
Realistic Simulation of Vehicular Communication and
Vehicle-2-X Applications

Björn Schünemann, Kay Massow, Ilja Radusch
Technische Universität Berlin

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
{bjoern.schuenemann, kay.massow, ilja.radusch}@dcaiti.com

ABSTRACT
In future intelligent transport systems, wireless vehicular
communication will provide the basis for new applications
to enhance safety, traffic efficiency, and provide infotainment
services. In the near future, field tests are to be carried out
to verify the improvements that could be achieved by these
new Vehicle-2-X applications. However, the realisation of
such field tests is very complex and expensive. Therefore,
detailed simulations are necessary to prepare the tests in the
real world and reduce their costs. Current simulation tools
do not support all aspects necessary for Vehicle-2-X appli-
cations. In this paper, we present an integrated software
simulation environment that fulfils the special requirements
of Vehicle-2-X applications. Furthermore, we introduce our
testbed architecture that allows simulating vehicular com-
munication under real physical conditions.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication;
I.6.7 [Simulation and Modeling]: Simulation Support
Systems—Environments

General Terms
Design, Experimentation, Performance

Keywords
Simulator, Vehicular Ad-hoc Network, VANET, Vehicle-2-X
Communication

1. INTRODUCTION
An important aim of the scientific and industrial auto-

motive research is the development of applications that en-
hance safety, traffic efficiency, and provide infotainment ser-
vices. Vehicular communication based on wireless short-
ranged networks (Vehicle-2-X Communication) provides the
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foundation for such applications. For example, an obstacle
warning application can inform other vehicles in its neigh-
bourhood about this dangerous situation before the obstacle
is visible for them. Field tests are carried out to evaluate
the improvements in traffic safety and efficiency that could
be achieved by these new applications.

However, detailed simulations have to precede the tests
in the real world. Currently, different kinds of simulators
are necessary for the simulation of vehicular communica-
tion. Traffic simulators are used to generate the movement
of vehicles. They can, in general, be classified into macro-
scopic and microscopic simulators [13]. A macroscopic simu-
lator considers global measures, i.e. traffic density and traffic
flow, to compute road capacity and distribution of traffic in
the road net. In contrast, microscopic simulators determine
the movement of each vehicle that participates in road traf-
fic. In general, traffic simulators have no or only rudimental
functionality for the simulation of direct and multi-hop ve-
hicular communication. Hence, network simulators are used
to simulate the communication between vehicles. They sim-
ulate all aspects of the behaviour of a wireless network, such
as medium access control, signal strength, and propagation
delays.

One key requirement is the interaction at runtime of the
simulation between network simulator, traffic simulator, and
the application. Thereby, modifications of traffic parame-
ters, like movements of vehicles and characteristics of roads,
need to be made at runtime. For example, when an obstacle
warning application of a vehicle detects a dangerous situ-
ation, this vehicle sends a warning message to vehicles in
its neighbourhood using the network simulator. As a result,
receivers of this warning could, then, change their routes,
which has to be fed into the traffic simulator.

Our architecture couples both traffic and network sim-
ulator interactively. Moreover, an environment generator
provides real road maps and an application interface simu-
lator allows the integration of applications designed for real
vehicles.

1.1 Related Work
Several tools exist, e.g. MOVE [5] and traceExporter1,

which use a traffic simulator for the movement generation of
the vehicles and, then, convert the movement files into a for-
mat that can be interpreted by the network simulator. The
advantage of this combination of simulators is that realistic
traffic scenarios are generated by the traffic simulator and,

1TraceExporter.
http://sumo.sourceforge.net/wiki/index.php/TraceExporter
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then, used by the network simulator to generate the wireless
communication between the vehicles. However, these tools
are not suitable for applications where vehicle-2-X commu-
nication is used to change the route of vehicles. Since the
movements of the vehicles are generated before the network
simulation starts, vehicles cannot respond to warning mes-
sages and, thus, change their routes.

TraNS [15] is an Open Source simulation environment
that integrates both traffic and network simulators. The
incorporation of the traffic simulator SUMO [7] and the net-
work simulator ns-22 allows the generation of realistic mobile
traces used by the network simulator. It is planned to im-
plement a feedback loop, i.e. a TCP communication between
ns-2 and SUMO, that enables a direct interaction of both
simulators. The current version 0.21 of TraNS does not im-
plement the feedback loop and only allows the generation of
mobility traces.

