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ABSTRACT
A peer-to-peer architectural model defines an overlay net-
work topology and a routing strategy. If these aspects are
tied together by a deterministic logical model, we say that
the architecture is structured. Otherwise, we say it is un-
structured.

Based on these assumptions, in recent years many complex
P2P architectural models have been defined, their perfor-
mance evaluation being carried out mainly by means of sim-
ulative tools. However, there is an emerging need for a
general-purpose tool, enabling large-scale overlay network
simulations, yet also providing ready-to-use complex build-
ing blocks. The widely known PeerSim simulator addresses
the first issue quite effectively, although it appears quite
limited with respect to several important aspects, i.e. churn
modeling.

In this paper we propose P2PAM as a PeerSim enhancement
providing a rather complete framework for peer-to-peer ar-
chitectural modeling. P2PAM effectiveness is demonstrated
by showing how it has been used to rapidly develop simula-
tions of two interesting systems, namely JXTA and HALO.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4 [Performance of Systems]

∗Conference name: SIMUTools, March 03 - 07, 2008, Mar-
seille, France. ISBN 978-963-9799-20-2

1. INTRODUCTION
Successful deployment of extensive Virtual Organizations
calls for efficient workload distribution and high resource
availability. These goals cannot be fully guaranteed by the
client/server approach, due to the fact that user-owned re-
sources may remain unused. Furthermore, shared resources
are usually published/searched through a centralized repos-
itory or broker, thus introducing single points of failure and
possibly yielding to scalability issues. It is also for these rea-
sons that peer-to-peer interaction has emerged as a promis-
ing new paradigm for distributed computing, aiming at effi-
cient workload distribution and high resource availability [2].
The main idea behind the peer-to-peer paradigm is that each
peer, i.e. each participant, can act both as a client and as a
server in the context of some application.

A peer-to-peer architectural model defines an overlay net-
work topology and a routing strategy. If these aspects are
correlated by a deterministic logical model, we say that the
architecture is structured. This is the case, for example, of a
peer-to-peer system in which nodes and message identifiers
are taken from the same space, the overlay network topology
is a tree, and propagation is based on choosing the neighbor
whose identifier is mostly similar to the message identifier.
On the other hand, if there is no underlying determinis-
tic logical model, we say that the architecture is unstruc-
tured. Moreover, topologies can be classified as centralized,
partially centralized (hybrid), and decentralized (pure), ac-
cording to the taxonomy of physical networks proposed by
Paul Baran in the early sixties [6].

In most cases, it is overly difficult to characterize the perfor-
mance of a peer-to-peer architectural model by means of an-
alytical tools. On the contrary, simulation studies allow the
characterization of the large number of parameters which
typically define the behaviour of a peer-to-peer network.
However, there is an emerging need for a general-purpose
tool, enabling large-scale overlay network simulations, yet
also providing ready-to-use complex building blocks. The
PeerSim simulator [12], written in Java, addresses the first
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issue quite effectively, but it appears quite limited with re-
spect to several important aspects, i.e. churn modeling. In
this paper we propose P2PAM 1 as a PeerSim enhancement,
providing an almost complete framework for peer-to-peer ar-
chitectural modeling. The purpose of P2PAM is to provide a
generic API to implement simulations of most P2P systems,
with minor coding effort.

The effectiveness of P2PAM is demonstrated by showing
how it has been used to rapidly develop simulations of two
comparable routing protocols: JXTA-SRDI, which is the
default solution in JXTA [19], and HALO, a solution we
designed in order to exploit the peculiarities of scale-free
network topologies.

The paper is organized as follows. Related work on peer-
to-peer simulators is discussed in section 2. The P2PAM
framework is described in section 3, starting from its general
organization and basic class structure to advanced features
such as network dynamics management. Section 4 illustrates
the P2PAM-based simulation of JXTA-SRDI and HALO,
with different overlay network topologies. Finally, an outline
of open issues concludes the paper.

