Wei, Jelena Mirkovic, and Martin Swany.
Distributed worm simulation with a realistic internet
model. In PADS ’05: Proceedings of the 19th
Workshop on Principles of Advanced and Distributed
Simulation, pages 71–79, Washington, DC, USA, 2005.
IEEE Computer Society.

[18] Songjie Wei and Jelena Mirkovic. A realistic
simulation of internet-scale events. In Valuetools ’06:
Proceedings of the 1st international conference on
Performance evaluation methodolgies and tools,
page 28, New York, NY, USA, 2006. ACM Press.

[19] Mischel Internet Security. Trojan simulator. Internet,
2003. Available at
http://www.misec.net/trojansimulator/ (last
access: October 29, 2007).

[20] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco,
and Giovanni Rimassa. JADE - A White Paper,
September 2003.

[21] David Chess, Colin Harrison, and Aaron
Kershenbaum. Mobile agents: Are they a good idea?
Technical Report RC 19887 (December 21, 1994 -
Declassified March 16, 1995), IBM Research,
Yorktown Heights, New York, 1994. Available at
citeseer.ist.psu.edu/chess95mobile.html.

[22] Davis Chess, Benjamin Grosof, Colin Harrison, David
Levine, Colin Parris, and Gene Tsudik. Itinerant
agents for mobile computing. IEEE Personal
Communications, 2(5):34–49, 1995. Available at
citeseer.ist.psu.edu/article/chess95itinerant.

html.

[23] S. Franklin and A. Graesser. Is it an agent, or just a
program?: A taxonomy for autonomous agents. In

Intelligent Agents III. Agent Theories, Architectures
and Languages (ATAL’96), volume 1193, Berlin,
Germany, 1996. Springer-Verlag New York, Inc.
Available at
citeseer.ist.psu.edu/franklin96is.html.

[24] Antonio Carzaniga, Gian Pietro Picco, and Giovanni
Vigna. Designing distributed applications with a
mobile code paradigm. In Proceedings of the 19th
International Conference on Software Engineering,
Boston, MA, USA, 1997. Available at
citeseer.ist.psu.edu/carzaniga97designing.html.

[25] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni
Vigna. Understanding code mobility. IEEE
Transactions on Software Engineering, 24(5):342–361,
1998. Available at citeseer.ist.psu.edu/

fuggetta98understanding.html.

[26] Dejan S. Milojicic. Trend wars: Mobile agent
applications. IEEE Concurrency, 7(3):80–90, 1999.
Available at http://dlib.computer.org/pd/books/

pd1999/pdf/p3080.pdf.

[27] Bennet S. Yee. A sanctuary for mobile agents. In
Proceedings of the DARPA Workshop on Foundations
for Secure Mobile Code, Monterey, USA, March 1997.
Available at citeseer.ist.psu.edu/article/

yee97sanctuary.html (last access: May 08, 2006).

[28] Robert S. Gray, David Kotz, George Cybenko, and
Daniela Rus. Mobile agents: Motivations and
state-of-the-art systems. Technical Report
TR2000-365, Dartmouth College, Hanover, NH, 2000.
Available at
citeseer.ist.psu.edu/gray00mobile.html.

[29] W. Jansen and T. Karygiannis. Nist special
publication 800-19 - mobile agent security, 2000.
Available at
citeseer.ist.psu.edu/jansen00nist.html.

[30] Telecom Italia Lab. Java Agent DEvelopment
Framework. Website. http://jade.tilab.com/.

[31] Giovanni Caire. JADE tutorial: application-defined
content languages and ontologies, June 2002.

[32] RafaÃl Leszczyna. Evaluation of agent platforms.
Technical report, European Commission, Joint
Research Centre, Institute for the Protection and
security of the Citizen, Ispra, Italy, June 2004.

[33] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco,
and Giovanni Rimassa. Jade programmerŠs guide,
February 2003.

[34] Marcelo Masera and Igor Nai Fovino. A service
oriented approach to the assessment of infrastructure
security. In First Annual IFIP Working Group 11.10
International Conference on Critical Infrastructure
Protection, volume 1, March 2007.

[35] Marcelo Masera Igor Nai Fovino and Alessio Decian.
Integration of cyber-attack within fault trees. In 17th
European Safety and Reliability Conference (ESREL),
volume 3, pages 2571–2578, June 2007.

[36] RafaÃl Leszczyna, Igor Nai Fovino, and Marcelo
Masera. Security evaluation of it systems underlying
critical networked infrastructures. Accepted for First
International IEEE Conference on Information
Technology (IT 2008), Gdansk, Poland, 18 – 21 May
2008, May 2008.