The Multiple Simulator Interlinking Environment for C2CC
in VANETs [9] was developed at the University of Duessel-
dorf within the Network on Wheels (NoW) project3 in co-
operation with Volkswagen AG. It integrates the following
simulators: ns-2 for network simulation, VISSIM4 for traffic
simulation, Matlab/Simulink5 for application development
and simulation, and Click! [6] for routing protocol simula-
tions. The simulation environment consists of a centralized
architecture where the controlling instance is provided by
the ns-2 simulator. It is possible to influence the simula-
tion procedure, i.e. to stop one or more cars, influence the
driver behaviour, or to reroute cars. A disadvantage of [9] is
that the whole simulation process is controlled by the net-
work simulator. In the real world, applications initiate the
necessary activities themselves.

The event-based simulator GrooveNet [11] supports mul-
tiple vehicle, trip and mobility models over a variety of net-
work link and physical layer models. It includes simple car-
following, traffic lights, lane changing, and simulated GPS
models. Three types of simulated nodes are supported: ve-
hicles which are capable of multi-hopping data over one
or more DSRC channels, fixed infrastructure nodes, and
mobile gateways capable of vehicle-to-vehicle and vehicle-
to-infrastructure communication. Furthermore, GrooveNet
supports multiple message types such as beacons, which are
broadcast periodically to inform neighbours of the current
position of a vehicle, and vehicle emergency and warning
event messages with priorities. Moreover, communication
between simulated vehicles and real vehicles on the road is
possible. A disadvantage of GrooveNet is that only few com-
munication protocols are supported. In fact, this limits the
accuracy of the simulation of Vehicle-2-X applications and
avoids the realistic evaluation of network metrics, such as
packet delivery ratio or packet end-to-end delay.

1.2 Outline
This paper is organised as follows. Section 2 gives a short

overview about Vehicle-2-X applications and presents sev-
eral use case examples. In Section 3, we analyse the re-

2The network simualtor ns-2.
http://www.isi.edu/nsnam/ns/
3Network on Wheels (NoW) project.
http://www.network-on-wheels.de/
4VISSIM.
http://www.ptv-vision.com/cgi-bin/traffic/traf vissim.pl
5Matlab/Simulink. http://www.mathworks.com/

quirements and introduce our new software simulation ar-
chitecture. Our real world testbed is described in Section 4.
Finally, section 5 concludes this paper and outlines future
work.

2. SCENARIOS AND USE CASES
The aim of our simulation architecture is to evaluate the

effectiveness of Vehicle-2-X applications for enhancing safety,
traffic efficiency, and providing infotainment services. The
Car2Car Communication Consortium Manifesto6 defines sev-
eral scenarios and use cases for such Vehicle-2-X applica-
tions. In the following sections, we give a short overview
about a selection of them.

2.1 Safety
Safety use cases are characterised by vehicular communi-

cation used to mitigate dangerous situations and accidents.
In general, they interpret information received from vehi-
cles in the neighbourhood and react if a dangerous situation
could occur. The following three use cases illustrate ways of
increasing traffic safety:

Cooperative Forward Collision Warning: During driv-
ing, vehicles share relevant information, i.e. position,
speed, and direction, with vehicles in their neighbour-
hood and monitor the activities of their own drivers.
To prevent rear-end collisions, a vehicle warns its driver
if it detects another vehicle in its critical proximity.

Pre-Crash Sensing/Warning: Similar to the Coopera-
tive Forward Collision Warning, all vehicles periodi-
cally share information from neighbouring vehicles to
predict a collision. If a collision is not avoidable, the
involved vehicles exchange more detailed information,
e.g. vehicle size, to enable an optimized use of air
bags, motorized seat belt tensioners, and extendable
bumpers.

Hazardous Location V2V Notification: In contrast to
the examples above, this use case utilizes the network
of vehicles to share information about dangerous lo-
cations on the roadway, e.g. slippery roads or pot-
holes. Additionally, information from external service
providers can be accessed via a roadside unit and prop-
agated through the vehicular ad hoc network. The
received information is used by the vehicles to either
inform the driver or automatically optimize the safety
systems.

2.2 Traffic Efficiency
Traffic efficiency use cases improve the efficiency of the

transportation network by providing information either to
the owners of the transportation network or to the drivers
on the network. Vehicular communication is used to create
and share traffic related information in a way that is not
possible without this communication technology.