2. RELATED WORK
The simulative approach is becoming the most common tech-
nique to study overlay networks and P2P applications. The
cost of implementing a solution into a simulation environ-
ment is considerably lower than what is required to realize
a similar experiment on geographical networks. Specifically,
the number of computational resources needed is lower and
the simulated model can be built to be more realistic than
any other tractable mathematical model. The use of a sim-
ulation environment may enable the detailed evaluation of
architectural models and allow for an high reuse of code
when the devised solution will be experimented in the real
world.

We analyzed different simulators and realized that no com-
monly agreed reference architecture exists yet; additionally,
only few P2P-related papers report about the simulation en-
vironment used to obtain the presented results. The absence
of standards leads to the lack of common analysis instru-
ments and makes impossible to reproduce and verify results
with different simulators than those used to obtain the orig-
inal results.

In order to choose the proper simulation environment to
be used as starting point for the development of P2PAM,
we evaluated different systems according to a set of criteria
similar to those presented in [15]:

• Simulation Architecture: the operation and the design
of the simulator.

• Usability : how easy the simulator is to learn and use.

• Extensibility : the possibility to modify the standard
behavior of the simulator in order to support specific
protocols.

1http://dsg.ce.unipr.it/research/P2PAM/p2pam.html

• Configurability : how easily the simulator can be con-
figured and with which level of detail.

• Scalability : the ability to simulate how a P2P protocol
scales with thousands, or more, nodes.

• Statistics: how much the results are expressive and
easy to manipulate.

• Reusability : the possibility to use the simulation code
to write the real application.

The most used system for simulating application level proto-
cols is NS-2 Network Simulator [20], even if it was originally
designed to work at network level. NS-2 is written in C++
and uses the object-oriented paradigm. It offers a discrete-
event model and an OTcl [18] interpreter as a front-end.
However, as NS-2 models both physical and link substrates
with high level of detail, it is not very scalable, that is the
maximum network size amounts to few hundred nodes.

P2PSim [11] is a discrete-event simulator for structured over-
lay networks written in C++. P2PSim supports several
peer-to-peer protocols including the recent Koorde and Kadem-
lia, however the different underlaying network models are
implemented with a rather abstract level of detail. The lack
of documentation makes it hard to extend P2PSim, whereas
its scalability is limited to a maximum of 3 · 103 nodes.

OverlayWeaver [16] is a peer-to-peer overlay construction
toolkit written in Java, that provides a common API for
higher-level services and a set of routing algorithms like
Chord, Kademlia and Koorde. The toolkit contains a so-
called Distributed Environment Emulator which invokes and
hosts multiple instances of Java applications on a single com-
puter; due to the threads limits imposed by the Java Virtual
Machine, the scalability is limited to 4 · 103 nodes. Unfor-
tunately the emulator does not provide network statistics,
thus limiting its utilisation as a simulator.

PlanetSim [21] is a discrete-event simulator developed in
Java, that offers a layered and modular architecture. Dis-
tributed services in the simulator uses the Common API
for structured overlays enabling the reusability of simula-
tion code to experimentation code running in the Internet.
As for OverlayWeaver, it is not possible to collect statistics
from the simulation outputs. PlanetSim offers a network
layer wrapper which allows to port the simulation code to
real networks like PlanetLab; however, this partial support
for network protocols limits the scalability, making Planet-
Sim able to simulate networks with size in the order of 105

nodes.

PeerSim [12] enables the simulation of structured and un-
structured networks by using either a cyclic model or a
discrete-event mode. It is completely written in Java and
offers a well documented lightweight API that makes it easy
to modify the standard behavior of the simulator. PeerSim
enables the implementation of personalized components, so-
called observers, in order to export custom statistical indi-
cators on the simulation results. PeerSim offers the best
scalability among analyzed simulators as it can reach up to
106 nodes by using the cyclic model. The event model is less



efficient than the cyclic one, but is more realistic because it
enables the simulation of protocol stacks. PeerSim can be
configured by means of a plain text file, defining scheduling
and parameter values for each component. Developers can
easily access the configuration manager in order to make
more customizations.

3. P2PAM
The PeerSim architecture was designed in order to provide
a simple API to develop application level P2P protocols and
simulate their execution. The result is a set of simple Java
classes with the purpose of showing how to use the static
objects that represents network nodes rather than give a
starting point for the development of extensions. PeerSim
comes with few simple topologies and network observers, but
it lacks any routing protocol. Moreover, the concept of node
is extremely simplified and the concept of resource is never
specified.

The real advantage of PeerSim is the engine that supports
many extensible and pluggable components, with a flexible
configuration mechanism, but the researcher that wants to
evaluate its own protocols has to build everything from the
scratch. Since the community of P2P researchers is large,
this can result in many non-interoperable or differently opti-
mized packages (the NS-2 experience is emblematic, in this
sense).

The basic idea of P2PAM is to add another abstraction
layer to PeerSim in order to let the developer focus only
on routing protocol implementation and performance analy-
sis. P2PAM comes with a set of network topologies defined
across a protocol-level interface which simplifies the task of
routing protocol development. The concept of node has been
extended in order to make it more similar to a real peer
node, with estensible data structures storing local resource
descriptions, search queries, etc. A simulation automator
has been introduced in order to simplify the task of simulat-
ing network dynamics (churn, publication and search) using
a simple scripting language, rather than writing Java code
and re-compiling each time.

3.1 Organization of the Framework
P2PAM has been divided into packages, each one address-
ing a specific aspect of the simulation. The root package is
org.dsg.p2pam and contains the following sub-packages:

• automator including the Simulation Automator’s classes;

• init including the default node initializer;

• node including node data structure classes;

• observer including network and resource observers;

• routing including the routing protocols reference im-
plementation;

• topology including network topology classes;

• util including classes for key generation, resource dis-
tribution and configuration file management.

Each package provides a set of basic interfaces and reference
implementations.

3.2 Node Data Structure
The node package contains node-related data structures and
functionalities. In particular, the NodeDataCollector class,
which implements PeerSim’s Protocol interface, provides get
and set methods for managing the basic features of each
peer:

• type (leaf or supernode)

• unique identifier

• availability (is the node public?)

• list of local resources

• list of cached queries

Clearly, the NodeDataCollector class can be extended in or-
der to add architecture-specific features.

3.3 Node Initializer
The init package provides the necessary tools to initialize
network nodes and distribute resources according to a spe-
cific strategy (i.e. Zipf, uniform, etc.). The NodeInizializer
class processes the network node-by-node, doing the follow-
ing:

• determine if the node is public, according to a maxi-
mum number of public nodes;

• determine if the node is supernode or leaf;

• assign to the node a set of resources whose size is
evenly distributed between a minimum and maximum
amount.

The role of a node initializer is to allow the full setup of
each node, except link establishement which is performed
by topology constructors.

3.4 Topology Constructors
The topology package provides the TopologyBuilder abstract
class, which extends PeerSim’s WireGraph class. The latter
declares an abstract method wire(), whose implementation
(in a subclass) should create connections among all nodes of
the overlay network, according to some strategy. The Topol-
ogyBuilder declares two more methods, addNode(), and re-
moveNode(), whose implementation should allow to add and
remove single nodes. This feature is important for simulat-
ing node arrivals and departures (i.e. churn, see section
3.6), but also because topology configuration algorithms are
based either on wiring or rewiring among all N nodes or on
node by node growth.

The following subsections describe two well-known stochas-
tic models for the characterization of network topologies.
These models have been applied to a wide range of com-
plex systems, not only computer networks but also social
networks, neural networks, etc. We know there are other
stochastic models which specifically apply to computer net-
works at the router level [22, 8], in which the peer-to-peer



paradigm is an intrinsic factor. But the models we have cho-
sen to describe here and to implement in the first version of
P2PAM are more representative of the TopologyBuilder ca-
pabilities.