Enhanced Route Guidance and Navigation: In this use
case, the infrastructure owner collects data for predict-
ing traffic congestion on roadways. As a result, infor-
mation on current and expected traffic conditions is
sent to the drivers via roadside units. The vehicles

6Car2Car Communication Consortium Manifesto, Septem-
ber 2007. http://www.car-2-car.org/index.php?id=570



inform their drivers about expected delays and better
routes that may exist due to the traffic conditions.

Green Light Optimal Speed Advisory: The idea is to
provide a smoother driving and avoid stopping by re-
ceiving information regarding the locations of the in-
tersections and their signal timings. As a result, vehi-
cles can calculate their optimal speed to arrive at an
intersection when the signal is green.

V2V Merging Assistance: With the help of the V2V Merg-
ing Assistance, merging vehicles can join the flowing
traffic without disrupting the traffic flow. When a ve-
hicle enters an on-ramp to a limited access roadway,
this vehicle communicates with the traffic participants
of the roadway in order to merge into the regular traffic
in a non-disruptive and safe way.

2.3 Infotainment and Remote Diagnostics
This category contains the remaining use cases which are

not directed at Safety or Traffic Efficiency. In general, they
offer entertainment and other information on a regular basis
or provide additional services, such as diagnostic information
for a more efficient service at a garage.

Internet Access in Vehicle: This use case provides com-
mon IP based services in vehicles. So, different vehicles
establish a multi-hop route to a roadside unit that acts
as an Internet gateway.

Point of Interest Notification: Here, roadside units broad-
cast information regarding local businesses, tourist at-
tractions, or other points of interest to vehicles in the
vicinity. The huge amount of information is filtered by
the vehicles and only the appropriate pieces are pre-
sented to the driver. For instance, if the fuel level is
low, the vehicle informs the driver about locations and
prices of filling stations in its neighbourhood.

Remote Diagnostics: Remote Diagnostics is to be used
to reduce the amount of time and costs necessary for a
service in a garage. When a vehicle enters the neigh-
bourhood of a service garage, the service garage re-
quests diagnostic information related to the problem
reported by the customer. Furthermore, if software
updates are required, the system can install these up-
dates.

3. SOFTWARE SIMULATION ARCHITEC-
TURE

To simulate all aspects of the use cases introduced in
section 2, a simulation environment is necessary that inte-
grates traffic and network simulator. Both simulators have
to run simultaneously and interact at runtime. In addi-
tion, it should be possible to integrate future applications
of real vehicles, e.g. an electronic brake light application,
into the simulation environment. For this reason, an ap-
plication interface simulator contains virtual machines to
run these applications. The application interface simulator
has to provide interfaces for sending/receiving messages and
controlling the movement of the vehicles. Since traffic and
application interface simulators use the same road map data,
an environment generator is to be used that includes road
map data and location-based information. Location-based

Figure 1: Components of the Software Simulation
Architecture

information can be divided into static information, e.g. max-
imum velocity of a road section, and temporary information,
e.g. the location of an obstacle or black ice. The temporary
location-based information also includes data provided by
the traffic management centre.

We decided to integrate only open source tools in our ar-
chitecture thus keeping the flexibility to modify interfaces
for realising the interaction between the simulators. The
second advantage is that everybody can use our simulation
environment for free.

The components of our architecture and the data flow
between them is depicted in Figure 1. In the following sub-
sections, we present the requirements that our architecture
fulfils and give a detailed overview about all components.

3.1 Requirements
As a result of our analysis, the following main require-

ments have to be fulfilled to simulate Vehicle-2-X applica-
tions:

• Interaction between traffic, network, and application
interface simulators during runtime of the simulation.

• Each particular vehicle, simulated by the traffic sim-
ulator, has to be addressable by network and appli-
cation interface simulators, e.g. for modification of
movement.

• The application interface simulator has to be able to
use the network simulator for sending and receiving
messages via the vehicular ad-hoc network.

• Road map related data, e.g. the throughput of a road
when obstacles restrict the traffic flow, has to be mod-
ifiable at runtime of the simulation.

3.2 Interactions
This section explains the required interactions between

the three simulators and the database for the simulation of
the use cases introduced in chapter 2. For every use case,
the initial interaction is caused by the application interface
simulator. Here, the applications integrated in the vehicles
and the overall infrastructure, e.g. Roadside Units (RSUs)
and traffic management centre, are implemented.

3.2.1 Interaction between traffic and application in-
terface simulator
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Figure 2: Interaction between traffic and application
interface simulator
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Figure 3: Interaction between network and applica-
tion interface simulator

The following movement data of vehicles, depicted in Fig-
ure 2, are exchanged between traffic and application inter-
face simulator:

• Each vehicle, periodically, receives information on its
own position, velocity, and direction from the traffic
simulator. This is necessary to simulate the detection
of the own location, done by GPS in reality.