3.4.1 Purely Random Networks
The first and most investigated random graph model has
been introduced by Erdös and Rényi (ER model). Networks
based on the ER model have N nodes, each one connected
to an average of α = 〈k〉 nodes. The presence or absence of
a link between two nodes is independent of the presence or
absence of any other link, thus each link can be considered
to be present with independent probability p. For large N ,
the node degree distribution [7]

P (k) = P{node degree = k}

converges to a Poisson function

P (k) =
αke−α

k!
with α = 〈k〉 = σ2 (1)

An example of such node degree distribution is shown in
figure 1.
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Figure 1: Node degree distribution for a simulated
(N = 105 nodes) purely random network, with aver-
age node degree α = 7 (in log scales).

Provided in topology package along with its base abstract
class TopologyBuilder, the ERTopologyBuilder class imple-
ments the ER model. Given the size of the network, the
wire method creates a link between each couple of nodes
with probability p.

3.4.2 Scale-free Networks
Purely random networks are fairly homogeneous, i.e. each
node has approximatively the same number of links. Stud-
ies about many real networks (such as the World Wide
Web) have shown inhomogeneous topology configurations,
for which the node degree distribution decays as power law [17,
14] function:

P (k) = ck−τ (2)

with τ > 1 (to be normalizable), and

c = [

∞X
k=1

k−τ ]−1 = [ζ(τ)]−1 (3)

where ζ(·) is the Riemann zeta function. These networks
are called scale-free, because their separation degree growth
is sublinear with respect to N . In particular, if 2 < τ < 3,
the diameter is d ∼ ln ln N [9]. Even if the number of nodes
strongly increases, the mean distance between two nodes
remains the same.

Barabási and Albert proposed a simple model (called BA
model) [4, 5, 1] to construct scale-free networks with τ ' 3.
The BA model is based on two ingredients: growth (i.e.
N should not be fixed in advance), and preferential attach-
ment (i.e. the probability with which a new node connects
to the existing nodes is not uniform as in Poisson random
networks). P2PAM provides a BA model implementation,
for which each new node joining the network connects to
m existing nodes of the system, with probability Π(k, N)
that the (N +1)-th node will be connected to any node with
degree k being dependent on the node degree k of that node.

The most elegant way of deriving the node degree distri-
bution of a network constructed with the BA model, is
the master-equation approach proposed by Dorogovtsev and
Mendes [10]. The resulting PMF is

P (k) =
2m(m + 1)

k(k + 1)(k + 2)
' 2m2k−3 ∀k ≥ m (4)

which is a power law with exponent τ = 3.

Figure 2 illustrates the node degree distribution of network
based on the BA model.
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Figure 2: Node degree distribution for a simulated
(N = 105 nodes) BA network, with m = 3 and N0 = 5.

Provided in topology package along with its base abstract
class TopologyBuilder, the BATopologyBuilder class imple-
ments the BA model. Since this model puts the empha-
sis on capturing the network dynamics (growth, preferential
attachment), the wire method relies on addNode to connect
the i-th node to m nodes selected among the i − 1 already
connected nodes.

3.5 Resource Replication and Popularity
By replication, we mean the number of nodes that have a
particular resource. Popularity determines the frequency
of queries for individual resources. We assume that there



are m resources of interest, and qi represents the relative
popularity, in terms of number of queries issued for it, of
the ith resource. Values are normalized, i.e.

mX
i=1

qi = 1

Examples of popularity are:

• Uniform: qi = 1/m

• Zipf-like: qi ∝ 1/iτ with τ close to 1

We assume that each resource is replicated on ri nodes, and
the total number of resources in the network is M .

mX
i=1

ri = M

Examples of replication distributions are:

• Uniform: ri = M/m

• Proportional: ri ∝ qi

• Square-root: ri ∝
√

qi

• Zipf-like: ri ∝ 1/iτ with τ close to 1

The square-root replication minimizes the overall search traf-
fic [13], and can be obtained with the path replication strat-
egy: when a search succeeds, the resource is stored at all
nodes along the path from the requester node to the provider
node. This is quite straightforward if the resource is a file,
but difficult for other types of resources (e.g. services).

P2PAM allows to choose the resource distribution, but also
to define, for each node, the minimum and maximum num-
ber of owned resources.

3.6 Network Dynamics
3.6.1 Churn
Node arrival and departure (churn) has many effects, in a
P2P system: data unavailability, routing table inconsistency,
overlay network fragmentation. Adequate strategies must be
implemented in order to guarantee the system’s adaptivity
to any churn rate, resulting in a constant performance degree
of all its functionalities.

P2PAM allows to simulate the dynamics of a network topol-
ogy by allowing to introduce node departures, which can be
combined with previously described network growth mod-
els. In this section we illustrate the parameters which are
involved in this process.

Peer departures begin after nodes before departures nodes
have joined the network. At this point, for every new node
joining the network, a random number in [0, 1] is generated
and compared with departure probability. If higher, there are
node departures. The number of leaving nodes is computed
as randomly generated percentage of the number of con-
nected nodes. Three parameters allows to characterize this

phase: min departures percentage, max departures percentage
and max departures, the latter being an absolute limit to the
number of departures for step.

Leaving nodes can be randomly chosen, or not. For exam-
ple, in a scale-free network, it could be assumed that highly
connected nodes are stable. In this case the possible strat-
egy for deciding if a randomly chosen node must leave the
network is to compare its node degree with the average one:
if higher, the node does not leave the network. To add more
realism, the hub departure probability parameter can be used
to set a leaving probability also for highly connected nodes.
The same parameters can be used for many different strate-
gies.

It is also possible to define the fraction of nodes which notify
(e.g. to their neighbors) their intention to leave the network.
Otherwise, the departure is considered as node failure, which
will be managed asynchronously by the network.

It is also possible to configure an oscillatory behavior, in
which the network size alternately decreases from and in-
creases to an established size value. The number of ripples
is defined by the waves parameter. Each ripple is charac-
terized by a number of departures comprised between the
wave min departures and wave max departures values. The
oscillation ends once the number of departures has been
compensated by the number of arrivals. Of course, all pa-
rameters can be set in order to achieve particular behaviors,
such as the complete wipeout of the network.

3.6.2 Publication and Search
The routing package includes the RoutingProtocol abstract
class, which declares two abstract methods: publish() and
search(). The concretization of the publish() method must
provide routing mechanisms for spreading resource descrip-
tors (e.g. key identifiers) all over the network, according to
a specific strategy (e.g. Gnutella, Chord, etc.). Similarly,
the search() method must realize a resource discovery pro-
cess (keyword-based, ontology-based, etc.). Two implemen-
tations of the RoutingProtocol abstract class are discussed in
section 4.

3.7 Simulation Automator
Oftentimes the evaluation of a P2P routing protocol involves
the simulation of different behaviors in terms of network
churn, search and publication of services. In order to do
this, the developer must continuously modify the source code
and recompile everything. To simplify this process, P2PAM
provides a SimulationAutomator, which is a parser of a basic
scripting language that enables the configuration of the sim-
ulations without the need to recompile the source code. At
this very early stage of development, the automator, which
is a simple PeerSim control, takes as unique parameter a
script file that defines the network dynamics through a list
of <action, amount> pairs. The action field can assume the
following values:

• add - simulates the entrance of amount new nodes into
the network;

• fail - simulates the failure of amount node into the net-
work;



• remove - simulates the clean disconnection of amount
nodes of the network;

• publish - simulates the publication of amount resources,
randomly chosen from those available in node caches;

• search - simulates amount search queries.

A typical use case is to grow a network until it reaches a
fixed size, and then start executing different kinds of action.
The simulation stops when all actions have been completed,
according to their amount value.