• From the traffic simulator, each vehicle obtains posi-
tion, velocity, and direction of its neighbours within its
range of vision. In reality, this data are detected by
the own sensors of a vehicle, e.g. realised by radar.

• A vehicle sends its updated data to the traffic simula-
tor if it changes its own position, velocity, or direction
in response to an exceptional situation, e.g. to circum-
navigate congestion.

3.2.2 Interaction between network and application
interface simulator

Wireless communication of vehicles is simulated by the
network simulator. Therefore, the following data flow be-
tween network and application interface simulator is neces-
sary (see Figure 3):

• Each vehicle, periodically, sends Beacons, short mes-
sages with its own position and other relevant data, via
the network simulator to its neighbours and reachable
Roadside Units. Furthermore, information about im-
portant circumstances and exceptional situations, e.g.
debris on the road, detected by own sensors or received
from neighbours is also sent to relevant vehicles and
Roadside Units in the neighbourhood.

• Each vehicle, periodically, receives Beacons and other
relevant data, e.g. warnings, service messages deliv-
ered by the traffic management or other services, from
its neighbours and reachable Roadside Units via the
network simulator.

3.2.3 Interaction between environment generator and
application interface simulator

Since all location-based information is provided by the
environment generator, Vehicle-2-X applications need access
to the following data:

Temporary
road map data

Static and temporary
road map data

Figure 4: Interaction between environment genera-
tor and application interface simulator

Static and temporary
road map data

Figure 5: Interaction between environment genera-
tor and traffic simulator

• Information about exceptional situations, e.g. about
obstacles, road works, or congestions, is provided by
the environment generator. Vehicles obtain this tem-
porary location-based data directly from the environ-
ment generator if the detection by own sensors is to
be simulated, i.e. the exceptional situations occur at
close range of the vehicle. Moreover, static road map
data, e.g. the maximum velocity of a road section,
are received by the applications from the environment
generator if necessary.

• Applications can change temporary road map data,
e.g. the traffic management centre sends information
about congestions to the environment generator.

Figure 4 depicts the interactions between environment
generator and application interface simulator.

3.2.4 Interaction between environment generator and
traffic simulator

The traffic simulator obtains static road map data during
the initialization of the simulation. Temporary data, e.g.
the reduced throughput of a road section due to an obstacle,
is updated periodically. Figure 5 depicts this interaction.

3.2.5 Interaction between traffic and network simu-
lator

The network simulator, periodically, receives the current
positions of the vehicles generated by the traffic simulator
(see Figure 6).

3.3 The Traffic Simulator
To generate the movements of the vehicles, a traffic sim-

ulator is needed. We evaluated the three open source simu-
lators SUMO [7], VanetMobiSim [4], and FreeSim [12]. For

Traffic data

Figure 6: Interaction between traffic and network
simulator



our simulation architecture, SUMO and VanetMobiSim has
proved to be the best choice.

SUMO is an microscopic traffic simulation package which
was developed by the Institute of Transportation Research
at the German Aerospace Centre. It is designed to handle
large road networks. Each vehicle has an own route and is
simulated individually. To simulate the movements of the
vehicles on the network, a model is used that uses discrete
time steps of 1s. About 100,000 to 200,000 vehicles can be
simulated in real time on a desktop PC, including the simu-
lation of traffic lights, right-of-way rules, and lane changing.
Road maps are created by importing other formats, such
as ESRI Shapefile7 or TIGER-maps8; or by generating ab-
stract, geometrical networks. Furthermore, vehicle routes,
based on different routing paradigms, can be computed.

The SUMO developers are currently working on a socket
interface, called TraCI [17], that allows controlling SUMO
from an outside application. This interface has already been
integrated in the SVN path and is to be an integral part
of the next stable release of SUMO. We use this interface
to allow the application interface simulator to change the
movements of vehicles. Moreover, the environment simula-
tor sends updated temporary road map data, e.g. the re-
duced throughput of a road section due to an obstacle, to
the traffic simulator using this interface.