Despite the simplicity of this syntax we were able to simu-
late different network dynamic behaviors without recompil-
ing our code. We have planned to extend the SimulationAu-
tomator in order to use XML as scripting language, and to
support the simulation of complex network dynamics, such
as concatenations of different evolution phases.

3.8 Observers
To record data during a simulation and to compute per-
formance indices, P2PAM provides specific classes, called
observers, which access the graph structure of the network
and analyze:

• the overlay network topology (distribution of the node
degree, average connected distance, clustering coeffi-
cient);

• the distribution of resources and resource advertise-
ments;

• the data structure of each node (e.g. its knowledge
base);

• the results of the search processes (query hit ratio, pre-
cision and recall);

Since the network topology changes dynamically during the
publication and search processes, it is possible to define mul-
tiple observation instants, at which different shots are taken.

Observed connections can be stored in a file for further reuse
(with PeerSim’s WireFromFile class). This feature is useful
to quickly debug routing protocols, avoiding to repeat the
construction of the topology.

4. EXPERIMENTAL EVALUATION
This section illustrates the simulation of two interesting rout-
ing strategies, i.e. JXTA-SRDI and HALO, with different
unstructured network topologies. The two protocols have
been implemented in P2PAM respectively in the JxtaRout-
ingProtocol and HaloRoutingProtocol classes, both based on
the RoutingProtocol abstract class described in section 3.

4.1 JXTA Routing
Project JXTA [19], originally conceived by Sun Microsys-
tems, and designed with the participation of a growing num-
ber of experts from academic institutions and industry, de-
fines a generic peer-to-peer network overlay usable to imple-
ment a wide variety of applications and services. The JXTA

platform provides core building blocks (IDs, advertisements,
peergroups, pipes) and a default set of core policies, which
can be replaced if necessary.

JXTA-SRDI is the default protocol for message routing for
resource sharing and discovery in JXTA networks. It is
based on two components: the Shared Resource Distributed
Index (SRDI), and the loosely-consistent DHT walker. The
SRDI module implemented in each JXTA peer is used on
one hand to extract entries from resource advertisements
and push them to the network, and on the other hand for
lookups. The walker is used for routing when no index in-
formation is locally available.

JXTA supernodes are called rendezvous super-peers, while
leaf nodes are called edge peers. Resources, services, peers
and peergroups are described by XML documents, the so-
called advertisements. When an advertisement is published
by an edge peer (E1), its entries (which are attribute-value
pairs) are sent to the connected supernode (R1). Supern-
odes store the entries in dynamic indexes including also, for
each entry, the ID of the peer which originated them and
an expiration time. Moreover, each index entry is replicated
from supernode R1 to another supernode in R1’s peerview
using a DHT function. In details, the 160 bit SHA1 hash ad-
dress space is evenly divided amongst the ordered peerview
(sorted by peer ID), so an index entry is routed by hashing
its value and mapping its location in the peerview (suppose
R11). If the peerview is > 3, each index entry is also repli-
cated to the neighbors of R11 (+1 and −1 in the ordered
peerview, represented as circular list).

Search is based on the same DHT function, but also on a
limited range walker to resolve inconsistency of the DHT
within the dynamic rendezvous network. Queries are mes-
sages which contain advertisement entries (attribute-value
pairs). If a query is sent by an edge peer (E2), it reaches
the connected supernode (R2). Once R2 receives the query,
it first attempts to match it locally. Then R2 forwards the
query to another supernode in R2’s peerview (suppose R22)
using the DHT function. The more the rendezvous network
is near to completeness, i.e. the peerview is consistent across
all supernodes, the more the DHT-based routing algorithm
is efficient. To compensate for any peerview skew, a lim-
ited range walker is used. For example, suppose R22 fails to
match the query, and its peerview is

R20 R21 *R22* R23

Assume that R20 and R21 have the same peerview than
R22, while R23 has the following peerview:

*R23* R24 R25

Thus an R22 originated limited range walker query is walked
to R21 with a TTL (time to live, i.e. maximum number of
hops) of 2, and to R23 with a TTL of 1, where the TTL is
adjusted to 2 on R23 and walked to R25. Of course there is
a maximum value over which the TTL cannot be set, even
if the peerview of a supernode is very large. In case of query
hit, the response is forwarded to the query originator (in this
case, edge E2). The strategy is summarized in algorithm 1.



1: if (publication) then
2: save locally
3: end if
4: if (search) then
5: match locally
6: end if
7: if (leaf peer) then
8: send message to supernode
9: end if

10: if (supernode) then
11: if ((message from leaf peer) || (local message)) then
12: find target supernode neighbor t using DHT func-

tion
13: send message to target t supernode neighbor
14: if ((publication) && (peerview > 3)) then
15: send message to t + 1 and t− 1 supernode neigh-

bors
16: end if
17: end if
18: if (message from supernode) then
19: if ((search) && (no local match)) then
20: walk the peerview
21: end if
22: end if
23: end if

Algorithm 1: JXTA message routing.

4.2 HALO Routing
Our HALO protocol is based on high-degree node search, for
which messages are routed choosing at each step the highest-
degree neighbor, and using the DHT function for corrections
and for the final hop. The idea for this strategy comes from
the observation that the pseudo-DHT strategy adopted by
JXTA gives its best when the supernode network is highly
connected. HALO routes messages towards best connected
nodes, and uses the same DHT function used by JXTA if
neighbors are less connected than current peer, and for the
final step. If many neighbors have the same highest node
degree, the target is chosen by proximity of its ID with the
message ID. Algorithm 2 summarizes the HALO strategy.
Note that search and publishing strategies are exactly sym-
metrical. The maximum number of hops for a message is
TTL.

4.3 Performance Comparison
One of the issues which arise when simulating a complex
architectural model is the out-of-hand growth of memory
requirements, in particular when the network size increases
by factors of ten. The system we used to run the tests is a
dual processor 2GHz AMD Opteron 246 (a 64bit machine)
with 1024KB cache and 6GB RAM, equipped with Linux
kernel 2.6.5-7.283, and Java Standard Edition version 1.5.0
10-b03. With this platform we were able to simulate 106

node networks, but since the focus of this work is to evalu-
ate the flexibility of P2PAM as a tool for rapid application
protocol development, we chose to limit the network size to
105 nodes in order to shorten the execution time of each
configuration. We set the fraction of supernodes to 5% of
the network size, since it is a realistic value for JXTA (as we
illustrated in a previous work [3]).

We chose to operate only on a significant set of parameters,
such as the TTL of service discovery messages, the average
node degree α of the ER topology, and the initial node de-
gree m of the BA topology. Other variables have been fixed

1: if (publication) then
2: save locally
3: end if
4: if (search) then
5: match locally
6: end if
7: if (leaf peer) then
8: send message to supernode
9: end if

10: if (supernode) then
11: if (Hops < TTL− 1) then
12: search for supernode neighbor with higher degree
13: if (found n ≥ 1 supernode neighbors with higher

degree) then
14: choose highest degree supernode neighbor with

ID ' message ID
15: send to chosen supernode neighbor
16: else
17: find target supernode neighbor t using DHT func-

tion
18: send message to target t supernode neighbor
19: end if
20: end if
21: if (Hops == TTL− 1) then
22: find target supernode neighbor t using DHT func-

tion
23: send message to target t supernode neighbor
24: end if
25: end if

Algorithm 2: HALO message routing.

to reasonable values, minimally affecting the computational
complexity.

Each node is interested in a limited number of resources
among the whole set of resources which are spread in the
network with replication according to a Zipf-like distribu-
tion. We considered 10000 different resources, with 5 to 15
resources for each node. Obviously the probability of having
a particular resource increases with the size of the network.

The query hit ratio (QHR) is the fraction of successful queries,
i.e. queries with at least one useful response. Typically,
QHR values over 90% denote high efficiency of the search
algorithm, but also a good distribution of resource adver-
tisements in the network.