The other traffic simulator, used by our simulation en-
vironment, is VanetMobiSim. This tool is an extension of
the CANU Mobility Simulation Environment9, a framework
for user mobility modelling. CanuMobiSim is JAVA-based
and can generate movement traces in different formats sup-
porting different simulation tools for mobile networks. The
VanetMobiSim extension focuses on vehicular mobility and
features automotive motion models at both macroscopic and
microscopic levels. At macroscopic level, VanetMobiSim can
import maps or randomly generate them. Furthermore, it
adds support for multi-lane roads, separate directional flows,
differentiated speed constraints, and traffic signs at intersec-
tions. At microscopic level, VanetMobiSim implements mo-
bility models providing Vehicle-2-X interaction. According
to these models, vehicles regulate their speed depending on
the behaviour of nearby vehicles, overtake each other, and
act according to traffic signs at intersections.

In contrast to SUMO, VanetMobiSim is rather simple and
supports few features only. The advantage of this tool, how-
ever, is its clear programming structure and good documen-
tation. An extension module allows the easy integration of
new features. Hence, we were able to integrate interfaces
for the interaction with both the network and application
interface simulator.

3.4 The Network Simulator
ns-210, JiST/SWANS [2], GloMoSim [1], and OMNeT++

[16] are open source products that are primarily used for the
simulation of communication networks. We decided to inte-

7ESRI Shapefile Technical Description.
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
8TIGER - Topologically Integrated Geographic Encoding
and Referencing system.
http://www.census.gov/geo/www/tiger/
9CANU Mobility Simulation Environment (CanuMobiSim).
http://canu.informatik.uni-stuttgart.de/mobisim/

10The network simualtor ns-2.
http://www.isi.edu/nsnam/ns/

grate JiST/SWANS into our simulation environment. JiST
is a discrete event simulation engine that runs over a stan-
dard Java virtual machine. Simulation code that runs on
JiST does not need to be written in a domain-specific lan-
guage. Instead, JiST converts an existing virtual machine
into a simulation platform by embedding simulation time se-
mantics at the byte-code level. Thus, JiST simulations are
written in Java, compiled using a regular Java compiler, and
run over a standard, unmodified virtual machine. SWANS
is a scalable wireless network simulator built atop the JiST
platform. It is organized as an independent software com-
ponent that can be composed to form complete wireless
network or sensor network configurations. The capabilities
of SWANS are similar to those of ns-2 and GloMoSim but
SWANS has a better performance on the simulation of large
networks. The simulator uses the JiST design to run stan-
dard Java network applications over simulated networks.

Moreover, our simulation environment provides interfaces
for ns-2. As a result, it is possible to integrate this network
simulator into a future version.

3.5 The Application Interface Simulator
The application interface simulator is used to integrate

applications of real vehicles into the simulation environment.
The main components of the application interface simulator
are virtual nodes and a virtual node manager. A virtual
node provides the environment for a simulated application.
The virtual node manager deploys and starts virtual nodes,
separated from each other, and assigns resources and unique
network addresses to them so that a communication between
a virtual node and the network simulator becomes possible.
Furthermore, it synchronizes the clocks of the virtual nodes
with those of the other simulators. After a simulation is
finished, all resources used by virtual nodes are freed again
by this manager.

3.6 The Environment Generator
All map related data are managed by the environment

generator. In addition, the conventional road map data are
supplemented with some additional pieces of information,
necessary for the use cases as introduced in section 2:

• Speed limits, car capacity, and the number of lanes of
all roads are the static parts, which are necessary for
the safety and traffic use cases. In general, this data
does not change at runtime of the simulation.

• Congestions, accidents, and obstacles are temporary
objects, stored by the environment generator, which
are used to simulate a living world with changing con-
ditions.

• Infotainment use cases require additional data, e.g.
Points of Interest. These types of temporary data are
updated at runtime by several services.

We decided to use the environment generator eWorld11

to manage all road map related data. eWorld is a frame-
work that imports road map data from providers, such as
OpenStreetMap.org (OSM)12, visualize it, edit and enrich
it with events or additional attributes. Moreover, it passes

11eWorld. http://eworld.sourceforge.net/
12OpenStreetMap. http://openstreetmap.org/
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tem of the Testbed

the managed data to traffic simulators, such as SUMO or
VanetMobiSim.

OpenStreetMap.org (OSM) is a road map data service,
which allows everybody to view, edit, and use geographical
data in a collaborative way. Similar to Wikipedia, mistakes
and errors are supposed to be corrected by users who ex-
amine changes committed by others on a voluntary basis.
The entire content is free and can be used without restric-
tions. The OSM system allows precise requests of features,
e.g. features in a specified area, only features with certain
attributes, or features related to a given feature. Besides
serving requests for a certain area, OSM provides all of its
currently available data in a file called planet.osm, which
contains compressed over 11 GB road map related informa-
tion. Currently, OSM provides detailed material for densely
populated areas like bigger cities. But, the amount of data
grows quickly so that detailed data of sparsely populated
areas should be available soon.