4.3.1 JXTA-SRDI vs HALO Efficiency for Different
TTL Values

Figures 3 and 4 illustrate, for JXTA-SRDI and HALO, how
the QHR changes depending on the TTL, for three different
sizes of the network, considering both ER and BA topologies.

The number of different resources is an important parame-
ter. We observe that the QHR, for both routing algorithms,
is significantly influenced by the network size. The Zipf-like
resource distribution does not guarantee that all categories
are present, unless the network size is greater than the ratio
between the number of categories and the average number
of peer resources.

Finally we observe that with ER topology JXTA-SRDI is
slightly more efficient than HALO. Their performance in-
dicators converge for high TTL values. With BA, under a
TTL threshold JXTA-SRDI performs better than HALO,
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Figure 3: Query hit ratio versus TTL, for JXTA-
SRDI and HALO strategies, with ER topology
model. Three network sizes have been considered:
respectively with 103, 104, and 105 nodes.
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Figure 4: Query hit ratio versus TTL, for JXTA-
SRDI and HALO strategies, with BA topology
model. Three network sizes have been considered:
respectively with 103, 104, and 105 nodes.



Table 1: JXTA efficiency in ER topologies for dif-
ferent α values.

α Query Hit Ratio
3 90.3
5 97.5
7 99.5
9 99.9
11 96.3

Table 2: HALO efficiency in BA topologies for dif-
ferent m values.

m Query Hit Ratio
3 99.9
5 100.0
7 100.0
9 100.0
11 100.0

but over the threshold JXTA-SRDI performance is constant
while HALO perfomance increases and overcomes JXTA-
SRDI’s one.

4.3.2 JXTA-SRDI and HALO Efficiency for Different
Node Degree Values

From previously illustrated results, it appears that JXTA-
SRDI is more efficient than HALO on ER topologies, while
HALO best performs on BA topologies. In this section we
compare the two algorithms, each one running on the best
suited topology.

Table 1 shows the efficiency of JXTA-SRDI with ER topolo-
gies, for increasing α values, with R = 5000 supernodes
among N = 105 total nodes in the network, and TTL = 6.
We observe that JXTA-SRDI efficiency is near to excellence
for α values between 5 and 9.

Table 2 shows the efficiency of HALO with BA topologies,
for increasing m values, with R = 5000 supernodes among
N = 105 total nodes in the network, and TTL = 6. HALO
efficiency is unaffected by m variations.

5. CONCLUSIONS
In this paper we illustrated a PeerSim enhancement, called
P2PAM, providing an almost complete framework for peer-
to-peer architectural modeling. P2PAM comes with a set of
network topologies defined across a protocol-level interface
which simplifies routing protocol development and simula-
tion. The concept of node has been revised in order to make
it more similar to a real peer node, with extensible data
structures storing local resource descriptions, search queries,
etc. A simulation automator has been introduced in order
to simplify the task of simulating network dynamics (churn,
publication and search) using a simple scripting language,
rather than writing Java code and re-compiling each time.

The effectiveness of P2PAM is demonstrated by showing
how it has been used to develop simulations of two compa-
rable routing protocols, JXTA-SRDI and HALO, with dif-
ferent unstructured network topologies. For both protocols,

we measured the query hit ratio considering different con-
figurations of a significant set of parameters. Many other
parameters could have been manipulated, without changing
and re-compiling the Java code.

Due to its ease of use, P2PAM will be essential for our study
of complex peer-to-peer architectural models, considering
different resource distributions but also different degrees of
churn rate. To this purpose, we plan to extend the simula-
tion automator in order to use XML as scripting language,
and to support the simulation of complex network dynam-
ics, such as concatenations of different evolution phases. An-
other improvement will be the possibility of storing observed
connections among nodes in a database, in order to ease the
debugging of routing protocols, without reconstructing the
topology each time.
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