4. THE REAL WORLD TESTBED
The development of intervening driver assistance systems,

mentioned in section 2, demands a sub microscopic test envi-
ronment which differs considerably from the simulator tools
mentioned in the former chapters. The influences of phys-
ical environment parameters on the behaviour of a vehicle
are very complex in nature. Due to this complexity, it is not
possible to entirely simulate these parameters by employing
software simulations. Hence, it is inevitable to substitute
parts of the simulation by real world experiments. Combin-
ing real world vehicles and software simulations provides a
promising approach for designing such a test environment.
In [3], the advantages of such a combination for testing Ad-
vanced Driver Assistance Systems (ADAS) [10] are shown.

For the reasons above, we have developed a real world
Vehicel-2-X communication testbed. This testbed, using re-
mote controlled model cars, is less cost-intensive and easier
to scale than test vehicles in the real world. Therefore, we
propose an architecture, which allows a hybrid simulation
combining real and simulated entities. The testbed is de-
signed to be coupled with the simulation architecture, in-
troduced section 3, by replacing the Application Interface
Simulator. In order to perform tailored test procedures for
application evaluation, developers are able to create scenar-
ios using the model cars. The scope of the testbed comprises
applications for intervening and warning driver assistance
systems as well as traffic efficiency enhancing systems.

Our testbed is an indoor system with an area size of
100m2. To enable the optimal space utilization, we use re-
mote controlled model cars on a scale of 1:18. These are

Figure 8: Hardware of the Testbed

the smallest model cars able to be equipped with the neces-
sary embedded computer and sensors for obstacle detection.
Accordingly, the test area corresponds with a real area of
32400m2. The model cars either drive autonomously or are
remote controlled by a Control Centre deployed on a PC
using WLAN for the communication. We realised the com-
puter controlled coordination of the cars and the simulation
of GPS data with the help of a Northstar13 positioning sys-
tem. This system uses infrared light spots that are projected
onto the ceiling. Detectors, mounted on top of the cars, are
able to localize these spots. Thus, the positions of the cars
are calculated. Figure 7 depicts the Northstar positioning
implementation and our road maps. One projector is able
to cover an area of 3x3 m with position accuracy between
1 and 4 cm. We implemented two road maps by combin-
ing these 3x3 m cells. The first is an oblong arrangement
which allows driving the models cars along a straight course
at relative high speeds, in order to set up highway scenar-
ios. The second is an oval track which enables testing of e.g.
intersection and merging scenarios.

The hardware associated to the testbed is depicted in Fig-
ure 8: A indicates our model car prototypes, B shows the
Control Centre deployed on a notebook, and C is the equip-
ment of the Northstar system. As a showcase and proof
of concept, we implemented the scenario Emergency Lane
Changing. Accordingly, Vehicle-2-X communication is used
to perform cooperative collision avoidance on a two-lane
road.

In the following sections, we motivate the underlying ar-
chitecture. Moreover, the realization of our testbed and an
implemented scenario are described there.

4.1 The Hybrid Simulation Approach
To clarify the general structure of the architecture, we

present some preliminary considerations concerning hybrid
simulation aspects.

The testbed facilitates hybrid simulation by providing two
compatible runtime environments: the hardware runtime
environment integrated in the model cars and a software
emulator engine. A realistic interaction among applications
running in both environments is necessary to emulate the
communication of real cars [8]. Therefore, the architecture

13NorthStar. Evolution Robitcs.
http://www.evolution.com/products/northstar/. 2007
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of the testbed is designed to allow the execution of several in-
stances of the same application in both environments. The
software emulation is distinguished from the earlier men-
tioned simulation by providing a runtime environment for
the applications. From the point of view of the applica-
tion, this environment has to act exactly like the hardware
environment. However, the simulation is necessary to imi-
tate the realistic behaviour of the overall system i.e. a large
amount of cars in a large area. Hence, our architecture pro-
vides two compatible modes for real world and emulation
purpose: Real World Mode and Emulation Mode. In the
Emulation Mode, the overall missing hardware is simulated.
In contrast, only the missing driver commands are generated
in the Real World Mode.

To run the applications in software emulated cars, model
cars, and, subsequently, cars in the real world, we developed
an architecture distinguishing three layers and the two men-
tioned modes. We arranged the components of our architec-
ture, according to the these modes and layers, as depicted
in Figure 9.

• Layer I represents the driver’s controlling behaviour.
In Real World Mode, a software module performs the
motion planning, i.e. the movement of the cars de-
pending on their waypoint routes inside the testbed
area. In Emulation Mode, the controlling of the cars
is done by the traffic simulator.

• Layer II represents the On Board Unit OBU, i.e. all
components needed to run the applications in the car,
independent of vendor specific hardware. For the Real
World Mode, this includes a dedicated embedded com-
puter; for Emulation Mode, a compatible software em-
ulation module is realised.

• Layer III represents the car, its sensors, and its actua-
tors. In Real World Mode, a model car provides sensor
data, e.g. concerning obstacle detection, as well as ac-
tuators. Actuators are used by the OBU applications
to influence the state of a car. In Emulation Mode, the
OBU is provided with simulated sensor data. Control
commands, coming from the OBU, influence the state
of the software simulated car.

4.2 The Architecture of the Testbed
In this section, we introduce our real world testbed archi-

tecture. Functional building blocks compose the architec-
ture according to the three layers described in section 4.1.
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Figure 10: The Architecture of the Testbed

The whole architecture is illustrated in Figure 10. The com-
ponents OBU and Car are deployed on a model car in Real
World Mode while the components Driver and Simulator are
deployed on a PC. The communication between model car
and PC is realized by an IEEE 802.11a connection. How-
ever, an IEEE 802.11p communication can also be integrated
later. In Emulation Mode, all components are deployed on a
PC. Instead of the Application Interface Simulator described
in section 3.5, the testbed architecture can be coupled to the
software simulation environment.

Driver Layer: The Control Centre is used to control the
cars. In Real World Mode, developers are able to de-
fine the routes cars are to move. This is done by spec-
ifying time coupled waypoints inside the testbed area
with the help of the Coordination Manager. In that
way, the driver’s input is imitated and the coordina-
tion of the cars for simulating concrete scenarios is
achieved. For example, a concrete scenario is the sim-
ulation of a situation that leads to an accident. In
order to prevent the accident, the ADAS, to be tested
with the help of this scenario, is forced to intervene
and override the predefined routes. The Human Mo-
tion Planning component generates control commands
at runtime in order to drive the cars. These commands
are used to emulate human driving behaviour. The Sa-
vant component tracks all processes and car positions.
Furthermore, it transmits the car positions to the Traf-
fic Simulator. In Emulation Mode, the waypoints are



not generated by developers but by the Traffic Simu-
lator. All components are able to interact with each
other via a dedicated communication Middleware. The
connection to the counterpart of the Middleware at the
OBU Layer is established by the COMM module. In
Real World Mode, this module is realized by a stan-
dard IEEE 802.1114 component which is part of a net-
work connecting all model cars and the Control Center
deployed on PC. The link to the Network Simulator is
necessary to realize the communication with emulated
cars. In Emulation Mode the communication is done
completely by the Network Simulator.

OBU Layer: Applications evaluated in the testbed are called
OBU Applications. They are deployed in the Em-
bedded OBU container. In Real World Mode, this
container represents an embedded computer, which is
installed on the model car. In contrast, the Embed-
ded OBU container represents a software emulation
module in Emulation Mode. This module is a run-
time environment imitating the embedded computer.
The sensors deliver information to the OBU Applica-
tions about obstacles in the neighbourhood of a car,
by leveraging the Middleware. Moreover, steering and
longitudinal control commandos are sent to the car in
order to override the driver’s control commands. Fur-
thermore, the communication to the Control Center as
well as to other cars and Road Side Units is realized
by the Middleware via the COMM module.

Simulator: As described earlier, the Simulator is coupled
with the testbed architecture. In order to control the
movement of the emulated cars, the Traffic Simulator
delivers their current positions. Depending on location
based data delivered by the Environment Generator,
the positions of the cars are processed by the Human
Motion Planning component at runtime. The positions
are updated and sent back by the Savant component.

Car Layer : The Physical Car represents a model car in
the Real World Mode, whereas the Virtual Car stands
for a software component that substitutes a model car
in Emulator Mode. Both are able to receive control
commands from the OBU through the Motion Inter-
face. The Motion Control is the interface to the motor
speed and steering control of a model car. In Emula-
tor Mode, the Virtual Motion Control computes po-
sition updates, caused by the received control com-
mands, and commits them to the Savant. Obstacles,
detected by the Sensors, are sent to the OBU through
the Obstacle Interface. In Emulator Mode, this task
is performed by the Virtual Sensors with the help of
position information coming from the Savant.

4.3 Scenario: Emergency Lane Changing
As a showcase and proof of concept for our testbed, we

have implemented a Emergency Lane Changing application.
This application addresses the effects of Vehicle-2-X commu-
nication concerning autonomous vehicle collision avoidance.
The procedure of this scenario is described in the following
and depicted in Figure 11.

14IEEE Standard for Wireless LAN-Medium Access Control
and Physical Layer Specification. IEEE, 1990

Vehicle II

Vehicle I

Obstacle

decelaratelane change

Figure 11: Lane Change Manoeuvre to Avoid a Col-
lision

Two vehicles drive side by side on a two-lane road. Ve-
hicle I is ahead about half a car length. Unforeseeable, an
obstacle appears on the lane of Vehicle I. The distance to
the obstacle is so close that the driver’s response time is
too long for an emergency stop. Furthermore, an abrupt
stop involves the danger of rear end collisions by following
vehicles. Lane II is blocked by Vehicle II. A lane change ma-
noeuvre of Vehicle I would require an immediate reaction of
Vehicle II to avoid a crash of both vehicles. The Advanced
Driver Assistance System, installed on both vehicles, rec-
ognizes the hazardous situation. Vehicle I informs Vehicle
II about its intent to change the lane. As a result, Vehicle
II brakes autonomously and allows Vehicle I to change the
lane. Moreover, all other following vehicles get informed of
the incident. Hence, they can adapt to the dangerous situa-
tion. The merging of the following vehicles to lane II can be
performed in sufficient time before the obstacle is reached.
Furthermore, the influence to the traffic flow is minimised.

To evaluate the above scenario in our testbed, the follow-
ing workflow is necessary: The developers define the desired
routes of the two vehicles inside the testbed. Time coupled
waypoints are used to define the side by side driving of the
vehicles and the position of the obstacle. At runtime, the
Control Center navigates the model cars along the defined
routes. The application, implementing the Advanced Driver
Assistance System, is running on the embedded computer
attached to the model car. During the drive, the applica-
tion analyses the data delivered by the sensors and the state
of the car. When the sensors of the model car detect the
obstacle, the application assumes the control of the car. As
a result, the control commands of the Control Center are
overridden. The application contacts the other model car
that reacts as described above. For both vehicles, adapted
routes are computed and driven. After passing the obstacle,
the control of the cars is given back to the Control Center.

Figure 12 depicts the visualisation of the testbed at the
Control Center running on a PC. The predefined routes of
the model cars inside the test area are shown. The grey
model car leaves its lane in order to bypass the obstacle.
The screen depicted in the upper left corner visualizes the
sensor data of the model car. The screen in the upper right
corner shows information concerning Vehicle-2-X communi-
cation with the neighbourhood.

5. CONCLUSION AND FUTURE WORK
In this paper, we present an integrated software simulation

architecture and a testbed for the simulation of Vehicle-2-
X applications enhancing safety, traffic efficiency, and pro-
viding infotainment services. Since wireless communication
between driving vehicles as well as the modification of move-
ments as a result of this communication is a strong re-



Figure 12: Visualisation Tools of the Control Center

quirement for the simulation of Vehicle-2-X applications, an
interaction between traffic and network simulator at run-
time is necessary. Furthermore, our architecture integrates
an application interface simulator, used to implement real
Vehicle-2-X applications, and an environment generator for
the management of all location-based information necessary
for traffic simulation and Vehicle-2-X applications.

We use our software simulation environment to further
investigate the use cases introduced in section 2. The inten-
tion of our work is to limit the costs of expensive field tests
in the real world as far as possible. Thereby, our testbed is
used to emulate real physical conditions. One aim of these
simulations is to evaluate the balance between network load
and information exchange of the traffic participants. Since
the bandwidth of wireless networks is limited, a high packet
sending rate can cause network congestion and result in a
delay or loss of transmitted packets. Hence, it is necessary
to restrict the transmission of messages. On the other hand,
a key requirement for the realisation of the Vehicle-2-X ap-
plications is the periodical information exchange between
vehicles, e.g. traffic participants have to send their current
movements to their neighbours. As a result, our simulations
help to detect a tradeoff between network load and informa-
tion exchange.
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